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A B S T R A C T

Fine-grained functional organization of cortex is not well-conserved across individuals. As a result, individual
differences in cortical functional architecture are confounded by topographic idiosyncrasies—i.e., differences in
functional–anatomical correspondence. In this study, we used hyperalignment to align information encoded in
topographically variable patterns to study individual differences in fine-grained cortical functional architecture in
a common representational space. We characterized the structure of individual differences using three common
functional indices, and assessed the reliability of this structure across independent samples of data in a natural
vision paradigm. Hyperalignment markedly improved the reliability of individual differences across all three
indices by resolving topographic idiosyncrasies and accommodating information encoded in spatially fine-grained
response patterns. Our results demonstrate that substantial individual differences in cortical functional archi-
tecture exist at fine spatial scales, but are inaccessible with anatomical normalization alone.
1. Introduction

Functional architecture of the human brain is relatively consistent
across individuals at a coarse scale, but idiosyncrasies in functional
topography become increasingly apparent at finer scales. Large-scale
brain systems can be reliably identified across individuals by func-
tional connectivity (Power et al., 2011; Yeo et al., 2011), but there is
profound interindividual variability in system details (Gordon et al.,
2017a, 2017b). At the areal level, category-selective regions can be
localized to anatomical landmarks (Weiner et al., 2018, 2014), though
the locus can differ across individuals by millimeters or centimeters,
along with variability in size and shape (Zhen et al., 2017, 2015).
Furthermore, within a brain area, between-subject classification of
response patterns is typically considerably worse than within-subject
classification (e.g., Cox and Savoy, 2003; Haxby et al., 2011), indi-
cating that fine-grained functional architecture is not well-aligned
macroanatomically. With state-of-the-art cortical surface-based align-
ment (Fischl, 2012), the mismatch between brain function and anatomy
can be reduced but not eliminated (Duncan et al., 2009; Frost and
Goebel, 2012; Weiner et al., 2018). Therefore, it is problematic to as-
sume that a given anatomical location or topographic conformation will
have the same functional role across brains. Individual differences in
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neural function are confounded by individual differences in functio-
nal–anatomical correspondence.

Hyperalignment (Guntupalli et al., 2016, 2018; Haxby et al., 2011)
is a family of methods that can disentangle functional variability from
anatomical variability. Hyperalignment projects features (voxels or
surface vertices) from a brain into a common high-dimensional space
through linear transformations. In this common space, the same fea-
tures from different individuals will share similar functional properties
instead of the same anatomical locations or topographic conforma-
tions. Hyperalignment decomposes the original fMRI data of each in-
dividual into two parts: a transformation matrix, which reflects
topographic properties of the individual's functional activations; and a
new data matrix in the common space, which reflects shared,
stimulus-driven responses. This hyperaligned data matrix provides an
opportunity to study brain functions without confounds from topo-
graphic variability.

Besides separating interindividual variability in brain function from
that in functional topography, hyperalignment also makes efficient use of
functional neuroimaging data by utilizing spatially fine-grained pattern
information. For example, between-subject classification improves
severalfold by using hyperalignment instead of anatomical alignment
(Guntupalli et al., 2018, 2016; Haxby et al., 2011). Coarse-scale
ust 2018
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information, such as category selectivity or retinotopy, is encoded in a
spatially smooth and similar fashion across neighboring voxels in a brain
region. By contrast, fine-scale information, such as within-category dis-
tinctions among exemplars, is encoded in spatial patterns comprising
different responses across voxels within a region. Fine-grained topogra-
phies exist across all of cortex (Guntupalli et al., 2018, 2016; Haxby et al.,
2014, 2011), and encode fine-scale information (e.g., Haxby et al., 2001;
Kriegeskorte et al., 2008) and details of interactions between brain re-
gions (Guntupalli et al., 2018; Visconti di Oleggio Castello et al., 2017)
that are not captured by coarse-scale responses such as the average
response of a brain region. Importantly, individual differences in cogni-
tive function may be expressed in differences in the fine-scale functional
topographies that carry fine-scale information (Charest et al., 2014).
Because anatomical alignment does not capture the shared information
that is encoded in fine-scale topographies, individual differences in
anatomically-aligned data multiplexes misalignment of functional ar-
chitecture with individual differences in function. Consequently, the
spatial granularity of individual differences in functional architecture
that can be accessed with anatomically-aligned data may not match the
spatial scale of the functional architecture that carries cognitive differ-
ences. Many researchers opt to sacrifice fine-grained information to boost
coarse-grained information through spatial smoothing or averaging
(Carp, 2012), making fine-grained information inaccessible to further
analysis.

Recent advances have increased the utility of fMRI for studying the
neural bases of individual differences (Dubois and Adolphs, 2016).
Functional responses and connectivity measured by fMRI can predict an
individual's intelligence (Heuvel et al., 2009; Smith et al., 2013),
creativity (Beaty et al., 2018), personality (Adelstein et al., 2011;
DeYoung et al., 2010), and can facilitate diagnosis (Arbabshirani et al.,
2017; Wolfers et al., 2015) and prognosis (Gabrieli et al., 2015) of
psychiatric disorders. However, it is still common practice to use
feature sets derived by averaging voxels within a region or a network
(Wolfers et al., 2015), thereby focusing only on individual differences
in coarse-scale functional architecture. Given that fine-scale functional
architecture has the potential to reveal individual differences in
perception, cognition, and mental representation (Charest et al., 2014),
it is critical to assess whether the information encoded in fine-grained
functional architecture, when properly aligned across individuals, can
be efficiently utilized for individualized predictions. In the current
study we focused on the reliability of individual differences in the in-
formation encoded in cortical functional architecture. Establishing a
correlational relationship between two measures, such as individual
differences in cortical functional architecture and individual differ-
ences in behavior, is limited by the reliability of each measure, which
reflects relative signal-to-noise. The highest possible correlation be-
tween two measures is constrained by their reliabilities, known as
“attenuation by errors” (Spearman, 1904). Therefore, the reliability of
individual differences in functional architecture quantifies the potential
to predict other individual differences.

