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Abstract
The environments in which we live and the tasks we must perform
to survive and reproduce have shaped the design of our percep-
tual systems through evolution and experience. Therefore, direct
measurement of the statistical regularities in natural environments
(scenes) has great potential value for advancing our understanding
of visual perception. This review begins with a general discussion of
the natural scene statistics approach, of the different kinds of statis-
tics that can be measured, and of some existing measurement tech-
niques. This is followed by a summary of the natural scene statistics
measured over the past 20 years. Finally, there is a summary of the
hypotheses, models, and experiments that have emerged from the
analysis of natural scene statistics.
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RATIONALE FOR MEASURING
NATURAL SCENE STATISTICS

The process of natural selection guarantees a
strong connection between the design of an
organism’s perceptual systems and the prop-
erties of the physical environment in which
the organism lives. In humans, this connec-
tion is implemented through a mixture of fixed
(hardwired) adaptations that are present at
birth and facultative (plastic) adaptations that
alter or adjust the perceptual systems during
the lifespan.

The link between perceptual systems and
environment is most obvious in the design
of sensory organs. The physical properties of
electromagnetic waves, acoustic waves, and
airborne molecules and their relation to the
properties of objects and materials are clearly

a driving force behind the evolution of eyes,
ears, and noses. Not surprisingly, central per-
ceptual mechanisms that process the outputs
of sensory organs also tend to be closely re-
lated to specific physical properties of the
environment.

The design of a perceptual system is also
constrained by the particular tasks the organ-
ism evolved to perform in order to survive
and reproduce. For example, mammals that
suffer high rates of predation have a strong
need to detect predators and hence tend to
have laterally placed eyes that maximize field
of view, whereas mammals that are predators
have a strong need to capture moving prey
and hence tend to have frontally placed eyes
that maximize binocular overlap (Walls 1942).
Furthermore, there are purely biological con-
straints on the design of perceptual systems,
including the biological materials available to
construct the sensory organs and competition
for space with other organs and systems within
the body.

Our often-veridical perceptions of the
world give the impression of a deterministic
connection between perception and environ-
ment; however, this is largely an illusion. Most
perceptual capabilities depend upon combin-
ing many very different sources of stimulus
information, each of which is only proba-
bilistically predictive in the task the organism
is trying to perform. For example, our esti-
mates of physical object size and shape are of-
ten based upon a combination of information
sources, including lighting/shading, texture,
occlusion, motion, and binocular disparity.
Each of these sources is only probabilistically
related to object shape and size, but together
they provide us with very robust perceptions
and perceptual performance. Furthermore, all
visual measurements are noisy due to the in-
herent randomness of light absorption and
chemical events within the photoreceptors.
Consequently, the appropriate way to char-
acterize natural stimuli is in statistical terms.

The primary aim of this review is to
demonstrate the great potential value of an-
alyzing the statistical properties of natural
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scenes,1 especially within the context of de-
veloping statistical models of perception. An-
other aim is to demonstrate that the Bayesian
framework for statistical inference is partic-
ularly appropriate for characterizing natural
scene statistics and evaluating their connec-
tion to performance in specific tasks. In prin-
ciple, measuring natural scene statistics allows
one to identify sources of stimulus informa-
tion available for performing different per-
ceptual tasks and to determine the typical
ranges and reliabilities of those sources of in-
formation. Analyzing natural scene statistics
within the Bayesian framework allows one
to determine how a rational visual system
should exploit those sources of information.
This approach can be valuable for generating
hypotheses about visual mechanisms, for de-
signing appropriate experiments to test those
hypotheses, and for gaining insight into why
specific design features of the visual system
have evolved or have been learned.

Roots of the Natural Scene
Statistics Approach

The natural scene statistics approach origi-
nates in physics. Historically, physics has been
concerned with topics of direct relevance to
understanding the design of visual systems in-
cluding the properties of light, the laws of
image formation, the reflectance, scattering,
and transmittance properties of natural ma-
terials, and the laws of motion and gravity.
Against this backdrop, biologists began asking
how visual systems are adapted to the physical
environment and to the tasks that the organ-
ism performs. Most early work on the ecology
and evolutionary biology of vision was con-
cerned with the optics and the photoreceptors
of eyes (e.g., Cronly-Dillon & Gregory 1991,
Lythgoe 1979, Walls 1942). This early work
emphasized the relationship between design,

1Natural scenes refer to real environments, as opposed to
laboratory stimuli, and may include human-made objects.
Most of the studies described here concern measurements
of outdoor environments without human-made objects.

function, and the properties of the environ-
ment, but because of the issues being investi-
gated, gave little consideration to the statisti-
cal properties of natural stimuli.

Interest in the statistical properties of nat-
ural visual stimuli began with the discovery
in physics of the inherent Poisson random-
ness of light (quantal fluctuations). Human
and animal studies by early sensory scien-
tists subsequently showed that under some
circumstances behavioral and neural perfor-
mance is limited by a combination of quantal
fluctuations and internal sources of noise (e.g.,
Barlow 1957, Barlow & Levick 1969, Hecht
et al. 1942). This work, along with parallel
work in audition, led to the development of
signal detection theory and Bayesian ideal ob-
server theory (e.g., see Green & Swets 1966),
which provides an appropriate formal frame-
work for proposing and testing hypotheses
about the relationship between perceptual
performance and the statistical properties of
stimuli and neural responses. However, early
work on the statistical properties of visual
stimuli and neural responses focused on sim-
ple detection and discrimination tasks, paying
little attention to sources of stimulus varia-
tion other than quantal fluctuations and pixel
noise.

Some early perception scientists (e.g.,
Gibson 1966, 1979) did appreciate the im-
portance of the complex properties of natu-
ral stimuli for solving perceptual tasks, but
they paid little attention to statistical varia-
tions of those properties in natural scenes. An
exception was Brunswik (1956), who realized
that the relationship between distal and prox-
imal stimuli is inherently statistical; in fact,
he demonstrated, by analyzing natural images,
that perceptual biases such as the Gestalt rule
of proximity have a statistical basis in natural
scenes (Brunswik & Kamiya 1953).

Recent years have seen rapid growth in the
statistical analyses of natural images (for a re-
view, see Simoncelli & Olshausen 2001) as
well as in the analysis and modeling of com-
plex perceptual tasks within the framework of
Bayesian ideal observer theory (for reviews,
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see Geisler & Diehl 2003, Kersten et al. 2004,
Knill & Richards 1996). A central tenet of
this review is that combining measurements
of natural scene statistics with Bayesian ideal
observer analysis provides an important new
approach in the study of sensory and percep-
tual systems.

Within-Domain Statistics

Natural scene statistics have been measured
at various stages (domains) along the path
from physical environment to behavioral re-
sponse. The simpler and more common kinds
of measurements are what I call within-
domain statistics (first column in Figure 1A).
The purpose of within-domain statistics is
to characterize the probability distribution of
properties within a specific domain such as
the (distal) environment or (proximal) reti-
nal image. The more complex and less com-
mon kinds of measurements are what I call
across-domain statistics (other columns in
Figure 1A). Their purpose is to characterize
the joint probability distribution of properties
across specific domains. Across-domain statis-
tics are essential for analyzing natural scene
statistics within the Bayesian ideal observer
framework.

In the case of within-domain statistics for
the environment, a vector of physical scene
properties ω is selected and then those prop-
erties are measured in a representative set of
scenes in order to estimate the probability dis-
tribution of the propertiesp(ω). For example,
ω might be the reflectance function at a point
on a surface in a natural scene; that is, a vec-
tor giving the fraction of light reflected from
the surface for a number of different wave-
lengths, ω = [ρ(λ1), L, ρ(λn)]. Making these
physical measurements for a large number of
surface points in natural scenes would make
it possible to estimate the probability distri-
bution of natural surface reflectance. Simi-
larly, in the case of within-domain statistics
for images, a vector of retinal image proper-
ties s is selected and their distribution mea-
sured. For example, s might be a vector rep-

resenting the wavelength spectrum at a reti-
nal image location, s = [I (λ1), . . . , I (λn)] (see
plots in Figure 1B ). For the domain of neu-
ral response, a set of response properties for
a population of neurons is selected and their
distribution measured for a representative set
of natural stimuli. In this case, z might be a
vector of the spike counts of each neuron,
z = [count1, . . . , countn]. Finally, for the do-
main of behavior, a vector of properties for
some class of behavior is selected and their
distribution measured for a representative set
of natural stimuli. For example, r might be the
eye fixation locations in a natural image dur-
ing free viewing, r = [fixation1, . . . , fixationn].

