NGF activation of NF-«kB through p75NTR
may up-regulate the expression of such extra-
cellular matrix proteins in Schwann cells,
thereby influencing their migration during
nerve regeneration (7).

The NGF—-p75NTR—NF-«B signaling
pathway may also play a role in other
pathophysiological states. NGF is, so far,
unique among the neurotrophins in acting
as a link between inflammation and the
peripheral nervous system (20). NGF levels
are up-regulated in inflamed tissue (21),
and it has been shown that NGF is released
by cells of the immune system (20), as are
cytokines, which act through NF-kB. NGF
is also known to be required for the hyper-
algesia accompanying tissue damage, and it
exerts its effects on nociceptive sensory
neurons (22). Thus, it can be envisaged
that NGF activates the p75NTR—NF-kB
pathway in a context relevant to the gen-
eration of hyperalgesia.
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Cerebellum Implicated in Sensory Acquisition
and Discrimination Rather Than Motor Control

Jia-Hong Gao, Lawrence M. Parsons, James M. Bower,
Jinhu Xiong, Jinqi Li, Peter T. Fox*

Recent evidence that the cerebellum is involved in perception and cognition challenges
the prevailing view that its primary function is fine motor control. A new alternative
hypothesis is that the lateral cerebellum is not activated by the control of movement per
se, but is strongly engaged during the acquisition and discrimination of sensory infor-
mation. Magnetic resonance imaging of the lateral cerebellar output (dentate) nucleus
during passive and active sensory tasks confirmed this hypothesis. These findings sug-
gest that the lateral cerebellum may be active during motor, perceptual, and cognitive
performances specifically because of the requirement to process sensory data.

For a century, the cerebellum has been
regarded as a motor organ (I). Lesions to
the cerebellum cause incoordinated move-
ment (2), and the cerebellum is activated
during movement (3, 4). Recent studies of
brain-injured humans revealed that the cer-
ebellum is instrumental in nonmotor be-
haviors such as judging the timing of
events, solving perceptual and spatial rea-
soning problems, and generating words ac-
cording to a semantic rule (5). Very recent-
ly, cerebellar activity has been detected dur-
ing these perceptual and cognitive behav-
iors (6) and during the mental rotation of
abstract objects (7). Such findings chal-
lenge classical motor theories of cerebellar
function. Although the cerebellum receives
input from virtually every sensory system
(8, 9) and is activated by tactile stimulation
alone (without movement) (3), it has not
been considered a sensory organ because
cerebellar lesions do not cause gross sensory
deficits (2). However, ascertaining whether
neural tissue has a motor or sensory func-
tion is a subtle problem because motor be-
havior is guided by ongoing sensory acqui-
sition of object information, and motor ef-
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ficiency (the accuracy, coordination, and
smoothness of motor behavior) depends on
continuously updated sensory data.

To dissociate sensory acquisition and
discrimination from motor performance per
se, we imaged blood oxygenation change, a
correlate of neural activity, in the lateral
(dentate) nucleus of humans as they per-
formed tasks involving passive and active
sensory discriminations. The dentate nucle-
us is the sole output for the large lateral
hemispheres of the primate cerebellum, and
its activation has usually been linked to
finger movements (10). We tested the hy-
pothesis (I11) that dentate activation is
more closely associated with sensory dis-
criminations made through the fingers than
with finger-movement control per se.

Six healthy volunteers performed four
tasks (12). In the Cutaneous Stimulation
(CS) task (13), they passively experienced
sandpaper rubbed against the immobilized
pads of the second, third, and fourth fingers of
each hand. In the Cutaneous Discrimination
(CD) task (13), they were asked to actively
compare (without responding) whether the
coarseness of the sandpaper on the two hands
matched. The coarseness of the sandpaper
changed randomly every 3 s. In the Grasp
Objects (GO) task (14), they used each hand
to repeatedly reach for, grasp, raise, and then
drop an object. In the Grasped Objects Dis-
crimination (GOD) task (14), they grasped
one object with one hand while using the
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Fig. 1. Functional MRI (col-
or) overlaid on anatomical
MRI (gray), showing den-
tate activations for (A) CS,
(B) CD, (C) GO, and (D)
GOD tasks. The dentate
nuclei are the two dark
crescent-shaped  struc-
tures on either side of the
cerebellar midline. Func-
tional and anatomical im-
ages were coregistered for
each task by performing
rotation, translation, and
scaling on each partici-
pant’s images and then av-
eraging images across par-
ticipants. A group t test,
comparing  task-induced
changes relative to rest,
was performed on these
images for each task. Acti-
vation was detected with a
threshold defined by t =
2.5 and a cluster of five ad-
jacent pixels. The detected
activations are statistically
significant (P < 0.05) rela-
tive to the whole cerebellar
plane sampled.

10

other hand to grasp another object, and they
noticed covertly whether the shapes of the
two objects matched. In no task did the par-
ticipants see the stimuli. During each task,
participants lay supine in a 1.9-T magnetic
resonance imaging (MRI) instrument (15).
An axial plane through the dentate nuclei
was identified with a T, scout image and was
then functionally mapped with T,* gradient-
echo images (16, 17). Task-induced changes
(task minus rest) were detected by a pixel-
clustering analysis of response intensity and
spatial extent (18).