In this study, we used hyperalignment to examine individual differ-
ences in cortical functional architecture in a common representational
space. Critically, this common space resolves idiosyncrasies in functio-
nal–anatomical correspondence. We indexed cortical functional archi-
tecture based on response profiles, functional connectivity, and
representational geometry, and assessed the reliability of individual
differences across independent samples of data using a natural vision
paradigm. We found that with hyperaligned data, individual differences
in cortical functional architecture were more reliable, and this increased
reliability results primarily from the incorporation of fine-scale cortical
functional architecture into our model. Our results suggest that sub-
stantial individual differences exist at a fine spatial scale, but are
obscured by idiosyncratic functional–anatomical correspondence;
hyperalignment can reveal these fine-scale individual differences, and
make observed individual differences in cortical functional architecture
more reliable.
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2. Materials and methods

2.1. Participants

Twenty healthy young adults (mean age� standard deviation:
24.4� 3.4 years, 12 females) participated in this study. All participants
were right-handed, with normal hearing and normal or corrected-to-
normal vision, and no known history of neurological illness. They gave
written, informed consent, and were paid for their participation. The study
was approved by the Institutional Review Board of Dartmouth College.

2.2. Stimuli and design

Participants watched a full-length audiovisual movie, Raiders of the
Lost Ark, while fMRI data were collected. The movie was divided into
eight parts, each 14–15min in duration. Participants viewed four parts of
the movie in each of the two scanning sessions, and were taken out of the
scanner between the two sessions for a break.

The video was projected from an LCD projector onto a rear projection
screen, and then reflected through a mirror on the head coil. The cor-
responding visual angles subtended approximately 22.7� horizontally
and 17� vertically. The audio was played through MR-compatible head-
phones (MR confon GmbH, Magdeburg, Germany). Participants were
instructed to pay attention to the movie and enjoy.

2.3. MRI acquisition

MR images were acquired using a 3T Philips Intera Achieva scanner
with a 32-channel head coil at the Dartmouth Brain Imaging Center.

Functional images comprised 80� 80� 42 3mm isotropic voxels,
providing whole brain coverage. They were acquired every 2.5 s with an
echo planar imaging (EPI) sequence (TR¼ 2.5 s, TE¼ 35ms, flip
angle¼ 90�, 80� 80 matrix, FOV¼ 240mm� 240mm, SENSE reduc-
tion factor¼ 2, 42 interleaved axial slices). The length of a run was
adjusted to match the length of the corresponding movie part, consisting
of 326–344 vol each. In total, we acquired 2718 functional images per
participant during 8 runs of movie watching (approximately 2 h of
functional data per participant).

A high resolution T1-weighted image (0.9375mm�
0.9375mm� 1.0mm voxel resolution) was also acquired in each session
with an MPRAGE sequence (TR¼ 8.2ms, TE¼ 3.7ms, flip angle¼ 8�,
256� 256 matrix, FOV¼ 240mm� 240mm, 220 axial slices), except for
one session of one participant.

2.4. MRI preprocessing

MRI data were first preprocessed using the fMRIPrep software version
1.0.0-rc2 (Esteban et al., 2018; https://github.com/poldracklab/
fmriprep). T1-weighted images were corrected for bias field (Tustison
et al., 2010) and skullstripped using antsBrainExtraction.sh. High reso-
lution cortical surfaces were reconstructed with FreeSurfer (Fischl, 2012;
http://surfer.nmr.mgh.harvard.edu/) using all available anatomical im-
ages, and registered to the fsaverage template (Fischl et al., 1999).
Functional data were motion corrected using MCFLIRT (Jenkinson et al.,
2002), and resampled to the fsaverage template based on
boundary-based registration (Greve and Fischl, 2009). After these steps,
functional data from all participants were in alignment with the fsaver-
age template based on cortical folding patterns.

Further preprocessing steps were performed using Python scripts
based on PyMVPA (Hanke et al., 2009; http://www.pymvpa.org/). First,
functional data were further downsampled to a standard cortical surface
mesh with 18,742 vertices across both hemispheres (3mm vertex
spacing; 20,484 vertices before removing non-cortical vertices), and data
acquired during overlapping movie segments were discarded (8 TRs,
20 s, for each of runs 2–8). Then, nuisance regressors—6 motion pa-
rameters and their derivatives, global signal, framewise displacement
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(Power et al., 2014), 6 principal components from cerebrospinal fluid
and white matter (aCompCor; Behzadi et al., 2007), and up to second
order polynomial trends—were partialed out from functional data
separately for each run. Finally, the residual time series of each surface
vertex in each run was normalized to zero mean and unit variance.