Measurements of within-domain statistics
are highly relevant for understanding neural
coding and representation. A plausible hy-
pothesis is that the retina and other stages
of the early visual pathway have evolved (or
learned) to efficiently code and transmit as
much information about retinal images as pos-
sible, given the statistics of natural images and
biological constraints such as the total num-
ber of neurons and the dynamic range of neu-
ral responses. Variants of this efficient cod-
ing hypothesis have been widely proposed and
evaluated (Atick & Redlich 1992; Attneave
1954; Barlow 1961, 2001; Field 1994; Laugh-
lin 1981; van Hateren 1992). For example, the
efficient coding hypothesis predicts many of
the response characteristics of neurons in the
retina directly from the joint probability dis-
tributions of the intensities at two pixel loca-
tions in natural images, p(s) = p(I1, I2), mea-
sured for various separations of the pixels in
space and time. The measurement of within-
domain statistics is central to the enterprise of
testing the efficient coding hypothesis: To de-
termine what would be an efficient code, it is
essential to know the probability distribution
of the image properties to be encoded.

Across-Domain Statistics

Within-domain statistics say nothing about
the relationship between the domains listed
in Figure 1A, such as the relationship

170 Geisler

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

00
8.

59
:1

67
-1

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
N

R
S-

M
ul

ti-
Si

te
 o

n 
05

/0
7/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ANRV331-PS59-07 ARI 1 December 2007 16:28

between properties of the environment and
the images formed on the retina. Natural
visual tasks generally involve making infer-
ences about specific physical properties of the
environment from the images captured by
the eyes. These tasks include classifying ma-
terials, discriminating object boundary con-
tours from shadow contours, estimating ob-
ject shape, identifying objects, estimating the
distance or motion of an object, or estimating
one’s own motion direction and speed. The
relevant statistics for understanding how the
visual system performs such tasks are the joint
distributions of physical scene properties and
image properties, p(ω, s), or equivalently,
p(ω) and the conditional distribution p(s|ω)
for each value of ω. [Note that p(ω, s) =
p(s|ω)p(ω).] Using Bayes’ rule, these across-
domain statistics specify the posterior proba-
bilities of different states of the world (phys-
ical environment properties) given particular
observed retinal image properties p(ω|s). It is
the characteristics of the posterior probabil-
ity distributions that visual systems evolve or
learn to exploit in performing specific natural
visual tasks.

Suppose an organism’s task is to identify
(for a given species of tree) whether a ran-
domly selected location (small patch) in the
retinal image corresponds to the surface of a
fruit or the surface of a leaf, based solely on
the information available in the wavelength
spectrum at that randomly selected location
(see Figure 1B ). In this case, there are just
two relevant states of the environment (distal
stimuli): ω = fruit and ω = leaf , and due to
variations in lighting and reflectance, a large
number of possible wavelength spectra (prox-
imal stimuli) for each distal stimulus. In prin-
ciple, p(ω) could be measured by randomly
selecting lines of sight from a large number of
example scenes and counting the proportion
of times a fruit surface is the first surface en-
countered along that line of sight. Similarly,
p(s|ω) could be measured by recording the
wavelength spectra for each of the randomly
sampled lines of sight, sorting them according
to whether they are from fruit or leaf, and then

analyzing them separately to estimate the two
conditional probability distributions. The sta-
tistical regularities represented by p(s|ω) and
p(ω) could be exploited by the visual system
for identifying fruits and leaves from the wave-
length spectra that reach the eye. On the other
hand, knowing only the within-domain statis-
tics, p(s) and p(ω), is not useful for identify-
ing fruits and leaves because the statistics do
not specify the relationship between the im-
age properties (wavelength spectra) and the
physical objects (fruits and leaves) of rele-
vance in the task. This example illustrates the
use of across-domain statistics for character-
izing the connection between environmen-
tal properties and image properties; compa-
rable examples can be generated for the other
kinds of across-domain statistics (see table in
Figure 1A).

Bayesian ideal observer theory provides
an appropriate formal framework for under-
standing how across-domain statistics might
be exploited by the visual system to perform
specific tasks (Geisler & Diehl 2003). The
Bayesian approach in perception research has
been discussed at length elsewhere and is only
briefly summarized here, as a prelude to some
of the studies described below. An “ideal ob-
server” is a theoretical device that performs a
task in an optimal fashion given the available
information (and possibly other constraints).
Deriving an ideal observer can be very use-
ful because (a) the derivation usually leads
to a thorough understanding of the compu-
tational requirements of the perceptual task,
(b) the ideal observer provides the appropriate
benchmark for comparison with behavioral
performance, and (c) ideal observers often re-
duce to, or can be approximated by, relatively
simple decision rules or procedures that can
serve as initial hypotheses for the actual pro-
cessing carried out in a perceptual system.

The logic behind deriving an ideal ob-
server is straightforward. Consider an ideal
observer that wishes to perform a specific task
in its current environment and has access to
some vector of properties in the retinal image.
Upon receiving a particular stimulus vector
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S, an ideal observer should make the response
that maximizes the utility (gain/loss) averaged
over all possible states of the environment,

ropt(S) = arg max
r

(∑
ω

γ (r, ω)p(S|ω)p(ω)

)

(1)
where γ (r, ω) is the utility of making re-
sponse r when the true state of the environ-
ment is ω, and the function arg max returns
the response that maximizes the sum in the
brackets. In other words, once the relevant
across-domain statistics have been estimated
and the utility function for the task has been
specified, then Equation (1) can be used to
determine (via simulation or calculation) the
optimal performance in the task.

Think back to the hypothetical task de-
scribed above: identifying whether a small
patch of retinal image corresponds to a fruit
or a leaf. There are two possible responses,
r = fruit and r = leaf . To maximize accuracy,
an appropriate utility function is γ (r, ω) = 1,
if r = ω, and γ (r, ω) = −1, if r �= ω (i.e.,
equal but opposite weights for corrects and
errors). Substituting this utility function and
the measured probability distributions into
Equation (1) gives the (parameter-free) op-
timum decision rule. The performance accu-
racy of this decision rule can be determined by
applying the rule to random samples (Ω, S)
from the across-domain probability distri-
bution, p(ω, s), or alternatively, by directly
calculating the probability that ropt(S) =Ω.
The optimal decision rule (or an approxi-
mation to it) could serve as a principled hy-
pothesis about the perceptual mechanisms in
the organism that discriminate fruits from
leaves.

MEASURING NATURAL SCENE
STATISTICS

A variety of devices and techniques has
been used to measure natural scene proper-
ties. Spectrophotometric devices measure the
wavelength distribution (radiance as a func-
tion of wavelength) of the light that reaches

their sensors. They can be used to measure re-
flectance spectra of materials, irradiance spec-
tra of light sources (illuminants), as well as ra-
diance spectra that reach the eye. Spectropho-
tometers collect light over only one small
patch at a time, making them impractical for
collecting data from a large number of loca-
tions in a scene. Hyperspectral cameras can
measure radiance spectra at each camera pixel
location, but require relatively long exposure
time, and thus are practical only for conditions
where effects of object and shadow motion are
minimized (e.g., long distances or indoor en-
vironments). The most common method of
measuring natural scene properties has been
to analyze images captured by digital still cam-
eras and digital movie cameras. Digital cam-
eras usually provide either 8-bit grayscale or
24-bit color (8 bits per color) images, although
some high-end cameras provide 36-bit color
(12 bits per color) images, which is desirable
for some kinds of measurements. A weakness
of standard digital cameras is that they can-
not provide detailed spectral (chromatic) in-
formation, although with proper calibration
it is possible to obtain images that give, for
each pixel location, the approximate lumi-
nance and/or the approximate amount of radi-
ant power absorbed in each of the three classes
of cone photoreceptor, the long (L), middle
(M), and short (S) wavelength cones. Many
studies have analyzed uncalibrated camera im-
ages, which is justifiable if the scene statistics
of interest (e.g., contour geometry) are little
affected by monotonic transformations of the
camera’s color responses.

