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In perceiving 3D shape from ambiguous shading patterns, humans
use the prior knowledge that the light is located above their head
and slightly to the left. Although this observation has fascinated
scientists and artists for a long time, the neural basis of this “light
from above left” preference for the interpretation of 3D shape
remains largely unexplored. Combining behavioral and functional
MRI measurements coupled with multivoxel pattern analysis, we
show that activations in early visual areas predict best the light
source direction irrespective of the perceived shape, but activa-
tions in higher occipitotemporal and parietal areas predict better
the perceived 3D shape irrespective of the light direction. These
findings demonstrate that illumination is processed earlier than
the representation of 3D shape in the visual system. In contrast
to previous suggestions, we propose that prior knowledge about
illumination is processed in a bottom-up manner and influences
the interpretation of 3D structure at higher stages of processing.

functional MRI | multi-voxel pattern analysis | shape-from-shading |
visual cortex | bottom-up processing

Although the perception of 3D shape is critically important for
actions and interactions in the environments we inhabit, most

depth cues are ambiguous. As a result, the brain requires addi-
tional information based on previous experience with the envi-
ronment to infer 3D shape from depth cues. In particular, the
inference of 3D shape from shading patterns (i.e., using image
luminance intensity variations to derive the shape of a surface)
relies on the assumption that the scene illuminant is above our
heads and slightly to the left (1, 2). Understanding the illumina-
tion of a visual scene has fascinated artists and scientists for a long
time (3, 4), but the neural basis of this “light from above left”
preference for the interpretation of 3D shape remains largely
unexplored. Although the light-from-above preference is consis-
tent with an ecological explanation, the left bias remains entirely
unexplained. More generally, the light-from-above preference
provides a simple example of the way the brain represents prior
knowledge and opens the door for the investigation of other types
of prior knowledge related to our perception of the motion,
shape, and color of objects.
Previous neurophysiological and imaging studies have impli-

cated several brain regions in the processing of shape-from-
shading: primary visual cortex (V1) (5–9), areas in the caudal in-
ferior temporal gyrus (10) and the inferior parietal sulcus (11).
However, the functions mediated by these different cortical areas
may differ. In particular, interpreting shape-from-shading may in-
volve at least two different stages of processing. At the first stage,
the contrast polarity of edges in the image (dark or bright) is an-
alyzed and related to the light direction so that left and right light
directions can be discriminated. At the second stage, contrast edges
are grouped together to form 3D shapes so that convex and con-
cave shapes can be discriminated. For simplicity, we shall refer to
these two stages as “Light” and “Shape” processing, respectively.
Here, we combine psychophysics and functional MRI (fMRI)

measurements to dissociate the cortical areas engaged in the
computations at the Light vs. the Shape stage of processing. We

use advanced fMRI analysis methods (multivoxel pattern anal-
ysis, MVPA) that allow us to evaluate whether small biases across
voxels related to the preference of the underlying neural pop-
ulations are statistically reliable (12–14). Using these methods, we
test for fMRI sensitivity in discriminating Light and Shape across
various visual, temporal, and parietal regions known to be en-
gaged in the representation of shape from different depth cues
(15–19). We then compare fMRI sensitivity for Light and Shape
discrimination to that predicted from the behavioral data (20).
Our fMRI results demonstrate that this left-light bias is processed
at early stages of visual processing. In contrast, 3D shape percep-
tion is predicted from activations in parietal areas. In contrast to
previous suggestions that prior knowledge always relates to top-
down processes (e.g., 21), our findings support processing of some
prior knowledge about the environment in a bottom-up manner.