2.5. Hyperalignment

First, we created a common representational space to hyperalign
Fig. 1. Measuring the reliability of individual differences in local response profiles
aligned or hyperaligned data, within each searchlight, a time-points (i.e., TRs) by fe
ized into a vector of response profiles. The similarity (i.e., correlation) of the vectors
matrix (individual differences matrix; IDM) capturing individual differences. Two IDM
the movie) from the same group of people, and the reliability of individual differences
used a similar procedure to measure the reliability of individual differences in function
Fig. 2). (B) Reliability maps of individual differences. These maps depict the searc
anatomically-aligned data (left) and hyperaligned data (right). (C) Map of reliabi
Scatterplot of searchlight reliabilities of IDMs in anatomically-aligned data (x-axis) an
with hyperaligned data. Most searchlights (82.1%) showed an increase in the reliab
across all searchlights increased from 0.540 to 0.693.
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functional data based on an independent dataset. The dataset comprised
responses to the same movie from 11 different participants (Guntupalli
et al., 2016; Haxby et al., 2011). We preprocessed the 11 participants'
data through the same pipeline, and hyperaligned responses to the entire
movie for all subjects using searchlight hyperalignment (Guntupalli et al.,
2016) with a 20-mm searchlight radius. For a given searchlight, the
hyperalignment algorithm uses the Procrustes transformation to rotate
each subject's feature space so as to best align response trajectories across
individuals. The local transformations for each searchlight are then
. (A) Schematic illustration of the analysis pipeline. Using either anatomically-
atures (i.e., vertices) data matrix was extracted from each subject, and vector-
for each pair of subjects was computed, forming a subjects-by-subjects similarity
s were obtained based on independent data (responses to two different parts of
was measured as the correlation of their vectorized upper triangles. Note that we
al connectivity patterns and representational geometries (see text for details and
hlight reliabilities of individual differences in local response profiles based on
lity difference between hyperaligned data and anatomically-aligned data. (D)
d hyperaligned data (y-axis). In general, individual differences are more reliable
ility of individual differences with hyperalignment, and the average reliability
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aggregated, forming a single, sparse transformation matrix for each
cortical hemisphere. The hyperaligned data of the 11 participants were
then averaged and normalized to unit variance to serve as the final
common representational space.

Then, we derived hyperalignment transformations for each of the 20
participants to the common representational space based on their re-
sponses to the first half of the movie (runs 1–4), and applied these
transformations to data from the second half of the movie (runs 5–8). The
following analyses of individual differences were based on the second
half of the movie for these 20 participants, and are thus completely in-
dependent of the data used for deriving the common space and hyper-
alignment parameter estimation. Note that all data were anatomically
aligned according to sulcal curvature on the cortical surface prior to
hyperalignment (see 2.4).

2.6. Indexing local functional architecture

We measured individual differences in local functional architecture
based on three functional indices that are commonly used in the
neuroimaging literature: response profiles, functional connectivity
(Biswal et al., 1995), and representational geometry (Kriegeskorte and
Kievit, 2013; Kriegeskorte et al., 2008). Based on a surface-based
searchlight analysis (Kriegeskorte et al., 2006; Oosterhof et al.,
2011), for each individual and each searchlight (9 mm radius), the
multivariate neural signature based on a given functional index is
represented as a vector, and the difference between a pair of in-
dividuals can be quantified as the dissimilarity between their neural
signature vectors (Fig. 1A).

We use the term “response profile” to refer to the response time
series to a part of the movie for each feature in searchlight. The
response profiles of all features in the searchlight formed a time-points
by features data matrix for each individual. This data matrix was
vectorized into a vector of response profiles reflecting the spatiotem-
poral pattern of an individual's responses to the movie. We computed
the functional connectivity profile of each feature as the Pearson
correlation between its response time series and the response time
series for all 18,742 features in the brain, which reflects its co-
activation pattern with those 18,742 connectivity targets. The func-
tional connectivity profiles of all features in a searchlight formed a
connectivity targets by features matrix, which can be vectorized and
compared across individuals. We computed the representational ge-
ometry of each searchlight as a time-point-based representational
dissimilarity matrix (RDM; Guntupalli et al., 2016; Kriegeskorte et al.,
2008) based on correlation distance. That is, for each searchlight we
first computed a time-points by time-points RDM. For example, the
first part of the movie (runs 5–6) contains 668 time points, and that
yields a 668�668 RDM per individual per searchlight, and each entry
in the matrix reflects the correlation distance (1 – r) between the
spatial patterns for two time points in that searchlight. Then, the
similarity between each pair of individuals was measured as the cor-
relation between vectorized upper triangles of the RDMs.

2.7. Measuring the reliability of individual differences

Within each searchlight, we modeled individual differences in local
cortical functional architecture as a 20 subjects� 20 subjects similarity
matrix, which we refer to as an individual differences matrix (IDM). Each
entry in an IDM is the similarity (i.e., Pearson correlation) between
neural signature vectors of a given functional index (see 2.6) for a pair of
individuals. By modeling the similarity structure (Kriegeskorte and Kie-
vit, 2013) between individuals, IDMs can be compared across different
stimuli (e.g., different parts of the movie data) and different functional
indices.

We utilized this feature of IDMs and assessed the reliability of in-
dividual differences by comparing IDMs based on different parts of the
movie data. Within each searchlight, we split responses to the second
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half of the movie into two parts (runs 5–6, 7–8), computed an IDM
from each part, and evaluated the reliability of the individual differ-
ences structure by comparing the two matrices. See Fig. 1A for a
schematic of this procedure. Because IDMs are symmetric and the
diagonals are not informative, we quantified reliability as the Pearson
correlation between the vectorized upper triangles of the IDMs. The
reliability values from all searchlights form a reliability map of indi-
vidual differences.