Another useful class of device is the range
finder, which measures distance to each point
in a scene by measuring return time for an
emitted pulse of infrared laser light. These
devices are accurate for large distances (a
few meters to a kilometer or more). A re-
lated class of device is the three-dimensional
scanner, which uses triangulation rather than
time-of-flight, and is useful for making pre-
cise range measurements at near distances
(e.g., measuring the shape of a face). A weak-
ness of both devices is that the scans take
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substantial time (typically seconds), and thus
motion in the scene can produce significant
distortions.

The above devices are the most common
for measuring natural scene statistics, and
they can be used in a fairly straightforward
manner to measure within-domain statistics
for the image or environment. Measuring
across-domain statistics is more difficult be-
cause both image and environment properties
must be measured for the same scene. One
approach is to combine environment mea-
surements from one instrument with image
measurements from another instrument. For
example, monocular across-domain statistics
for depth can be measured by combining a
calibrated camera image with a distance map
obtained with a range finder.

An expedient approach for measuring
across-domain statistics involves hand seg-
mentation. The central assumption of this ap-
proach is that under some circumstances hu-
mans are able to make veridical assignments
of image pixels to physical sources in the en-
vironment. When this assumption holds, the
pixel assignments are useful measurements of
environmental properties.

For example, consider the close-up im-
age of foliage in Figure 2A. When observers
are asked to segment individual leaves and
branches that are within or touching the or-
ange dashed circle, the result in Figure 2B

is obtained. The colored leaves and branches
show the segmented objects, the red/brown
shaded leaf shows one individual segmented
object. These segmentations are performed
with high confidence and repeatability, and
hence generally provide an accurate mea-
surement of the physical source (the spe-
cific leaf or branch) that gave rise to a given
pixel. Many across-domain statistics can be
measured with a large set of such segmen-
tation data. To take one simple example, it
is straightforward to measure the posterior
probability of the same or different object
[ω = same or ω = different], given the dis-
tance between a pair of image pixels and their
luminance values [s = (d12, l1, l2)].

Hand segmentation methods are useful for
measuring across-domain statistics only to the
extent that the segmentations are veridical
(i.e., represent physical “ground truth”), and
there are cases (e.g., distant images of foliage)
where some image regions are ambiguous and
difficult to segment.2 In cases where hand seg-
mentation methods fail, accurate ground truth
measurements require more direct physical
measurement. Another strategy for measuring
across-domain statistics combines computer-
graphics simulation with direct measurements
of scene statistics.

NATURAL SCENE STATISICS

It is difficult to know ahead of time which
specific statistics will prove most informa-
tive for understanding vision. At this time,
progress is being made by selecting statis-
tics based on intuition, historical precedence,
and mathematical tractability. It is impor-
tant to note that the number of samples re-
quired for estimating a probability distribu-
tion grows exponentially with the number of
properties/dimensions (“the curse of dimen-
sionality”), and hence most studies measure
natural scene statistics for only one or a few
properties at a time. This is a significant lim-
itation because perceptual mechanisms ex-
ploit complex regularities in natural scenes
that may only be fully characterized by mea-
suring joint distributions over a substantial
number of dimensions. Nonetheless, the pub-
lished work has demonstrated that much can
be learned from low-dimensional measure-
ments and that there are useful methods for
learning about the structure of probability dis-
tributions in high-dimensional spaces. This
section presents a somewhat eclectic summary
of some of the natural scene statistics that have
been measured.

2Hand segmentation has also been used to measure how
humans segment scenes into regions without specific in-
structions to be exhaustive or identify physical sources;
in this case, the aim is not to precisely measure physical
ground truth but rather to obtain a useful data set for train-
ing image-processing algorithms (e.g., Martin et al. 2004).
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PCA: principal
components analysis

Luminance and Contrast

Luminance and contrast, fundamental stim-
ulus dimensions encoded by visual systems,
vary both within a given scene and across
scenes. Most studies have involved measur-
ing the statistics of luminance and contrast
within images of natural scenes (e.g., Brady &
Field 2000, Frazor & Geisler 2006, Laughlin
1981, Ruderman 1994, Tadmor & Tolhurst
2000). The distribution of local luminance
within a given image is typically obtained by
first dividing the luminance at each pixel by
the average for the whole image.3 Combin-
ing these distributions across images and then
scaling to the average luminance of the images
gives the distribution of luminance in the typ-
ical natural image. As shown in Figure 3A,
this distribution is approximately symmet-
ric on a logarithmic axis and hence posi-
tively skewed on a linear scale (Brady & Field
2000, Laughlin 1981, Ruderman et al. 1998).
In other words, relative to the mean lumi-
nance, there are many more dark pixels than
light pixels.

The distribution of local contrast within
images has been measured using various defi-
nitions of contrast. Figure 3B shows the dis-
tribution of local root-mean-squared contrast
(the standard deviation of luminance divided
by the mean luminance in a small neighbor-
hood) in the typical natural image. Another
more specialized measure is an equivalent
Michelson contrast—the Michelson contrast
of a sine wave grating (sine wave amplitude di-
vided by mean) that would produce the same
contrast response as the local image patch,
where the contrast response is from a filter
designed to mimic a typical receptive field at
some level of the visual system (Brady & Field
2000, Tadmor & Tolhurst 2000). These latter
distributions tend to be similar in shape to
the one in Figure 3B, but (as expected given

3One could regard the ratio of pixel luminance to global
luminance as a form of Weber contrast, but here the
term “contrast” is reserved for measurements of lumi-
nance variation relative to the average luminance in a small
neighborhood.

the selectivity of the filter) are shifted toward
lower contrasts.

There are large variations of local lumi-
nance and local contrast in natural images,
and these variations tend to be statistically in-
dependent. The average joint distribution of
luminance and contrast has a slight negative
correlation (r = −0.2) primarily due to the
fact that sky regions tend to be both bright
and low in contrast (Figure 3C ). Low cor-
relations between luminance and contrast are
also observed within the constituents of natu-
ral images. For example, the joint distribution
of luminance and contrast in purely foliage
regions (Figure 3D) has a slight positive cor-
relation (r = 0.15). As discussed below, the
large variations in local luminance and con-
trast and their low correlation have important
implications for neural coding.

Color

Interest in natural scene statistics was stim-
ulated by the discoveries that the chromatic
power spectra of natural light sources (Dixon
1978, Judd et al. 1964) and the reflectance
spectra of natural materials (Maloney 1986,
Maloney & Wandell 1986) are highly con-
strained and can be characterized with just a
few numbers. These studies used the standard
statistical technique of principal components
analysis (PCA) to describe the structure of the
probability distributions. For example, each
reflectance spectrum can be represented by
a single vector in a high-dimensional space,
where each dimension of the space is the re-
flectance at a particular wavelength. A large
set of reflectance spectra create a cloud of vec-
tors in this space. Under the assumption of
normality, PCA finds the principal axes of this
cloud. The first principal axis is the one that
accounts for the most variance in the distribu-
tion (i.e., it is the direction in the space along
which the cloud is most spread out); the sec-
ond principal axis is the one perpendicular to
the first that accounts for most of the remain-
ing variance, and so on. Principal components
are unit vectors along the principal axes; in
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Figure 4
Probability distributions for color in natural foliage scenes. (A) Distribution along the first principal axis
in log cone response space, minus the average in the image. (B) Distribution along the second principal
axis. (C) Distribution along the third principal axis. The dashed curves are best-fitting Gaussian
distributions. The joint probability distribution is approximately the product of these three marginal
distributions (adapted from Ruderman et al. 1998).

other words, they describe the directions of
the principal axes.