Results
Psychophysics. Seven observers were presented with a series of
images of shaded objects that belonged to eight image types (Fig.
1A, images “a” to “h”). These eight image types correspond to the
interaction of two possible shapes (convex and concave rings) lit
from one of four possible light directions (separated by 45°) (Fig.
1B). The ring was divided in eight equal sectors, all but one having
the same shape (the odd sector is numbered 4 in image “a” of Fig.
1A). Observers were instructed to report the shape of the odd
sector, convex or concave. The odd-shaped sector appeared in all
six possible locations for each of the eight image types, so target
location was not predictive of light or shape. Importantly, a con-
cave ring lit from one direction produces the same image as
a convex ring lit from the opposite direction. Fig. 1C shows the
probability of the ring being perceived as convex (and the odd
sector concave) for the eight image types. The ring was perceived
as convex when the light was simulated from above (images “a,”
“b,” “g,” and “h” in Fig. 1C) and concave otherwise. A repeated-
measures ANOVA showed a significant main effect of light source
position on the perceived shape [F(7, 48) = 8.79, P < 0.0001]. As
expected from our previous behavioral work (20), the most am-
biguous ring shape (the crossing points between convex and con-
cave) did not occur for horizontal light directions: that is, halfway
between images “b” and “c” and “f” and “g.” This observation
illustrates a bias of the observers to prefer a light source located to
the left of the vertical. To quantify this bias, we fitted the data in
Fig. 1C with a scaled sinewave and used the phase of the sinewave
as the estimate for the left bias (2). Averaging across all observers
showed a bias to the left of the vertical equal to –22.3°.
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Furthermore, to evaluate the statistical significance of the left
bias, we compared the perceived shape of the ring when the light
was simulated on the left versus when the light was on the right.
That is, we compared significant differences in performance for
pairs of images that were symmetric to the vertical meridian,
namely “a,” “b,” “c,” and “d” vs. “h,” “g,” “f,” and “e” in Fig. 1.

The first set of images were perceived significantly more often as
convex (assuming light from above) compared with the second
set [t(6) = 7.2, P < 0.001]. This difference is mostly because of
the light directions that are close to the horizontal meridian (see
also SI Results and Fig. S1).

fMRI Data: Shape-from-Shading Responsive Regions. For each in-
dividual participant we identified retinotopic, motion-related (V3B/
KO, hMT+/V5) and shape-related (lateral occipital complex, LOC)
areas based on standard procedures (see SI Methods for details and
Figs. S2–S3). In addition to identifying regions involved in the pro-
cessing of 3D shape, we compared activations [General Linear
Modeling (GLM) analysis] for shape-from-shading ring stimuli to
scrambled images of these stimuli. As shown in Fig. 2 (Table S1), we
observed significantly stronger activations [P (Bonferroni corrected)
<0.05] for shape-from-shading stimuli in lateral occipital (LO),V3B/
KO regions along the intraparietal sulcus (IPS) [ventral intraparietal
sulcus (VIPS), parieto-occipital intraparietal sulcus (POIPS), dorsal
intraparietal sulcus (DIPS)], the postcentral sulcus (left hemisphere)
and ventral premotor region (right hemisphere). GLM analysis
comparing responses to convex vs. concave shapes did not show any
significant activations [P (Bonferroni corrected) < 0.05]. We then
identified these shape-from-shading responsive regions in individual
observers (P<0.05uncorrected) andused themas regionsof interest
(ROI) for the fMRI pattern classification analysis of light and shape
processing (MVPA). This procedure ensured that the data used for
the fMRIpattern classificationwere independent from thedata used
for the localization of ROI. Data from areas postcentral and ventral
premotor were not further analyzed, as these areas were activated in
less than three of the observers.

fMRI Multivoxel Pattern Classification: Discriminating Light and Shape
Processing. Previous studies have shown that the perception of
shape-from-shading involves a network of cortical areas (5–11).
However, these studies have not decoupled the processing of
Light from that of Shape. Here, Light processing refers to the
ability to discriminate left from right light directions, whereas
Shape processing refers to the ability to discriminate convex
from concave shapes.
We used MVPA to test the extent to which neural populations