The cerebellar output nuclei showed sig-
nificant task-induced increases in blood flow

300
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B Lett dentate nucleus
[l Right dentate nucleus T

Activation area (mm2)
(42
o

GO cs CD
Task

GOD

Fig. 2. Activation area in the dentate nuclei for
each task. A group t test was applied to each
participant’s data for each task compared with
rest. Then, for each participant, activation foci
were detected by selecting areas with t > 2.5 and
at least five adjacent pixels (corresponding in
combination to P < 0.05). The mean (+SEM) of
these activated foci was calculated for each task
across participants.
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(Figs. 1 to 3) during the CS task. Thus,
dentate nuclei are activated by purely senso-
ry stimuli; this finding confirms positron-
emission tomography results that show cer-
ebellar activation during hand vibration (3).
This activation was equally strong in the left
and right dentate but tended to be more
extensive in the right dentate, probably re-
flecting the left cerebral dominance of the
right-handed participants. Known anatomi-
cal connections (8, 19) may enable cerebel-
lar participation in such sensory processing.
When the same stimuli were presented
under identical conditions and a discrimina-
tion was required (CD task), dentate nuclei
were more than twice as active (P < 0.05)
(Figs. 1 to 3). This activation was bilateral
but was stronger in the right dentate. The
enhanced activity could reflect the anatom-
ical connections between these cerebellar
regions and the prefrontal cortex that sup-
ports working memory processes (20) that
are possibly necessary for discrimination.

Fig. 3. Intrinsic relative signal changes at the activation area
in the dentate nuclei for each task. A group t test was
applied to each participant’s data for each task compared
with rest. Then, for each participant, activation foci were
detected by selecting areas with t > 2.5 and at least five
adjacent pixels (corresponding in combination to P < 0.05).
For each participant, the relative signal change was calcu-
lated in the above-threshold activation areas by subtracting
the average signal value during rest from that during the
task and dividing by the average signal value during rest.
The mean relative signal change (+SEM) was calculated for

each task across participants.
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We also compared cerebellar activation
in a sensory discrimination task that required €
rapid coordinated finger movements (GOD)g
to that in a control task that required similar©

movements but did not require discrimina-$

tion (GO). The GO task produced very=
slight, statistically insignificant activation
(Figs. 1 to 3). The slight activation likely
reflected cutaneous stimulation of the fingers o
that touched the stimuli (14). The lack Of;
activation in the GO task confirmed that®
rapid, coordinated, fine finger movements, @
in the absence of a sensory discrimination,=
do not engage the dentate nucleus. This3
response matches the slight dentate activity
recorded in another fine motor behavior (vi-
sually guided reaching and grasping of a peg)
(21). The fact that active finger movements
do not alone significantly activate the den-
tate nuclei indicates that, even if partici-
pants made finger movements during either
cutaneous task that were too slight to be
detected by the experimenters (13), those

-
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movements per se would not cause the sig-
nificant activations.

By far the strongest activation (Figs. 1 to
3) occurred during the GOD task. Again,
the right dentate was slightly more active
than the left. The extreme contrast (P <
0.005) between the degree of dentate acti-
vation in the two grasping tasks provides
evidence of strong cerebellar support for
sensory discrimination.

Together, these data rule out the conclu-
sion that the greater cerebellar activity in
the GOD task may reflect fine motor con-
trol. The GO task, which requires similarly
fine motor control, produces no significant
dentate activation. Thus, fine movement
control per se does not engage the dentate,
in contrast to sensory stimulation per se. The
massive increase in activity in the GOD task
relative to that in the GO task is entirely out
of proportion to the subtle differences that
may exist between the two tasks’ very similar
movements. The chief difference in move-
ments—that the GOD task was performed at
a slightly slower pace—would wrongly pre-
dict a decrease in activation because motor
performance rate and activation strength are
positively correlated (22).

Thus, our results implicate the dentate
nucleus of the human cerebellum in sensory
acquisition and discrimination. Activation
occurred during sensory stimulation, when
there were no accompanying overt finger
movements or discrimination. Substantial
finger movements, when not associated with
tactile discrimination, did not induce signif-
icant activation. Dentate activation was
greatly enhanced when a sensory discrimi-
nation was required, with or without overt
finger movements. However, the strongest
activation occurred when sensory discrimi-
nation was paired with finger movements.

Although these findings implicate the
lateral cerebellum in sensory discrimination
rather than in movement per se, they do
not identify its specific role. For example,
the greater increase in dentate activity for
the GOD task may simply result from the
multidimensional complexity of this senso-
ry processing task compared with the uni-
dimensional nature of the CD task. Never-
theless, the interpretation closest to our
hypothesis (11) is that greater cerebellar
activation during active manipulation re-
flects a direct role of the cerebellum in
modulating the motor control system to
reposition the tactile sensory surfaces of the
fingers. This coordination may be based on
the cerebellar analysis of the sensory infor-
mation actually being acquired, and it may
serve to ensure that the highest quality data
about object shape are being obtained in a
coordinated fashion from all finger surfaces.

These findings are not inconsistent with
the principal effects of cerebellar damage on
human movement. Cerebellar deficits in vol-

untary movement, such as incoordination and
ataxia, may reflect disruption of the sensory
data (from the medial cerebellum—controlled
muscle spindle system) on which the motor
system depends, rather than disruption of cer-
ebellar computations of smooth motor perfor-
mance per se (11). Our results are also not
inconsistent with data from neurophysiologi-
cal studies of awake animals that have been
interpreted to implicate the cerebellum in
motor behavior, because the sensory and mo-
tor components of task performance have not
been well dissociated.
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