Using each of the functional indices, we obtained two reliability
maps of individual differences, one based on anatomically-aligned
data and the other based on hyperaligned data. To simplify the com-
parison between reliability maps, we first focused on comparing the
average reliability difference across all searchlights. Then, we counted
the percentage of searchlights that showed the same direction of effect
as the average reliability. If the average reliability based on one
alignment method is higher, and the reliabilities in most searchlights
are also higher with the same alignment method, then the average
reliability difference is not likely to be driven by outlier searchlights,
and the average reliability difference is a good summary statistic for
the reliability maps. We used bootstrap tests to estimate confidence
intervals (CIs) and statistical significance. In each of 20,000 repeti-
tions, we randomly sampled a group of 20 individuals by sampling
with replacement from the 20 original individuals, then computed
IDMs based on the bootstrapped sample, and obtained statistics
accordingly, such as average reliability and average reliability differ-
ence. During bootstrapping, non-informative correlation values origi-
nally in the diagonal of an IDM (self-similarity values of 1 for a given
participant due to sampling with replacement) may appear in off-
diagonal cells, so we excluded these values (less than 5%) from the
upper triangles to avoid overestimation of reliability values (Krie-
geskorte et al., 2008). The 95% CI of a statistic is estimated as the
2.5th and 97.5th percentiles of the statistic from the bootstrapped
samples (i.e., the sampling distribution of the statistic estimated by
bootstrapping subjects), and the p-value is estimated based on the
percentile rank of a null hypothesis score (e.g., average reliability
difference of 0) compared with the estimated sampling distribution.

2.8. Separating coarse-scale and fine-scale individual differences

We divided the information in those functional indices into coarse-
scale information and fine-scale information, to test if the alignment
method used affects individual differences differently based on the
spatial scale of topographic functional information.

When using response profiles as the functional index, we defined
coarse-scale information as the mean response profile (time series) across
all features in a searchlight, and fine-scale information as the pattern
residuals after subtracting the searchlight mean response profile from
each feature's response profile. In this case, the remaining pattern only
contains fine-scale information and no variation of mean response across
movie time-points. When using functional connectivity as the functional
index, we defined coarse-scale information as the correlations between
the searchlight mean response profile and those from the 18,742 con-
nectivity targets, and the fine-scale information as the correlations be-
tween the residual time series of the features and those of the targets. We
measured representational geometry as correlation distances between
spatial patterns of different movie time-points. Correlations between
spatial patterns implicitly remove the mean and standard deviation
across features (Misaki et al., 2010), and thus only use fine-scale infor-
mation. Therefore, we didn't perform this analysis with representational
geometry.

2.9. Comparing functional indices

We then compared IDMs based on different functional indices to see if
the structure among individuals based on one functional index was
retained for the other functional indices. Thus, instead of comparing



Table 1
Comparison of reliability of individual differences in local cortical functional
architecture between anatomically-aligned (AA) and hyperaligned (HA) data,
based on response profiles, functional connectivity, or representational geome-
try. For all three functional indices, most searchlights had higher reliability of
individual differences for hyperaligned data than for anatomically-aligned data
(i.e., (HA>AA)% larger than 50%), and the mean reliability across all search-
lights was higher for hyperaligned data (i.e., Mean (HA – AA) larger than 0).
Numbers in brackets denote 95% confidence intervals obtained by bootstrapping
subjects.

Reliability of Individual Differences in Local Cortical Functional Architecture

Functional Index Mean (AA) Mean
(HA)

(HA>AA)% Mean (HA –

AA)

Response Profiles 0.540
[0.446,
0.585]

0.693
[0.578,
0.744]

82.10% 0.153 [0.116,
0.182],
p< 0.0001

Functional
Connectivity

0.799
[0.750,
0.827]

0.861
[0.808,
0.894]

72.70% 0.062 [0.020,
0.106],
p¼ 0.0079

Representational
Geometry

0.472
[0.387,
0.499]

0.601
[0.482,
0.657]

77.50% 0.129 [0.089,
0.166],
p< 0.0001
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IDMs from different parts of the movie data based on the same functional
index (as in the reliability analysis, see 2.7; e.g., index 1 movie part 1 vs.
index 1 movie part 2), we compared IDMs from different parts of the
movie based on different functional indices. In this approach, two cor-
relation coefficients can be obtained from each pair of functional indices
(index 1 movie part 1 vs. index 2 movie part 2, and index 1 movie part 2
vs. index 2 movie part 1). We averaged these two correlation coefficients
to reduce estimation error.
Fig. 2. The reliability of individual differences indexed by functional connectivity (up
to index individual difference, 72.7% searchlights had higher reliability with hyperal
representational geometry, 77.5% had higher reliability with hyperalignment, and t
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3. Results

3.1. Reliability of individual differences

We computed searchlight maps of the reliability of individual dif-
ferences in response profiles, functional connectivity, and representa-
tional geometry using both anatomically-aligned data and hyperaligned
data. Each location on the cortical surface is assigned a correlation value
(ranging from �1 to 1) denoting the reliability of individual differences
for a given functional index in that searchlight. Note that we expect most
reliabilities to be positive, and that negative and near-zero reliabilities
are indicative of noise.

The average reliability of individual differences based on response
profiles across all searchlights increased significantly from 0.540 for
anatomically-aligned data to 0.693 for hyperaligned data (Fig. 1; see
Table 1 for statistics). Most searchlights (82.1%) had higher reliability
with hyperalignment, consistent with the searchlight average results,
indicating that the increase in average reliability was not due to outlier
searchlights. Increases in reliability for hyperaligned data were largest in
prefrontal cortices, both lateral and medial, where reliabilities were low
for anatomically-aligned data (Fig. 1C). By contrast, increases in reli-
ability were smallest in occipital and temporal visual cortices, temporal
auditory cortex, and the frontal eye field, where reliabilities were high
for anatomically-aligned data. Reliabilities in somatosensory and motor
areas in pre- and postcentral gyri also were boosted by hyperalignment
but were low for both anatomically and hyperaligned data.