in retinotopic areas, motion-related areas (V3B/KO, hMT+/V5),
shape-related areas (LOC), and shape-from-shading responsive
regions are involved in Light vs. Shape processing (see Methods
for details). MVPA has been previously used successfully for
decoding basic visual features (22–24), depth structure (25), and
object categories (26–29) from fMRI data. We reasoned that
activity from regions involved in Shape processing would contain
information that distinguishes convex from concave shapes across
different light directions. In contrast, we predicted that regions
involved in Light processing would contain information that dis-
tinguishes left from right illuminations. It is important to note that
we will evaluate the relative differences between classifiers across
the four lighting direction conditions, rather than simply the ab-
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Fig. 1. Stimuli and behavioral performance. (A) Examples of stimuli. Each
image is interpreted as a convex or concave ring lit from one of four light
directions. All eight image types (a–h) are ambiguous. For instance, image ”a”
can be interpreted as a convex ringwith a light source located above-left or as
a concave ring with a light below-right. One of the elements of the ring,
randomly chosen from one of six possible locations (numbered 1 through 6 in
image “a”), has a shape opposite to that of the ring. In the behavioral task,
observers were asked to report the perceived shape of this odd element.
(B) Four classes of stimuli. To simplify the description of the stimuli in this
article, we adopt the convention that the depicted shape of a stimulus is that
consistent with a light coming from above. Following this convention, images
“a,” “b,” “g,” and “h”will be referred to as convex rings and images “c,” “d,”
“e,” and “f” as concave rings. The four main classes of stimuli are assigned
different color codes: pink for convex shape lit from the left, green
for concave-right, orange for concave-left, and blue for convex-right. (C)
Behavioral performance in discriminating the shape of the odd element. The
plot shows the probability that observers reported a convex ring (thus
a concave odd element) as a function of light direction. In this plot, all six
possible locations of the odd elements were pooled. The most ambiguous
images were “c” and “g.” The solid line is the best fit of a scaled cosine
function to illustrate the bias to above-left for the assumed light direction.
Error bars are SEs across observers (n = 7).

Fig. 2. Shape-from-shading responsive regions. Group GLM map across subjects (n = 7) representing areas that were significantly more activated for shape-
from-shading than scrambled stimuli [P (Bonferroni corrected) < 0.05]. The functional activations are superimposed on flattened cortical surfaces of the left
and right hemispheres. The sulci are coded in darker gray than the gyri.
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solute performance of classifiers across ROIs. The advantage of
this analysis is that it is independent of any variables that may
contribute to the absolute classification values in each ROI (e.g.,
signal-to-noise ratio, partial volume effects). We conducted two
main analyses for Shape and Light processing, respectively.
Shape classification. We conducted MVPA to test which cortical
areas contain information about 3D shape (convex vs. concave).
The analysis using the Shape classifiers resembles the task of the
observers: we trained linear classifiers (SVM) to discriminate
whether fMRI activity across voxel patterns relates to convex or
concave rings. Four classifiers were used corresponding to four
light directions (Fig. 3A). The first classifier was trained to dis-
tinguish convex from concave shapes when lit from 67.5° left:
that is, to differentiate the shapes depicted in images “b” and “f”
of Fig. 1A. The second classifier performed the same classifica-
tion when shapes were lit from 22.5° left: that is, it differentiated
images “a” and “e”. The remaining two classifiers performed the

same classification when shapes were lit from 22.5° right or 67.5°
right (Fig. 3A).
What is the classification performance that we can expect for

different light directions in cortical areas involved in 3D shape
processing? Looking at the two images in a pair (e.g., “b” and “f”),
we note that almost all white pixels from one image are black in
the other. Therefore, there is some information in the image in-
tensity that could support the discrimination of the stimuli; but
importantly, this information is the same for all pairs of images (SI
Results). In other words, a classifier that uses purely the image
intensity to classify stimuli should have constant performance
across pairs of stimuli (Fig. 3B).
In contrast, based on the behavioral data, we know that

observers perceived image “a” as a convex ring much more fre-
quently (about 60% more often) than image “e” (Fig. 1C).
Therefore, we predict high classification accuracy for discriminat-
ing between these images from fMRI signals sensitive to the 3D
shape (convex vs. concave). Conversely, we predict low classifica-
tion accuracy for signals related to images “c” and “g” because
observers perceived them convex equally often. We can thus derive
a Shape Behavior Model based on the observer’s own data (SI
Results). Importantly, this Shape model no longer has constant
performance across the four lighting directions (Fig. 3C).
For all cortical areas, Shape classification accuracy was above