The important discovery of these studies is
that most of the variance is accounted for by
the first few principal axes. The implications
are that the probability distribution of natural
irradiance spectra and of natural reflectance
spectra can each be described in a rather small
dimensional (tractable) space and that natural
images can be coded relatively accurately with
just a few classes of cone receptor, although
three classes (the number in humans) is some-
what short of optimal (Brainard & Freeman
1997, D’Zmura & Iverson 1993, Maloney &
Wandell 1986).

The chromatic properties of natural im-
ages captured with digital cameras are often
described in terms of the number of photons
absorbed in the three types of cones, at each
image location. Thus, analogous to measur-
ing the distribution of local luminance in nat-
ural images (Figure 3A), one can measure
the distribution of cone responses in natu-
ral images. As it turns out, the joint distri-
bution of the logarithm of the cone responses
in natural images is approximately Gaussian.
A convenient way to describe Gaussian distri-
butions is to determine the marginal distribu-
tions along the principal axes with PCA. This

is convenient because the joint distribution is
then the product of the marginal distributions
(note that the aim of using PCA is different
here than in the case of analyzing natural ir-
radiance and reflectance spectra). Figure 4
shows the three principal axes (specified by the
equations above each panel) and marginal dis-
tributions for foliage-dominated natural im-
ages obtained with a hyperspectral camera
(Ruderman et al. 1998). Exactly the same prin-
cipal components for close-up foliage images
(e.g., Figure 2) were obtained with a cali-
brated digital camera (Ing & Geisler 2006).

Spatial Structure

Much of the information in retinal images
is contained in the spatial pattern of lumi-
nance and color. One overall spatial statistic
of natural images, which is relatively consis-
tent across scenes, is the Fourier amplitude
spectrum (or equivalently the spatial auto-
correlation function). Figure 5A shows the
amplitude spectra of six different natural im-
ages plotted on logarithmic axes (each was
obtained from the two-dimensional Fourier
power spectrum by summing across orien-
tation and then taking the square root).
The solid line represents a slope of −1.0;
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thus the amplitude spectra fall approximately
as 1/ f n, where f is spatial frequency and the
exponent n is approximately 1.0 (Burton &
Moorehead 1987, Field 1987, Ruderman &
Bialek 1994). One consequence is that the am-
plitude spectra of natural images are relatively
scale invariant, in the sense that scaling all fre-
quencies by a factor (e.g., moving forward or
backward in a scene) has little effect on the
shape of the amplitude spectrum. For more
discussion of scale invariance, see Ruderman
(1997, 2002), Lee et al. (2001), and Balboa
et al. (2001).

Based on Figure 5A, the simplest model of
the spatial structure of natural images would
be that produced by a 1/ f amplitude spec-
trum and a random phase spectrum. An image
created in this fashion is a sample of filtered
Gaussian noise, often called 1/f noise. Such a
sample of filtered noise does not contain rec-
ognizable objects or regions, but does contain
complex random features. Thus, it is reason-
able to ask if 1/f noise can serve as a statistical
model of the local properties of images. One
way to address this question is to compare
how local sensors like those in visual cortex
respond to 1/f noise versus actual natural im-
ages. A local sensor with an oriented receptive
field (similar to an orientation-selective corti-
cal neuron) computes a weighted sum across
a small patch of image. Because 1/f noise
is Gaussian distributed, any given weighted
sum will also be Gaussian distributed (dashed
curve in Figure 5B). However, in natural im-
ages the probability distribution of local sen-
sor responses is generally not Gaussian, but
rather is sharply peaked at zero response with
heavy tails (solid curve in Figure 5B). In other
words, for real images a given local sensor
tends to respond relatively infrequently, but
when it does respond it tends to produce a rel-
atively large response (Field 1987, Olshausen
& Field 1997).

One way that 1/f noise differs from natu-
ral images is that the local luminance distri-
bution of natural images is not Gaussian on
a luminance axis, but rather is approximately
Gaussian on a log luminance axis (Figures 3A

and 4). Thus, a more realistic model of the
spatial structure of natural images would be
that of noise having a 1/f amplitude spec-
trum and a local luminance distribution that
matches natural scenes. Frazor & Geisler
(2006) call this first-order 1/f noise because
the local luminance distribution is the first-
order statistic of an image and the amplitude
spectrum corresponds to the second-order
statistic. Sensor responses to first-order 1/f
noise peak more strongly at zero and have
heavier tails than those for 1/f noise; how-
ever, the peaks and the tails of the distributions
are not as pronounced as they are for natural
images.

A more complete description of the spatial
structure of natural images can be obtained
by examining the joint statistics of responses
from pairs of local sensors. As one would
expect, there are significant correlations be-
tween pairs of nonoverlapping sensors. For
example, if there is a large response from an
oriented edge sensor, then it is likely that a
neighboring colinear (or cocircular) edge sen-
sor also has a large response (Geisler et al.
2001, Sigman et al. 2001). This occurs be-
cause natural scenes contain many contours
that tend to be relatively smooth and to have
significant spatial extent (e.g., see Figure 2).
Similarly, if there is a large response from an
oriented edge sensor, then it is likely that a
neighboring parallel (but not colinear) edge
sensor will have a large response (Geisler et al.
2001). This occurs because there is much
parallel structure in natural images (e.g., see
branches and leaf markings in Figure 2). Im-
portantly, however, even when there is no cor-
relation between the responses of a pair of
sensors, the responses are often statisti-
cally dependent. For example, Figure 5C

shows the distribution of responses of an
orientation-selective sensor conditional on
the response of another nonoverlapping ori-
entation selective sensor at a nearby location
(Schwartz & Simoncelli 2001). The responses
are uncorrelated, but the variance of the re-
sponse of one sensor (RF2) increases as func-
tion of the magnitude of the response of the
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other sensor (RF1). In other words, strong
features tend to cluster in natural images; thus,
when a strong response occurs in a local sen-
sor, the responses tend to be strong in other
nearby sensors, although the sign of the re-
sponse may be random (as in Figure 5C ).

Another strategy for characterizing spa-
tial structure in natural images is to measure
general properties of the joint probability dis-
tribution of pixels within a spatial neighbor-
hood of a given size. Two popular approaches
have been to apply either PCA or independent
components analysis (ICA) to a collection of
patches sampled from natural images (for an-
other approach, see Lee et al. 2003). If the
patch size is, say, 12 × 12 pixels, then (ig-
noring color) each patch can be represented
as a point in a 144-dimensional space where
each dimension is the luminance at one of the
144 pixel locations. Applying PCA to natural
image patches shows that a large number of
principal axes are required to capture a sub-
stantial fraction of the variance in the distri-
bution of image patches, and hence PCA does
not lead to a compact summary of the spatial
structure of natural images in the same way
it does for natural irradiance and reflectance
spectra.

ICA is a conceptually different approach.
Rather than assuming, like PCA, that the
whole space is described by a single multi-
dimensional Gaussian distribution, ICA as-
sumes that the space is described by a sum
of statistically independent distributions, each
representing a different unknown “source.”
The aim of ICA is to estimate, from a large
collection of samples, the vector correspond-
ing to each source (the direction of the pri-
mary axis of each source). This is an inter-
esting approach because images probably are
the result of independent physical sources
(e.g., contours produced by different surface
boundaries, surface markings, and shadows).
ICA may discover some of those sources.
Furthermore, the filters obtained from ICA,
which recover (measure) the sources in an im-
age, might be plausible candidates for neural
receptive fields. Applying ICA to natural im-

ICA: independent
components analysis

age patches yields filters similar in appearance
to receptive fields of simple cells found in the
visual cortex of mammals (Bell & Sejnowski
1997, Hyvarinen & Hoyer 2000, van Hateren
& van der Schaaf 1998). (For ICA of nat-
ural auditory stimuli, see Lewicki 2002.) A
conceptually related analysis producing sim-
ilar results involves estimating independent
sources, with the additional constraint that the
sources are “sparse,” in the sense that when a
given source has a large value, other potential
sources are constrained to have small values
(Olshausen & Field 1997).