The average reliability of individual differences based on functional
connectivity (Fig. 2, upper; Table 1) across all searchlights increased
significantly from 0.799 for anatomically-aligned data to 0.861 for
hyperaligned data. Across all searchlights, 72.7% had higher reliability
per) and representational geometry (lower). When using functional connectivity
ignment, and the average reliability increased from 0.799 to 0.861. When using
he average reliability increased from 0.472 to 0.601.
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with hyperalignment.
The average reliability of individual differences based on represen-

tational geometry (Fig. 2, lower; Table 1) across all searchlights increased
from 0.472 with anatomically-aligned data to 0.601 with hyperaligned
data. Across all searchlights, 77.5% had higher reliability with
hyperalignment.

IDMs based on anatomically-aligned data and hyperaligned data were
moderately correlated for all three functional indices. The average cor-
relation was 0.419 when using response profiles as the functional index,
0.371 when using functional connectivity as the index, and 0.365 when
using representational geometry as the functional index. Note that the
highest possible correlation between IDMs is constrained by the reli-
ability of IDMs based on each alignment method. As a result searchlights
having a higher noise ceiling are more likely to have a higher correlation
between anatomically-aligned IDM and hyperaligned IDM. The spatial
correlation between the correlation map and the noise ceiling map was
0.748 for response profiles, and 0.841 for representational geometry, but
only 0.065 for functional connectivity, probably due to the uniformly
high reliabilities for this index. IDMs based on anatomically-aligned data
also reflect individual differences in topography that are factored out in
hyperaligned data, which may further reduce correlations between IDMs
for these two alignment methods. The influence of topography-based
individual differences may be especially strong for functional connec-
tivity which reflects both the topography of vertices within searchlights
and the topography of vertices that are the connectivity targets out of
each searchlight.

In summary, the reliability of individual differences in response
profiles, functional connectivity, and representational geometry all
became more reliable after hyperalignment. Across the three functional
indices, individual differences in functional connectivity were more
reliable than individual differences in response profiles, and individual
differences in response profiles were more reliable than individual dif-
ferences in representational geometry. Based on anatomically-aligned
data, 91.2% of searchlights had higher reliability for functional con-
nectivity compared with response profiles, and the average difference
across all searchlights was 0.260 (95% CI was [0.205, 0.344] based on
bootstrapping subjects); 65.5% of searchlights had higher reliability for
response profiles compared with representational geometry, and the
average difference across searchlights was 0.068 [0.043, 0.103]. Based
on hyperaligned data, 92.8% of searchlights had higher reliability for
functional connectivity compared with response profiles, and the average
difference across all searchlights was 0.168 [0.110, 0.267]; 75.6%
searchlights had higher reliability for response profiles compared with
representational geometry, and the average difference across search-
lights was 0.092 [0.067, 0.126].

3.2. Coarse-scale and fine-scale individual differences

We separated the information encoded in each searchlight into coarse
and fine spatial scales, and assessed the reliability of individual differ-
ences for both. Coarse-scale information is defined as the average time
series across all cortical features within a searchlight (regional-average
response profile) and the correlations of the searchlight average time
series with functional connectivity targets (regional-average connectivity
profile), and the fine-scale information is based on the residuals of the
data matrix after removing the searchlight average time series or average
functional connectivity vector. These approaches characterized inde-
pendent and complementary types of information encoded in each
searchlight.

When using response profiles to index individual differences (Fig. 3,
upper; Table 2), the average reliability based on coarse-scale information
marginally increased from 0.496with anatomically-aligned data to 0.528
with hyperaligned data. Across all searchlights, 58.8% had higher reli-
ability with hyperalignment. By contrast, the average reliability based on
fine-scale information increased significantly from 0.415 with
anatomically-aligned data to 0.660 with hyperaligned data. Across all
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searchlights, 92.5% had higher reliability with hyperalignment.
When using functional connectivity to index individual differences

(Fig. 3, lower; Table 2), the average reliability based on coarse-scale
information was similar for anatomically-aligned data (0.726) and
hyperaligned data (0.730). Across all searchlights, 48.2% had higher
reliability with hyperalignment. The average reliability based on fine-
scale information increased significantly from 0.782 with anatomically-
aligned data to 0.865 with hyperaligned data. Among all searchlights,
81.3% had higher reliability with hyperalignment.

The reliability of fine-scale individual differences benefited more
from hyperalignment than did the reliability of coarse-scale individual
differences (Fig. 4 and Table 2). When using response profiles to index
individual differences, the increases in average reliability with hyper-
alignment were significantly larger for fine-scale data (mean in-
crease¼ 0.246) than for coarse-scale data (mean increase¼ 0.032).
Hyperalignment yielded a larger increase in the reliability of fine-scale
individual differences in 88.9% of searchlights. When using functional
connectivity to index individual differences, the increases in average
reliability again were significantly larger for fine-scale data (0.083 versus
0.004, respectively). Across all searchlights, 71.4% had a larger increase
in the reliability of fine-scale individual differences in functional con-
nectivity. Note with both functional indices, fine-scale individual dif-
ferences based on hyperaligned data had the highest average reliability
among the four combinations, thus the smaller increase in the reliability
of coarse-scale individual differences was not due to ceiling effects.

3.3. Agreement across functional indices

We next correlated IDMs based on different functional indices derived
from different parts of the movie data (Fig. 5; Table 3). A positive cor-
relation indicates that individuals who differ more according to one
functional index are also likely to differ more according to the other
functional index, and individuals who are more similar on one index are
also more similar on the other index. Inter-index correlations computed
across the two parts of the movie were then averaged. Consequently, the
similarity of IDMs based on different indices is derived from different
parts of the movie for each index.