chance (0.5) for at least one of the four classifiers, or equivalently
for at least one light direction. However, the performance of the
classifiers was not uniform across all light directions (Fig. 3D). A
repeated-measures ANOVA showed a significant main effect of
light direction [F(3,310) = 163.07, P < 0.0001] and a significant
interaction between ROI and light direction [F(36,310) = 33.29,
P < 0.0001]. Looking at individual cortical areas, Shape classi-
fication accuracies depended on the light directions primarily in
higher dorsal areas (dorsal visual and parietal regions) and not as
much in ventral and early visual areas (Table S2).
It would be wrong to conclude that a certain brain region is

making a shape discrimination simply from the fact that our Shape
classifier produces above-chance performance. As we saw in Fig.
3B, there is information in the pixel intensities to perform this task.
The evidence that will support our claim that a brain region pro-
cesses shape is the similarity of the pattern of performance for the
four lighting directions (Fig. 3D) with that of our Shape Behavior
Model (Fig. 3C). This analysis is presented in a later section.
Light classification. Using similar analysis methods (MVPA) as
above, we investigated which cortical areas contain information
that allows us to discriminate light position (left vs. right) from
fMRI signals. Four Light classifiers were trained to discriminate
whether the viewed image was lit from the left or the right (Fig.
4A). The first classifier performed a classification between left and
right light directions when the light was at 22.5° from the vertical
and the object was convex (i.e., images “b” and “g” in Fig. 1A).
The second classifier performed the same classification when the
light was directed 67.5° from the vertical and the object was
convex. The remaining two classifiers performed the same clas-
sification for concave objects (Fig. 4A).
Similar to the analysis for the Shape classifiers, we tested the

performance of a model based on the image intensities (Fig. 4B)
and another model based on the behavioral data (Fig. 4C). The
details of thesemodels are given in the SI Results. It is important to
note that both models’ performance varied with light direction,
with best performance for light directions near the horizontal and
worst performance for light directions near the vertical. Critically,
the performance across lighting directions formed a symmetrical
U-shape pattern for the image-based model and an asymmetrical
pattern for the behavioral model. The asymmetry of the Light
behavior model results from the left bias of the estimated light
direction (Fig. 1C).
The Light classification accuracies were high primarily in reti-

notopic areas, and they varied the most across the four classifiers

d

D

B CA

Fig. 3. Shape Classifier. MVPA for the classification of Shape (convex vs.
concave) from fMRI data. (A) Classifier 1 compares activations for convex and
concave stimuli when light is located 67.5° on the left: that is images “b” and
“f” shown in Fig. 1A. Classifier 2 compares activations for stimuli when the
light was 22.5° on the left: that is for images “a” and “e,” classifier 3 for
images “h” and “d,” and classifier 4 for images “g” and “c” (Fig. 1). (B)
Expected classification accuracies of the Shape ImageModel. This model takes
into account only the variation in pixel intensities between a pair of images.
(C) Expected classification accuracies of the Shape Behavior Model. This
model is based on the ability to discriminate convex and concave shapes as
measured behaviorally for each observer (Fig. 1C) and predicts a nonuniform
performance across the four lighting conditions. (D) Classification accuracies
for the four lighting directions across ROI. The mean classification accuracy
is based on 100 voxels per area. Error bars indicate SEM across observers
(n = 7). The dashed line indicates the chance classification level (50%).
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also in these early visual areas (Fig. 4D). A repeated-measures
ANOVA showed a significant interaction between ROI and
classifier number where the classifier numbers are illustrated in
Fig. 4A [F(36,312) = 33.86, P < 0.0001). Looking at individual
cortical areas, Light classification accuracies depended on light
directions primarily in early visual areas and less so in parietal and
dorsal visual areas (Table S2).
Relationship between behavior-based models and neural processing for
Shape vs. Light. The perception of shape-from-shading involves an
appropriate correspondence between the dark and bright image
contours and the light source position, and an appropriate
grouping of the contours to form a convex or concave shape. The
observer’s ability to complete the first stage of processing is well
characterized by the Light model we have developed above (Fig.
4C), whereas the ability to complete the second stage is char-
acterized by the Shape model (Fig. 3C). Obviously an observer is