The studies of spatial structure described
so far concern within-domain statistics,
which are particularly relevant to issues of
image coding (see below). There have also
been attempts to measure across-domain
statistics, which are more relevant to the
performance of specific tasks. For example,
Elder & Goldberg (1998, 2002) and Geisler
et al. (2001, Geisler & Perry 2006) measured
the pair-wise statistics of image contours that
were hand segmented from natural images.
Geisler et al. (2001, Geisler & Perry 2006)
used an automatic algorithm to detect small
edge elements from natural images and
then had observers assign edge elements to
physical contours in the image. Thus, with
respect to the notation in Figure 1A, the state
of the environment ω could take on one of
two values (ω = c if two edge elements came
from the same physical contour and ω = ∼c
if two elements came from different physical
contours). For each pair of edge elements,
they determined the distance d between the
elements, the direction θ of one of the ele-
ments with respect to the other element, the
difference in orientation θ between the ele-
ments, and the difference in contrast polarity
(same or opposite) ρ between the elements
(Figure 5D). Thus, with respect to the
notation in Figure 1A, the retinal im-
age properties were defined by the vector
s = (d , φ, θ, ρ). Figure 5D plots the ratio
of the measured likelihood distributions for
the cases where edge element pairs belong
to the same contour and different contours:
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l (d , φ, θ, ρ) = p(s|ω = c )/p(s|ω = ∼c ). As
can be seen, edge elements in natural images
that are cocircular (which includes colinear)
and of the same contrast polarity are more
likely to come from the same physical con-
tour; edge elements that deviate substantially
from cocircularity or are of opposite polarity
are likely to come from different physical
contours. (Note, however, that even when
the polarity is opposite, nearby edge elements
are more likely to come from the same
contour if they are approximately colinear;
this presumably occurs because physical
contours often cross backgrounds that mod-
ulate substantially in intensity.) These results
have direct relevance for understanding the

perceptual mechanisms underlying tasks such
as contour grouping and contour completion.

Range

An important task for visual systems is esti-
mating distance and three-dimensional shape
from the two-dimensional images formed on
each retina. A relevant statistic is the distribu-
tion of distances (ranges) in natural environ-
ments. Figure 6A shows a range image (over
an extent of 259◦ horizontal and 80◦ verti-
cal) measured in a forest environment with a
laser range finder. In this image, lighter pix-
els denote greater distances. The solid curve
in Figure 6B shows the probability of each

Figure 6
Range properties of forest environments. (A) Range image—the lighter the color, the greater the
distance. (B) Histogram of range based upon 54 forest range images (adapted from Huang et al. 2000).
(C) Average range as a function of elevation based upon a combination of 23 forest and 51 outdoor (Duke
campus) range images (adapted from Yang & Purves 2003).

178 Geisler

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

00
8.

59
:1

67
-1

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
N

R
S-

M
ul

ti-
Si

te
 o

n 
05

/0
7/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ANRV331-PS59-07 ARI 1 December 2007 16:28

distance based upon 54 such forest range im-
ages (Huang et al. 2000). The distribution
of distances is different above (dashed curve)
and below (dotted curve) the line of sight.
Figure 6C shows that average distance de-
creases rapidly below the line of sight due to
the effect of the ground plane and decreases
more gradually above the line of sight pre-
sumably due to the foliage canopy (Yang &
Purves 2003). Huang et al. (2000) showed that
their observed distributions of range in for-
est scenes can be approximated by a model
consisting of a flat ground plane populated
by a spatial Poisson distribution of cylinders
(trees).

When coupled with other measurements,
range statistics are of relevance for under-
standing depth and motion coding. For ex-
ample, Figure 7 shows the distribution of
binocular disparity implied by the statistics of
Yang & Purves (2003) when combined with
the distribution of human fixation points mea-
sured as observers walk through forest envi-
ronments (Cormack et al. 2005). Most binoc-
ular disparities fall within a modest range
of ± 1.5 degrees. Potetz & Lee (2003) mea-
sured range images along with coregistered
grayscale images and discovered several mod-
est correlations (e.g., range and luminance are
negatively correlated).

Spatiotemporal Structure

The spatial structure of a retinal image
changes over time due to self motion and to
motion in the environment. The dynamical
properties of natural retinal images are im-
portant to characterize because they contain
useful information for many perceptual tasks,
including heading estimation, image segmen-
tation, distance estimation, and shape estima-
tion. However, measuring and characterizing
the spatiotemporal statistics of natural images
are difficult because there is almost always
some component of image motion that re-
sults from self-motion (i.e., the receptor array
is almost always translating and/or rotating
because of eye, head, and body movements).

Figure 7
Distribution of binocular disparity for human observers when walking in
forest environments. The solid arrows mark the upper and lower 2.5%
quantiles; the open arrows mark the upper and lower 0.5% quantiles.

Thus, normal retinal image dynamics can-
not be fully measured by a fixed camera or a
camera attached to the head or body. Rather,
one would like to move the image plane of
the camera along the same trajectories typi-
cally undergone by the receptor array. This
has been done for a flying insect by record-
ing flight path and body orientation and then
moving a camera along the same path with a
robotic gantry (Boeddeker et al. 2005), but it
has not been done for humans or for other
mammals.

Nonetheless, systematic results have been
obtained by analyzing video clips from movies
and handheld cameras. For example, the sym-
bols in Figure 8 show the average spatiotem-
poral power spectra for natural image video
reported by Dong & Atick (1995a). Contrast
power decreases smoothly with increases in ei-
ther spatial frequency or temporal frequency.
The authors find the pattern of results can be
fitted approximately (solid curves) by mod-
eling the world as a collection of patches
of spatial 1/f noise that are each undergo-
ing translation at some random velocity. This
is a plausible model for this image statistic
because even nontranslational motion flow
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Figure 8
Spatiotemporal power spectra of natural images. (A) Spatial power spectra measured at different
temporal frequencies (1.4, 2.3, 3.8, 6, and 10 Hz, from top to bottom). (B) Temporal spectra measured at
different spatial frequencies (0.3, 0.5, 0.8, 1.3, and 2.1 cpd, from top to bottom). The solid curves show
the expected spectra if the world is modeled as collection of patches of spatial 1/ f noise that are each
undergoing translation locally at some random velocity. (Adapted from Dong & Atick 1995a.)

patterns, such as those produced by moving
through the three-dimensional environment,
will most often produce approximately trans-
lational motion in a small neighborhood over
a small time period.

These within-domain statistics are rele-
vant for understanding motion coding. To
measure across-domain statistics relevant for
tasks such as heading estimation, it would also
be necessary to measure the range at each
pixel, as the image plane moves through space
(Roth & Black 2005, Tversky & Geisler 2007).

Eye Movements and Foveation

The spatial resolution of the primate retina is
high in the center of the fovea and falls off
smoothly, but rapidly, as a function of reti-
nal eccentricity. Information is collected from
the environment by coupling this variable-
resolution retina with a motor system that
can rapidly direct the eyes in arbitrary direc-
tions, and indeed, most natural visual tasks in-
volve selecting a series of locations to fixate.
This implies that the relevant across-domain
statistics for such tasks must take into account
the foveated spatial resolution of the retina.

In other words, we need to measure the sta-
tistical relationship between environmental
properties and properties of the retinal out-
put and/or between properties of the retinal
image and retinal output. In the terminology
of Figure 1A this means measuring p(ω, z)
and/or p(s, z), where z represents the specific
properties of the retinal output that are of
interest.