When comparing individual differences in response profiles and in-
dividual differences in functional connectivity, the average correlation
across all searchlights increased significantly from 0.408 for
anatomically-aligned data to 0.582 for hyperaligned data. Among all
searchlights, 83.8% had higher correlations with hyperaligned data.

When comparing individual differences in response profiles and in-
dividual differences in representational geometry, the average correla-
tion across all searchlights increased significantly from 0.272 for
anatomically-aligned data to 0.554 for hyperaligned data. Among all
searchlights, 96.5% had higher correlations with hyperaligned data.

When comparing individual differences in functional connectivity
and individual differences in representational geometry, the average
correlation across all searchlights increased significantly from 0.077 for
anatomically-aligned data to 0.415 for hyperaligned data. Among all
searchlights, 96.8% had higher correlations with hyperaligned data.

Compared with anatomically-aligned data, more searchlights had
positive inter-index IDM correlations with hyperaligned data, and the
average correlation across all searchlights increased. Thus, after hyper-
alignment, all three functional indices converged on more congruent
characterizations of inter-subject similarity of cortical functional
architecture.

4. Discussion

In this study, we measured individual differences in local cortical
functional architecture based on three functional indices—response
profiles, functional connectivity, and representational geometry—using
dynamic, naturalistic movie stimuli. We quantified individual differences
with IDMs. Each IDM provides an index of the similarity structure among



Fig. 3. Individual differences at coarse and fine spatial scales. We separated coarse-scale information (regional-average response profiles or regional-average con-
nectivity profiles) and fine-scale information (pattern residuals after removing coarse-scale information) from the functional indices, and modeled individual dif-
ferences accordingly. When using response profiles to index individual differences, hyperalignment increased the average reliability of coarse-scale individual
differences from 0.496 to 0.528, and that of fine-scale individual differences from 0.415 to 0.660. When using functional connectivity, hyperalignment increased the
average reliability of coarse-scale individual differences from 0.726 to 0.730, and that of fine-scale individual differences from 0.782 to 0.865. In general, the reli-
ability of fine-scale individual differences benefited more from hyperalignment than did coarse-scale individual differences.
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Table 2
Reliability of individual differences in local cortical functional architecture at different spatial scales. Coarse-scale information reflects the average response or con-
nectivity profile across all vertices in a searchlight (i.e., spatial averaging), and fine-scale information reflects spatial response or connectivity patterns that are not
captured by the average response/connectivity profile. The increase in reliability was marginal for coarse-scale information, but much larger for fine-scale information.

Reliability of Individual Differences in Local Cortical Functional Architecture at Different Spatial Scales

Functional Index Spatial Scale Mean (AA) Mean (HA) (HA>AA)% Mean (HA – AA)

Response Profiles Coarse 0.496 [0.400, 0.542] 0.528 [0.411, 0.590] 58.80% 0.032 [0.000, 0.059], p¼ 0.0493
Fine 0.415 [0.348, 0.455] 0.660 [0.538, 0.714] 92.50% 0.246 [0.181, 0.282], p< 0.0001

Functional Connectivity Coarse 0.726 [0.679, 0.749] 0.730 [0.673, 0.772] 48.20% 0.004 [-0.044, 0.057], p¼ 0.7960
Fine 0.782 [0.754, 0.792] 0.865 [0.810, 0.898] 81.30% 0.083 [0.040, 0.121], p¼ 0.0027

Fig. 4. Distribution of searchlight reliabilities of individual differences across functional indices, spatial scales, and alignment methods. With hyperalignment, in-
dividual differences were more reliable across all three functional indices (left column, see also Figs. 1B and 2). When only coarse-scale information was used, the
distribution of reliabilities was similar for both alignment methods (middle column, see also Fig. 3). By contrast, when only fine-scale information was used, the
distribution of reliabilities shifted toward higher values with hyperalignment (right column, see also Fig. 3). Dashed lines denote quartiles of each distribution.
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individuals, which can be thought of as an individual-differences ge-
ometry. IDMs derived from different parts of the movie or from different
functional indices can be compared directly. These IDMs capture neural
similarities among subjects. The relationship of these individual differ-
ences in cortical functional architecture to phenotypic variation is
beyond the scope of this study—however, reliable neural IDMs can be
considered a precondition for relating individual differences in neural
function to these other variables (Castellanos et al., 2013; Dubois and
382
Adolphs, 2016; Gabrieli et al., 2015; Van Horn et al., 2008; Woo et al.,
2017). We assessed the reliability of individual differences by comparing
IDMs from different parts of the movie, and found reliable individual
differences in all three functional indices throughout cortex. Naturalistic
stimuli are engaging and content-rich, evoking a variety of brain states
and facilitating the detection of individual differences (Vanderwal et al.,
2017). Importantly, after aligning each individual's data to a common
space using hyperalignment, we found individual differences in all three



Fig. 5. Agreement of individual differences across functional indices. Within each searchlight, we computed the correlation between two IDMs based on different
functional indices and different parts of the movie data, and averaged that across permutations of movie parts. A positive correlation means that individuals who differ
more according to one functional index are likely to differ more for the other functional index. The average correlation between response profile IDMs and functional
connectivity IDMs was 0.408 for anatomically-aligned data, and 0.582 for hyperaligned data. The average correlation between response profile IDMs and repre-
sentational geometry IDMs was 0.272 for anatomically-aligned data, and 0.554 for hyperaligned data. The average correlation between functional connectivity IDMs
and representational geometry IDMs was 0.077 for anatomically-aligned data, and 0.415 for hyperaligned data.
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Table 3
Agreement of individual differences across functional indices. The average correlation of IDMs from different functional indices was positive for all pairs of functional
indices, and the average correlation was higher for hyperaligned data. This indicates that individuals who differed along one functional index tend to differ for others,
and are more likely to differ after hyperalignment.