able to complete both stages of processing, as illustrated by the
fact that both models are based on the same behavioral data
(Fig. 1C). However, some brain areas might be involved more in
one of the two stages of processing.
To characterize the extent to which a specific brain area is in-

volved in processing Shape or Light, we calculated the Spearman
rank correlation of classification accuracies with the correspond-
ing Shape and Light behavior models. Fig. 5A illustrates these
correlations for V1 and regions along the IPS. For example, each
symbol in the Upper Left plot shows the performance of the four
light classifiers for one observer with the Light model for that
observer. Even though the figure shows all observers together,
correlations were computed individually for each observer. Across
all observers, the Light classifier accuracies were well predicted by
the Light model, as illustrated by a strong correlation (Spearman’s
rho: ρ = 0.46). This finding suggests that V1 is involved in the
processing of light orientation.However, a similar analysis showed
no significant correlation of the Shape classifier accuracies with
the Shape model (ρ= 0.04), suggesting that V1 is not involved in
3D shape processing from shading. The Lower row of Fig. 5A
illustrates the opposite effect for areas along the IPS, namely

d

B CA

D

Fig. 4. Light Classifier. MVPA for the classification of Light (left vs. right).
(A) Classifier 1 compares activations related to left-lit convex stimuli (67.5°) vs.
right-lit convex stimuli (67.5°). Classifier 2 compares activations related to
left-lit convex stimuli (22.5°) vs. right-lit convex stimuli (22.5°). Classifier 3
compares activations related to right-lit concave stimuli (22.5°) vs. left-lit
concave stimuli (22.5°). Finally, Classifier 4 compares activations related to
right-lit concave stimuli (67.5°) vs. left-lit concave stimuli (67.5°). (B). Expec-
ted classification of the Light Image Model. This model takes only into
account the variation in pixel intensities between a pair of images. (C)
Expected classification accuracies of the Light Behavior Model. This model
performs a Bayesian inference based on the prior assumption that light
comes from above-left as measured behaviorally for each observer (Fig. 1C)
and predicts an asymmetrical performance across the four lighting con-
ditions. (D) Classification accuracies for each of the four lighting directions.
Mean classification accuracy is based on 100 voxels per area. Error bars in-
dicate SEM across observers (n = 7). The dashed line indicates the chance
classification level (50%).

d
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Fig. 5. Correlating pattern classification and behavior-based models. (A)
Correlations of classification accuracies (Light classifier on the Left and Shape
classifier on the Right) and the respective behavioral models for V1 (Upper)
and regions along the IPS (Lower). Classification accuracies for V1 correlate
well with the Light model but not with the Shape model, whereas accuracies
for IPS correlate with Shape but not with Light. (B) Summary plot of corre-
lations between classifier accuracies and Shape and Light models for each
ROI. For each cortical area, the Spearman correlation of the Light classifiers
with the Light Behavior Model is plotted against the correlation of the
Shape classifiers with the Shape Behavior Model. Dashed lines represent
significance criteria for P = 0.05 based on a permutation analysis constrained
to the image information.
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a strong involvement in Shape processing (ρ = 0.51) but not in
Light processing (ρ = −0.04).
Fig. 5B illustrates the correlations of the Shape and Light

classifier accuracies across cortical areas with the respective be-
havior models. The right-hand side of the figure contains areas
that are involved in Shape processing, whereas the top part of the
figure contains areas involved in Light processing. The dashed
lines represent correlation criteria to reach a significance P value
of 0.05 according to a permutation analysis constrained to the
Shape and Light image models (30). In this test, all permutations
were allowed for the Shape analysis, but only permutations within
the group composed of the classifiers “b–g” and “c–f” on the one
hand and within the group “a–h” and “d–e” on the other hand
were allowed for the Light analysis. Early retinotopic areas, in
particular V1, V2, and V3d appear to be involved in Light pro-
cessing, although only the correlation of V3d reached significance
(P = 0.048). In contrast, higher areas appear to be involved in
Shape processing: V3v, LO, V3A, V7, hMT+/V5, and regions
along the IPS, although only the correlation of IPS reached sig-
nificance in our permutation test (P < 0.01). The result that areas
traditionally involved in object processing (such as LO) did not
reach significance may be because of the larger complexity of the
objects used in these previous studies (e.g., ref. 16). Critically, we
did not find any cortical area that showed a significant correlation
with both the Light and Shape models, suggesting that no area
was fully involved in both Light and Shape processing. Dissoci-
ating feed-forward fMRI signals that may relate to light pro-
cessing from activity related to shape perception in higher areas is
complicated due to the complex nature of the blood-oxygen level-
dependent (BOLD) response. However, we found a surprisingly
clean division of labor between early visual areas that process
image-contrast properties and higher visual areas that correlate
with the perceived object shape.