To make such measurements, Raj et al.
(2005) modeled the spatial resolution (trans-
fer function) of the human retina with a hu-
man contrast sensitivity function, which is also
consistent with primate ganglion cell density
and receptive field size as a function of ec-
centricity (Geisler & Perry 1998). They then
considered the task of selecting fixations to
maximally reduce total uncertainty about lo-
cal contrast in natural images. The relevant
across-domain statistics for this task are con-
ditional probability distributions describing
the probability of each possible local image
contrast given a particular local contrast ob-
served in the retinal output. Figure 9 shows
four of these conditional distributions. Note
that the mode and variance of the distribu-
tions increase as function of both the retinal
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Figure 9
Example conditional probability distributions of local retinal image contrast given an eccentricity and an
observed contrast at the output of a foveated retina, which was modeled after the primate retina. Such
statistics are relevant for understanding how a rational visual system with a foveated retina should select
fixation locations in order to accurately encode the image.

eccentricity and contrast observed in the reti-
nal output. The increase in variance with
eccentricity is intuitive because spatial reso-
lution is decreasing with eccentricity. More
surprising is that variance increases with
observed contrast in the retinal output: the
greater the response in the retinal output, the
greater the uncertainty about the contrast in
the retinal image. This finding may be re-
lated to the finding of Schwartz & Simoncelli
(2001) that strong features tend to cluster in
natural images (Figure 5C).

EXPLOITING NATURAL SCENE
STATISTICS

The previous section summarized some of
the measured natural scene statistics relevant
for visual perception. This section considers
how some of those statistical properties might
be exploited by the human (or nonhuman
primate) visual system. One aim is to con-
vince the reader that measuring natural scene
statistics can be useful for generating quan-
titative, testable hypotheses about percep-
tual mechanisms, can be useful for designing
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LGN: lateral
geniculate nucleus

V1: primary visual
cortex

experiments and stimuli, and can provide use-
ful insight into design features of the visual
system. This section focuses on a few examples
from the topics of coding and representation,
grouping and segregation, identification, and
estimation.

Coding and Representation of the
Visual Image

Within-domain statistics are the easiest to
measure and are of particular relevance to
coding and representation of the retinal image
(the proximal stimulus). Hence more stud-
ies of natural scene statistics have been de-
voted to this topic than to any other. A central
hypothesis about coding and representation
is that neural resources are limited (in num-
ber of neurons, spikes per neuron, synaptic
contacts per neuron, etc.), thus pushing vi-
sual systems to efficiently use those resources
(Attneave 1954, Barlow 1961; for reviews, see
Barlow 2001, Simoncelli 2003, Simoncelli &
Olshausen 2001).

One important resource limitation is that
neurons have a limited dynamic range, pre-
sumably for fundamental metabolic and bio-
physical reasons. A plausible hypothesis is that
sensory neurons match their limited ranges
to the dynamic range of the natural signals
that they encode. This ensures that the full
response range is used while minimizing the
likelihood of overdriving or underdriving the
neuron. One way to match the dynamic range
of responses with that of the input signals is
via histogram equalization: Adjust the shape
of the neuron’s response function so that
all response levels occur equally often under
natural stimulus conditions. Laughlin (1981)
compared the probability distribution of lo-
cal luminance (Weber contrast) in natural im-
ages with the luminance response functions of
the large monopolar neurons in the eye of the
blowfly and found that the response functions
are consistent with the histogram equalization
hypothesis. Subsequently, the hypothesis has
been tested for the contrast responses of neu-
rons in lateral geniculate nucleus (LGN) and

primary visual cortex (V1) of cats and primates
(e.g., Brady & Field 2000, Clatworthy et al.
2003, Tadmor & Tolhurst 2000). Although
the results depend somewhat on the specific
definition of contrast used (Frazor & Geisler
2006), there is evidence for a rough match be-
tween the contrast response functions of neu-
rons in the early visual system and the distri-
bution of contrasts encountered by the eye in
natural environments.

For natural images, there is a low corre-
lation between luminance and contrast at the
same retinal location (see Figure 3C,D); fur-
thermore, it can be shown that for normal
saccadic inspection of natural images there is
little correlation in luminance at the same reti-
nal location across fixations (Frazor & Geisler
2006) or in contrast at the same retinal loca-
tion across fixations (Frazor & Geisler 2006,
Reinagel & Zador 1999). The implication is
that neurons whose receptive fields are spa-
tially localized will typically receive random
samples of luminance and contrast from dis-
tributions like those in Figure 3, several times
per second. This fact raises questions about
the coding of luminance and contrast in the
visual system. The most obvious is how neu-
rons in the visual system respond to simulta-
neous, frequent, and statistically independent
variations in local luminance and contrast over
their natural ranges. Geisler et al. (2007) mea-
sured response functions of individual neu-
rons in V1 and found them to be separable
in luminance and contrast; i.e., response as
a function of luminance and contrast is the
product of a single function for luminance
and a single function for contrast: r (C, L) =
rC (C) rL (L). Similarly, Mante et al. (2005)
measure responses of individual neurons in
the LGN and found responses to be consistent
with separable luminance and contrast gain
control mechanisms. Separable responses are
expected under the efficient coding hypothe-
sis, if local luminance and contrast are statis-
tically independent.

The results of Geisler et al. (2007) point to
a new hypothesis about how local luminance
is coded in the cortex. The classic hypothesis
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is that most neurons in V1 respond poorly to
luminance, and that luminance is coded by a
specialized set of luminance-responding cells
(for a review, see Peng & Van Essen 2005). Al-
though most cortical neurons do not respond
to uniform luminance stimulation, by para-
metrically varying luminance and contrast,
Geisler et al. (2007) found that local lumi-
nance strongly modulates contrast response
in the same separable fashion as other stim-
ulus dimensions such as orientation, spatial
frequency, and direction of motion. Thus, lo-
cal luminance appears to be coded in the cor-
tex in the same fashion as other well-known
stimulus dimensions. Specialized luminance-
responding cells may code uniform areas such
as patches of sky. The studies of Mante et al.
(2005) and Geisler et al. (2007) were mo-
tivated by measured natural scene statistics,
and hence they demonstrate the potential
value of natural scene statistics in guiding
neurophysiology.

Another form of histogram equalization is
to match the tuning characteristics across a
population of neurons to the distribution of
natural signals. For example, Cormack et al.
(2005) found that the probability distribution
of binocular disparities that occur during nav-
igation through forest environments by hu-
mans (see Figure 7) corresponds reasonably
well with the distribution of preferred dis-
parities of single neurons in area MT of the
macaque monkey (DeAngelis & Uka 2003).
The results of Cormack et al. (2005) suggest
that disparity tuning of neurons in monkey vi-
sual cortex conforms (in at least some ways)
to an efficient coding of natural binocular
images.

Another way to use neural resources ef-
ficiently is to remove redundant information
across a population of neurons. A classic exam-
ple concerns the coding of chromatic informa-
tion with opponent color mechanisms. The
spectral sensitivities of the L, M, and S cones
overlap substantially (especially the L and M
cones), creating highly correlated responses.
Thus, if one observes a large response from,
say, an L cone, it is very likely that a large re-

sponse will be observed from a spatially adja-
cent M cone. Rather than represent these two
large responses with two high spike rates, it is
more efficient (in terms of utilizing neural dy-
namic range) to transform the cone responses
so that they are statistically independent. In-
terestingly, applying such a transformation
predicts chromatic receptive fields that are
similar to the color opponent mechanisms
that have been estimated from psychophysi-
cal studies (Buchsbaum & Gottschalk 1983,
Ruderman et al. 1998; see Figure 4). Sim-
ilarly, spatial and temporal decorrelation
(whitening) of the receptor responses to nat-
ural images predicts spatial (Atick & Redlich
1992, Srinivasan et al. 1982) and spatio-
temporal receptive field shapes (Dong & Atick
1995b) similar to those found in the retina and
LGN. Thus, in a number of ways, the design
of the retina seems to be consistent with the
efficient coding hypothesis.