Agreement of Individual Differences across Functional Indices

Functional Indices Mean (AA) Mean (HA) (HA>AA)% Mean (HA-AA)

Response Profiles Functional Connectivity 0.408 [0.334, 0.465] 0.582 [0.454, 0.668] 83.80% 0.174 [0.093, 0.247], p< 0.0001
Response Profiles Representational Geometry 0.272 [0.203, 0.317] 0.554 [0.422, 0.626] 96.50% 0.281 [0.216, 0.315], p< 0.0001
Functional Connectivity Representational Geometry 0.077 [0.018, 0.135] 0.415 [0.263, 0.520] 96.80% 0.338 [0.229, 0.417], p< 0.0001
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functional indices become even more reliable; hyperalignment increased
reliability in a clear majority of searchlights (73%–82%) and increased
average reliability across all searchlights. This suggests individuals differ
reliably in local cortical functional architecture, but that these differences
can be obscured by suboptimal alignment of brain imaging data across
individuals.

To further test this hypothesis, we divided the information in these
functional indices into coarse-scale information and fine-scale informa-
tion, and assessed the reliability of individual differences accordingly.
Coarse-scale information was computed based on the average time series
of all vertices in a searchlight, and thus was spatially smooth and rela-
tively robust against misalignment of data across individuals (concep-
tually related to the motivation for spatially smoothing functional data in
multi-subject univariate analyses; Petersson et al., 1999; Carp, 2012).
The information not captured by searchlight average time series, i.e., the
residual time series in each cortical vertex, was defined as fine-scale in-
formation, and thus was independent and orthogonal to coarse-scale
information. Coarse-scale information is typically used to link a large
brain region with the presence of a stimulus category (or contrasts be-
tween categories). For example, the average response magnitude of a
large patch of fusiform gyrus is sufficient for determining whether a face
or a house stimulus is being presented (Kanwisher et al., 1997), but not
sufficient for discriminating between face identities, head angles, or the
faces of different species of primates. In contrast, fine-scale information
of this kind (e.g., between species of birds or between nearby time seg-
ments of a continuous movie stimulus) is encoded in complex,
finer-grained response topographies (Connolly et al., 2012; Guntupalli
et al., 2017; Haxby et al., 2011; Nastase et al., 2017; Sha et al., 2015). We
found the reliability of coarse-scale individual differences was the same
or slightly increased with hyperalignment. In contrast, the reliability of
fine-scale individual differences increased dramatically with hyper-
alignment, and surpassed the reliability of coarse-scale individual dif-
ferences. These results suggest individual differences in local cortical
functional architecture exist at both coarse and fine spatial scales.
However, individual differences in fine-scale functional architecture can
only be efficiently captured when data are properly aligned across in-
dividuals. This is a critical development for identifying biomarkers, as
some abnormalities may not be evident in coarse-grained functional or-
ganization and only manifest at fine spatial scales (Woo et al., 2017; cf.
Hackmack et al., 2012).

It is essential to establish functional correspondence across in-
dividuals before analyzing how they differ in cortical functional archi-
tecture. Consider measuring a single brain feature (e.g., voxel, vertex,
electrode, etc.) at the same macroanatomical position in two individuals
that responds preferentially to different kinds of stimuli. The two in-
dividuals' response time series would be highly similar if the two kinds of
stimuli always co-occur, and highly dissimilar if the two kinds of stimuli
always appear in an interleaved fashion. In these scenarios, measured
individual differences in cortical functional architecture are prone to the
co-occurrence and frequency of stimuli, and less generalizable to new
tasks and new sets of stimuli. On the other hand, if the same brain feature
from the two individuals are from a common functional space (e.g.,
common space created by hyperalignment), they are expected to share
similar functional properties like response tuning profiles or functional
connectivity profiles. In this case, measured individual differences in
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cortical functional architecture will be robust against variations in
stimuli, and thus more generalizable and reliable.

Consider the same brain feature with differential response tuning
across two individuals. Is this discrepancy due to topographic differ-
ences? The mismatch may be due to differences in functional–anatomical
correspondence across individuals, or the way in which a particular
subject's brain signals were sampled (e.g., the discretization of brain
signals into voxels). In this simplistic example, the discrepancy may be
resolved simply by remapping one feature to another nearby feature
across individuals. Hyperalignment, and related approaches (e.g.,
Yamada et al., 2015), relax this one-to-one mapping and flexibly account
for topographic differences by modeling the responses of a given feature
as a weighted sum of nearby features in the common space. If, after
hyperalignment, the discrepancy remains, this is strongly indicative of a
feature in a particular individual that deviates from the group model for
the cortical field to which that feature belongs. In a multivariate context,
this would be reflected in individual differences in representational ge-
ometry (Charest et al., 2014). By accounting for idiosyncrasies in func-
tional–anatomical correspondence, hyperalignment offers a rigorous
framework for modeling deviations from the group and a
less-confounded view of individual differences in function.

At first glance, one might expect that hyperalignment, by minimizing
individual differences in functional–anatomical correspondence, would
produce less reliable individual differences. Hyperalignment does in fact
increase similarities among individuals for the functional indices we use
(Guntupalli et al., 2016, 2018; Haxby et al., 2011), but nonetheless en-
hances the structure of the similarities among individuals. The hyper-
alignment implementation used in this paper uses Procrustes
transformations within searchlights, which is a rotation in searchlight
high-dimensional feature spaces. It re-distributes variances across fea-
tures rather than changing the variances themselves. Therefore, the
Procrustes transformation is expected to correct for individual differ-
ences in topographic distributions of function while maintaining indi-
vidual differences in function per se. For example, if one individual's
response magnitude to a stimulus is twice as high as another individual,
or if the response exists in twice as many features, such differences will
still be retained in Procrustes-transformed data. However, if two in-
dividuals have the same response but the response exists in different
features, their differences will be resolved by the transformation.
Therefore, by projecting each individual's data into the common space,
we can measure differences in functional tuning without confounds from
(mis)localization of function.