Discussion
Our study investigated the neural network that allows us to infer
3D shape from shading. In this inference, humans assume that
light is coming from above their head, but also slightly from the
left (1, 2). Our findings reveal that this prior knowledge on illu-
mination is processed early in the visual system, primarily in early
retinotopic areas. We reached this conclusion by capitalizing on
the left bias for the assumed light-source position. Because of this
left bias, flipping an image about the vertical axis led to changes in
the reliability of the perceived 3D shape depicted by the shading
cue. Thus the same shape, for example a convex ring, was per-
ceived more or less frequently depending on whether light was
simulated on the left or the right. These variations in the image
interpretation depend neither on the image itself (an image and
its mirror reverse contain the same information) nor on the shape
(similar variations occur for a concave ring) but purely on the
characteristics of the assumed light-source position (a left bias).
Activity in early visual areas was not only affected by lighting
direction (left or right), but it was modulated in a manner very
similar to the human behavior. In contrast, the activity in higher
visual areas (in particular in parietal areas) was not affected by
lighting direction (left vs. right), but instead reflected the per-
ceived shape (convex vs. concave). Past studies had already
highlighted several regions of the shape-from-shading network, in
particular early visual areas (5–9) and to a lesser extent higher
extrastriate (10) and parietal areas (11). Our study helps de-
lineating the functions mediated by these different cortical areas.
To obtain these results, we have used computational modeling to
provide a strong link of fMRI BOLD signals with behavior.
Are the effects we observe in early visual areas the signature of

the representation of the assumed light-source position, or is this
prior knowledge represented somewhere else and fed back to
early visual areas? Intuitively, it is reasonable to expect that some
prior knowledge, especially if it can be verbalized (i.e., “light is

coming from above because the sun is above our head”), should
be represented in higher cortical areas where semantic in-
formation can be stored. According to this popular view, prior
knowledge is processed in a top-down manner, following for in-
stance the elegant Bayesian-belief propagation model where “the
feedforward input drives the generation of the hypotheses, and
the feedback from higher inference areas provides the priors to
shape the inference at the earlier levels” (21). However, our
results are inconsistent with the feedback hypothesis. Should the
prior knowledge be processed in higher visual areas, both these
areas and the early visual areas should contain information sen-
sitive to the consequences of changing the light direction from left
to right. Because this sensitivity was lacking in higher visual areas,
we conclude that the prior knowledge on illumination is pro-
cessed in the early visual areas. This finding is an important result
exemplifying that prior knowledge does not necessarily imply
high-level representation and top-down processing as previously
suggested. More specifically, the prior knowledge about the world
that guides our perception of complex 3D environments, such as
the assumption that light is coming from above and slightly from
the left, appears to be one of these constraints represented early
in the visual system. These results are consistent with previous
studies that have shown a short delay for the neural structures
involved in shape-from-shading (7). The reason for the left, rather
than right, bias is still unresolved, but some speculations have
been proposed that would be consistent with an early processing
of this prior knowledge (31).
We propose that the representation of prior knowledge about

the illumination direction early in the visual system is important, as
light affects the contrast of an image (32); that is, a basic visual
property that needs to be processed before more interesting image
understanding takes place. Other types of visual prior knowledge
do not necessarily have to be represented in early visual areas.
More generally, we expect that prior knowledgewill be represented
wherever the property related to the prior is explicitly processed.
For example, preferences for slow motion (33) might also be rep-
resented in early visual areas but preferences for looming should be
searched in areas sensitive to this more complex kind of motion
[i.e., the human homolog of area medial superior temporal in
macaque monkeys (34)]. Similarly, preferences for convex rather
than concave objects (e.g., ref. 35) should be searched in areas
involved in shape perception, in particular in areas hMT+/V5 (36),
LO, and IPS, as suggested by our findings. Taking into account the
role of prior knowledge in our perceptual decisions will advance
our understanding of the computations underlying human per-
ception across cortical areas.