The evidence is less clear with respect to
coding and representation in V1. V1, like the
retina and LGN, is laid out in a topographic
map; however, for each ganglion cell or LGN
relay neuron there are hundreds of V1 neu-
rons, and thus V1 could potentially contain a
large number of lossless (and efficient) repre-
sentations of the retinal output, each tailored
to a different task. Another hypothesis is that
V1 provides a sparse, statistically independent
representation of the retinal output. Field
(1987) noted that (linear) receptive fields sim-
ilar to those measured in V1 respond very in-
frequently to natural images and produce rel-
atively large responses when they do respond.
In other words, the probability distribution of
responses to natural images is highly peaked at
zero and has heavy tails (see Figure 5B). The
implication is that a natural image will pro-
duce a pattern of strong responses in a rather
sparse subset of cortical neurons. Olshausen
& Field (1997) showed that simultaneously
optimizing sparseness and statistical indepen-
dence in the responses to natural images yields
receptive fields similar to those of V1 neu-
rons, suggesting that a sparse, statistical in-
dependent representation may be the goal of
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V1 coding. However, this begs the question
of the functional advantages of a sparse code.
Possibly a sparse code provides a more mean-
ingful (immediately interpretable) represen-
tation of the image than would highly compact
codes, or possibly a sparse code facilitates sub-
sequent processing (Olshausen 2003). Other
possibilities are that a sparse code, which con-
centrates strong activity in a few neurons,
might be less susceptible to neural noise aris-
ing in later cortical areas or might consume
less metabolic energy than more distributed
codes.

Interestingly, Schwartz & Simoncelli
(2001) show that contrast normalization, an
important nonlinear response property of V1
neurons (Albrecht & Geisler 1991, Carandini
et al. 1997, Heeger 1991), should increase
statistical independence by largely eliminat-
ing variance dependences such as the one il-
lustrated in Figure 5C. However, contrast
normalization has other potentially functional
advantages that are not obviously related to
efficient coding or natural image statistics,
advantages such as contrast-invariant feature
tuning (Albrecht & Geisler 1991, Heeger
1991) and enhanced feature identification per-
formance (Geisler & Albrecht 1995). Per-
haps all of these advantages have contributed
to the evolution of contrast normalization
mechanisms.

Other nonlinear response properties of
retinal and cortical neurons have been in-
ferred from measurements of their responses
to natural images. In general, receptive fields
estimated with linear systems analysis tech-
niques (e.g., spike-triggered averaging) do not
make accurate predictions of responses to nat-
ural images. There is not space here to re-
view the literature directed at measuring and
characterizing responses of neurons to natu-
ral stimuli; however, for recent reviews, see
Reinagel (2001) and Wu et al. (2006), and for
discussion, see Felson & Dan (2005) and Rust
& Movshon (2005).

In addition to removing redundant infor-
mation from the image, the retina removes
nonredundant information by having a highly

foveated retina with many fewer receptors
than needed to fully code the image, and even
fewer ganglion cells than receptors. The visual
system compensates for the reduction in num-
ber of receptors and ganglion cells by hav-
ing an eye movement system that can rapidly
point the eye in desired directions. Thus, fully
encoding the retinal image requires making
a series of fixations. One hypothesis is that
when the task is specifically to encode and
remember an image, humans make eye move-
ments that acquire as much image information
as possible with the fewest number of fixa-
tions. Across-level statistics, such as those in
Figure 9, can be combined with a Bayesian
ideal observer analysis to determine the opti-
mal procedure for selecting fixations in natu-
ral scenes. Raj et al. (2005) determined how to
select successive fixations that maximally re-
duce the total uncertainty (entropy) about the
contrast at every location in the image (see also
Renninger et al. 2005). They then showed that
the fixations selected by this algorithm are also
near optimal for reducing total uncertainty
about the detailed structure of the image. It
remains to be seen how well human eye move-
ments match the optimal eye movements, but
it is likely that humans display (qualitatively)
some of the optimal behaviors, which include
moderate length saccades, avoidance of very-
low-contrast regions of the image, a moder-
ate percentage of fixations near high-contrast
features, and avoidance of fixations near the
boundaries of the image.

Grouping and Segregation

Efficiently encoding and representing the im-
ages falling on the retina may be the primary
goal of initial visual processing, especially in
the human retina, because the optic nerves
create a severe information-transmission bot-
tleneck and because the information trans-
mitted up the optic nerve must support a
very wide range of perceptual tasks. On the
other hand, central processing is more likely
to reflect specific tasks. The mechanisms of
perceptual grouping and segregation fall into
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this category. Their purpose is undoubtedly to
group together image features that arise from
the same physical source in the environment
(e.g., the same surface or object) and segre-
gate features that arise from different physical
sources. In other words, grouping and seg-
regation mechanisms are designed to make
inferences about the environment from im-
age information collected by the eyes, and
hence across-domain statistics are particularly
relevant.

Geisler et al. (2001) used the across-
domain statistics in Figure 5D (averaged
over contrast polarity) as the basis for a one-
parameter model of contour grouping in ran-
dom contour-element displays. In the model,
contour elements are grouped together when
the likelihood ratio given by Figure 5D ex-
ceeds a criterion. This model, based directly
on natural scene statistics, was able to predict
human contour grouping performance under
a wide range of stimulus conditions. More re-
cently, Geisler & Perry (2006) used the statis-
tics in Figure 5D to derive a parameter-free
Bayesian ideal observer for a contour comple-
tion task where the observer reports whether
or not contour segments passing under an
occluding surface belong to the same physi-
cal contour (source). The results showed that
humans parallel optimal performance in all
conditions and perform only slightly below
optimal. These two studies strongly suggest
that the human visual system incorporates and
properly exploits the across-domain statistics
represented in Figure 5D.

Fine et al. (2003) took an interest-
ing approach to measuring across-domain
color statistics relevant for region group-
ing/segregation. They assumed that the prob-
ability distribution of color differences (s =
�I, �α, �β) between adjacent pixels approx-
imates the distribution of color differences
between pixels from the same physical sur-
face (ω = same), and that the probability dis-
tribution of color differences between pixels
taken from different natural images approxi-
mates the distribution of color differences for
pixels from different physical surfaces (ω =

different). (See Figure 4 for the definition
of I, α, β.) Starting from these distributions,
they derived a Bayesian decision rule for seg-
menting pixels into regions. They compared
segmentations using this decision rule with
those of human observers and found a fairly
high correlation. Although it is likely that
nearby pixels usually belong to the same phys-
ical surface, their implicit assumption that the
distribution of color differences within a sur-
face does not vary with distance between pixels
probably doesn’t hold. Analyzing many hand-
segmented images like the one in Figure 2,
Wilson et al. (2006) found that the color
difference distributions within surfaces vary
substantially with distance. Nonetheless, the
two studies show there is much useful in-
formation for region grouping and segrega-
tion in the across-domain statistics of color
differences.

Identification

Although the retina may have evolved primar-
ily to efficiently encode the retinal images, as
mentioned above, there can be no doubt (even
for general-purpose organisms like humans,
who perform a wide range of tasks) that the
design of the eye is constrained by the fam-
ily of tasks the organism performs. Further,
there may be specific aspects of retinal pro-
cessing that are tailored to specific sources in
the environment. For example, measurements
of across-domain statistics suggest that the
positioning of the cone spectral sensitivities
along the wavelength axis may be optimal for
identifying sources of food. Lythgoe & Par-
tridge (1989) showed that in mammals, the S
and M cones (most mammals have only these
two cone types) are generally well positioned
to discriminate between different kinds of fo-
liage. Similarly, Osorio & Vorobyev (1996),
Regan et al. (2001), and Parraga et al. (2002)
show that the L and M cones in trichromatic
primates are often well positioned for identi-
fying fruit in foliage.

Identification of behaviorally relevant
sources in the environment, such as specific
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materials, surfaces, and objects, strongly de-
pends on grouping and segregation mecha-
nisms. Conversely, grouping and segregation
undoubtedly depend on certain top-down and
bottom-up identification mechanisms. Thus,
grouping, segregation, and identification are
best thought of as part of an integrated system
for interpreting retinal images. A key goal of
this integrated system is identifying the source
of an image contour. In natural images, a con-
tour could be the result of a surface boundary,
a surface marking (i.e., a surface reflectance
change), a cast shadow, or a shading boundary
due to a change in surface orientation rela-
tive to the illumination. These are very dif-
ferent sources and their proper identification
is crucial for arriving at the correct physical
interpretation of the image. Measurements
of across-level statistics could give us prin-
cipled hypotheses for the brain mechanisms
that identify contour sources given a retinal
image.