Methods
Psychophysics. Before scanning, we conducted a psychophysical study to
confirm that the stimuli were perceived as 3D by the observers when lying in
the scanner. Behavioral data were collected in a mock scanner with the same
stimulus delivery equipment as in the scanner. Each session [composed of all
96 stimuli: two shapes (convex or concave) × four light directions (±22.5°
and ±67.5°) × six sector positions × two levels of blur] was repeated six times.
All stimuli were presented in a randomized sequence. Stimuli were shown
for 100 ms and then followed immediately by a mask. No feedback was
provided to the observers. All subjects were instructed to detect the shape
(convex or concave) of the odd sector. Specific details on the observers and
stimuli can be found in SI Methods.

fMRI Design and Procedure. Cortical regions of interest were identified by
presenting observers with 48 ring stimuli and 24 scrambled versions of these
stimuli. Data used in the MVPA were collected on separate runs where only
the ring stimuli were presented. Observers were instructed to perform
a detection task on the fixation (i.e., detect a change from “+” to “×”) and
performed with an accuracy larger than 80%. Each stimulus was presented
for 200 ms followed by a blank interval (600 ms).

fMRI Data Acquisition. All experiments were conducted using a 3-Tesla Philips
AchievaMRI scanner at the BirminghamUniversity Imaging Centre. T2*-weighted
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functional andT1-weightedanatomical (1×1×1mm)datawere collectedwithan
eight-channel SENSE head coil. EPI datawere acquired from 33 axial slices (whole-
headcoverage,TR:2,000ms,TE:35ms,flip-angle:80 °,2.5×2.5×3mmresolution).

fMRI Data Analysis. The fMRI data were analyzed using Brain Voyager QX
(Brain Innovations). Preprocessing of the functional data consisted of slice-
scan time correction, headmovement correction, temporal high-passfiltering
(three cycles), and linear trend removal. No spatial smoothing was applied
except in the group data analysis (Gaussianfilter; full-width at half maximum,
6 mm) that was conducted for identifying cortical areas involved in the
processing of shape from shading. Anatomical data were used for 3D cortex
reconstruction, inflation, and flattening. Functional images were aligned to
anatomical data and the complete data transformed into Talairach space.
MVPA. For the MVPA (e.g., refs. 22, 23), we used linear SVM classifiers and
followed cross-validation procedures as in our previous studies (37). For each
ROI (retinotopic areas, V3B/KO, and hMT+/V5, shape-from-shading re-
sponsive regions), we sorted the voxels according to their response (t-
statistic) to all stimulus conditions compared with fixation baseline across all
experimental runs. We selected the same number of voxels across ROIs and
observers by restricting the pattern size to those voxels that showed a sig-
nificant (P < 0.05) t value when comparing all stimulus conditions vs. fixa-
tion. This procedure resulted in the selection of 100 voxels per ROI, which is
comparable to the dimensionality used in previous studies (22). The mini-

mum number of voxels included for each ROI and subject was 100. We
normalized (z-score) each voxel time-course separately for each experi-
mental run to minimize baseline differences across runs. The data vectors for
the multivariate analysis were generated by shifting the fMRI time series by
4 s to account for the delay of the hemodynamic response and then aver-
aging all time series datapoints of one experimental block. We selected data
vectors according to the comparison of interest (Figs. 3A and 4A) and split
them into a training sample comprising the data of seven runs and a test
sample comprising the remaining run (for one of the observers, we collected
six experimental runs: five runs were used as training sample and one run as
test). We performed an 8-fold cross-validation leaving one run out (test
sample). For each subject, we averaged the accuracy rates (number of cor-
rectly assigned test patterns/total number of assignments) across the cross-
validation runs. We evaluated the statistical significance across subjects us-
ing repeated measures ANOVA (Figs. S2–S4 and Tables S3 and S4).
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