To make a start at these measurements,
Ing & Geisler (2006) analyzed a large set of
hand-segmented, close-up foliage images like
the one in Figure 2. They chose this class
of images because they are relatively easy to
segment and because foliage environments
are the natural environment of the macaque
monkey (the primary animal model for hu-
man vision). In addition to hand-segmenting
leaves and branches, they also segmented
shadow boundaries and surface markings. Us-
ing this segmentation data as the ground
truth measurements of the sources, they mea-
sured the joint probability distribution of in-
tensity and contrast differences (in I, α, β

space; see Figure 4) across contours, given
that the source contour was a surface bound-
ary, a shadow boundary, or a surface-marking
boundary. Finally, by combining these mea-
sured probability distributions with an ideal
classifier, they demonstrated that for moder-
ate length contours it is possible to discrim-
inate between any two sources with 85% to
90% accuracy. This is a promising initial re-
sult because it shows that simple local image
properties alone provide useful information

for contour source identification. Further, the
simple decision rules derived from the mea-
sured distributions provide concrete hypothe-
ses for source identification mechanisms in
the visual system, although global and top-
down factors are also likely to contribute.

Estimation

Many natural perceptual tasks involve estima-
tion of continuous environmental properties
such as the reflectance spectrum, illumination
spectrum, surface orientation, distance, or ve-
locity, at one or more locations in the visual
field. Across-level statistics are providing new
hypotheses and valuable insights into such es-
timation tasks.

Under the assumption that retinal images
can be approximated as the combination of
a randomly selected natural illuminant and
a collection of surfaces, each with a ran-
domly selected natural reflectance spectrum,
Maloney & Wandell (1986) showed it is possi-
ble to estimate the illuminant and reflectance
spectra of surfaces with remarkably few classes
of receptor (approximately four). (Note that
estimating the reflectance function is equiva-
lent to solving the color constancy problem.)
This result may help explain why most or-
ganisms have relatively few classes of receptor.
Subsequently, Brainard & Freeman (1997) de-
scribed how to optimally estimate reflectance
and illumination within the Bayesian ideal ob-
server framework. Although these and similar
studies provide valuable insight into the prob-
lem of color constancy, they assume uniform
illumination and matt surface patches, nei-
ther of which occur very frequently in natural
scenes (e.g., see Boyaci et al. 2006, Dror et al.
2004, Fleming et al. 2003, Khang et al. 2006).
Thus, reflectance estimation given real illu-
mination patterns and surface properties re-
quires more complex perceptual mechanisms
than the ones suggested by earlier work. How-
ever, real illumination and surface complexity
may also provide additional information the
visual system can use. For example, Sharan
et al. (2005) and Motoyoshi et al. (2007) show
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that humans can judge (with reasonable accu-
racy) the reflectance of natural materials from
grayscale images that have been equated for
mean luminance. Statistical analysis of the im-
ages shows that the shape of the pixel lumi-
nance distribution varies systematically with
the reflectance of the material and that hu-
mans are able to exploit these statistics (and
possibly other image statistics) when judging
reflectance.

When retinal image information is poor,
a rational visual system will put greater re-
liance on the prior probability distributions
of different possible environmental states and
bias its estimates accordingly (e.g., see Knill
& Richards 1996, Torralba 2003). Weiss et al.
(2002) show this principle could explain var-
ious motion illusions, under the assumption
that the prior probability for local speed de-
creases monotonically with speed. This gen-
eral assumption is likely to be true, but the
specific predictions depend upon the shape
of the prior probability distribution, which
they did not measure (however, see Stocker &
Simoncelli 2006). Yang & Purves (2003) ap-
plied a similar analysis in an attempt to predict
apparent distance illusions. Using statistical
measurements obtained with a range finder,
they were able to qualitatively account for sev-
eral distance-estimation biases that have been
reported in the literature.

To circumvent some of the difficulties as-
sociated with measuring across-domain mo-
tion statistics, Tversky & Geisler (2007) com-
bined graphics simulations with measured
natural scene statistics. Specifically, they cre-
ated model environments based on the mea-
sured range statistics of Huang et al. (2000;
see Figure 6B) and the local 1/ f statistics of
natural image patches (Figure 5A). They then
simulated various kinds of self motion through
these environments and measured the scene
statistics produced by these motions. These
statistics were used to determine optimal inte-
gration area (receptive field size) of local mo-
tion sensors for heading estimation. The pri-
mary finding is that integration area should
increase with the speed being estimated. This

hypothesis should be testable in physiologi-
cal and psychophysical studies. Similar sta-
tistical measurements could potentially be
used to estimate the approximate prior prob-
ability distribution of ground truth velocities
needed for analyses like that of Weiss et al.
(2002).

CONCLUSION

In the traditional approach to perception re-
search, the scientist (a) thinks informally or
casually about natural tasks and environments,
(b) generates or modifies hypotheses about
perceptual or neural mechanisms, (c) conducts
controlled behavioral or physiological experi-
ments to test those hypotheses and then cycles
back to (b). Although there is nothing wrong
with this approach (which has produced a vast
amount of knowledge), a potential weakness is
that hypotheses and experimental paradigms
tend to be formulated from informal think-
ing about natural environments and stimuli
rather than from principled physical measure-
ments. By directly measuring statistical regu-
larities of natural environments and stimuli
it may be possible to derive novel and plau-
sible hypotheses for perceptual mechanisms
and to design experimental paradigms that
better reflect the important characteristics of
natural stimuli. Indeed, the studies described
here demonstrate the value of measuring and
characterizing natural scene statistics. Mea-
surements of within-domain statistics have re-
vealed much about the structure and variabil-
ity of natural images. This has made it possible
to test various forms of the efficient coding
hypothesis and has led to novel models and
experiments that would not have been con-
ceived otherwise. Measurements of across-
domain statistics, especially when combined
with Bayesian ideal observer theory, are prov-
ing to be particularly useful in generating
new insights and testable (parameter-free or
nearly parameter-free) models for perfor-
mance in tasks such as fixation selection,
contour grouping, contour classification, mo-
tion estimation, and reflectance estimation.
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Measuring and characterizing the statistical
properties of natural environments and stim-

uli are difficult tasks, but the potential for pay-
off appears to be great.
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Figure 3

Luminance and contrast in natural images. (A) Average distribution of local luminance levels within a
natural image, relative to the mean luminance of the image. (B) Average distribution of local contrast in
natural images, relative to the mean contrast of the image. (C ) Average joint distribution of local lumi-
nance and local contrast in natural images, scaled to the average luminance and average contrast in nat-
ural images. (Contours enclose 90%, 65%, and 40% of the observations.) (D) Average joint distribution
of local luminance and local contrast within foliage regions of natural images.
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C-4 Geisler

Figure 5

Spatial properties of natural images. (A) Amplitude spectra of six natural images (adapted from Field
1987). The spectrum for each image has been displaced vertically for display purposes. The diagonal
line has a slope of �1.0. (B) Histogram of responses to natural images of a sensor having a receptive
field profile representative of those in primary visual cortex. The dashed line shows the best-fitting
Gaussian distribution. (C ) Histograms of responses to natural images of a sensor (RF2) conditional on
the response of a nearby but nonoverlapping sensor (RF1). The histograms are represented by the verti-
cal columns of pixels (the brighter the pixel the greater the frequency). For display purposes, each col-
umn of pixels has been scaled to use the full grayscale range. (D) Histogram showing the ratio of the
likelihood that a particular pair of edge elements belongs to the same physical contour to the likelihood
that the pair belong to different physical contours. In this plot, the central horizontal line segment rep-
resents one of the pair of edge elements (the reference); each ring represents a distance bin d; each loca-
tion around the diagram represents a direction bin φ; each line element plotted at a given distance and
direction represents an orientation difference bin θ. The right side of the plot shows the likelihood
ratios when the contrast polarity is the same, the left side when the contrast polarity is opposite.
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