Searchlight hyperalignment (Guntupalli et al., 2016) adds local Pro-
crustes transformations together to form a whole-brain transformation
matrix. When a feature is included in multiple searchlights, respective
transformations are combined. This procedure is related to ensemble
learning techniques (Zhou, 2012) in that it boosts the shared part of the
transformations and suppresses the noisy part. Therefore, instead of a
completely orthonormal whole-brain transformation matrix, it provides a
more accurate and robust whole-brain transformation. As a result, the
signal shared across individuals will be boosted and the noise suppressed;
this may partly explain why individual differences in cortical functional
architecture become even more reliable after searchlight
hyperalignment.

Representational geometry (Kriegeskorte and Kievit, 2013) measures
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the structure of similarities between stimulus representations, which it-
self is not expected to change with rotations in the feature space (e.g., the
Procrustes transformation). However, variances in a searchlight after
hyperalignment are not identical to the variances in the searchlight in
anatomically-aligned data. Small differences in representational geome-
try may be observed after searchlight hyperalignment partly because the
method for aggregating searchlights will adjust which (and to what
extent) features are considered “members” of a given cortical field. This
is conceptually analogous to localizing functional regions of interest
(ROIs) in univariate analyses (Saxe et al., 2006), and comparing these
functional ROIs rather than comparing anatomical ROIs (which increases
statistical power and functional resolution; Nieto-Casta~n�on and Fedor-
enko, 2012). Similarly to functional ROIs, following hyperalignment,
representational geometry is computed across individuals in a “func-
tional searchlight” instead of a purely anatomy-based searchlight.
However, note the “boundary” of the “functional searchlight” is not an
anatomically-defined boundary on surface, but is rather a boundary in a
high-dimensional information space determined by a transformation
which maps multivariate information from each individual's anatomical
space to the information searchlights in common space. Therefore,
measuring individual differences in representational geometry with
searchlight hyperalignment also benefits from better alignment of func-
tional architecture and reduced topographic confounds.

Note that the effect of hyperalignment on the reliability of individual
differences in functional architecture varies across cortical regions. The
increases in reliability after hyperalignment were greatest in lateral and
medial prefrontal cortices, where reliabilities were relatively low for
anatomically-aligned data. In occipital and temporal visual areas, tem-
poral auditory areas, and the frontal eye fields, reliability even decreased
slightly after hyperalignment, but was very high for both anatomically-
aligned and hyperaligned data. This is likely because the information
encoded in fine-scale topographies is highly similar across subjects and
individual differences are dominated by topographic differences rather
than the information content. Consequently, when these topographic
differences are minimized with hyperalignment, noise around residual
individual differences in information content is amplified. For example,
these regions usually show the highest inter-subject similarity in repre-
sentational geometry after both anatomical alignment and hyperalign-
ment (Guntupalli et al., 2016, 2018). Some other regions, such as the
motor cortex and the insular cortex, encode information (motor behav-
iors and interoceptive information, respectively) that are unrelated to our
movie watching paradigm. Consistent with previous work using movie
stimuli (Guntupalli et al., 2016, 2018; Hasson et al., 2004), task-related
activity and individual differences in these regions were weak and
inconsistent after both anatomical alignment and hyperalignment.

As hyperalignment factors out topographic differences from func-
tional differences, individual differences in the information encoded in
fine-grained topographies, such as neural representations (Charest et al.,
2014), can be analyzed. For example, in an fMRI study of story
comprehension, Chen et al. (2015) studied differences between two
groups that were biased to interpret the same short story differently by
providing prior information favoring one of two interpretations. The
auditory story was identical for the two groups, so that any group dif-
ference in brain responses was due only to interpretation of the text, and
this difference was stronger for data that were hyperaligned. This sup-
ports the current findings in suggesting that hyperalignment enhances
the detection of individual differences in high-level cognition and mental
representation which are encoded in fine-scale functional topographies.

Although individual differences in local cortical functional architec-
ture can be based on various functional indices, we found that the
structure of individual differences was similar across the three functional
indices, especially following hyperalignment. The increased congruency
of individual differences across these three indices after hyperalignment
is due in part to the simple statistical effect of increased reliability—more
reliable measures allow higher correlations among measures. The
increased reliability, however, may also reflect stronger weighting of
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individual differences in the representation of information after hyper-
alignment and diminished weighting of individual differences in func-
tional topographies, suggesting that the contribution of variations in
functional topography to these indices may diminish congruency across
indices for anatomically-aligned data. Note that individual differences in
functional topography affect these functional indices to different degrees:
representational geometry is designed to be independent of within-area
topographic differences (rotations in the feature space); response pro-
files can be affected by topographic differences to some degree; func-
tional connectivity is most prone to topographic differences, as both
features in an area and connectivity targets can be affected by topo-
graphic differences. Such effects are expected to be reduced by hyper-
alignment, and the individual differences measured in the hyperaligned
common space mainly reflect functional differences without confounding
topographic differences. Each functional index is differentially suscepti-
ble to topographic differences and hyperalignment improves agreement
across indices by attenuating these topographic differences and capturing
differences in the fine-scale information that is encoded in fine-scale
topographies.

Hyperalignment yields more reliable measures of individual differ-
ences in cortical functional architecture both by reducing confounds from
topographic idiosyncrasies and by capturing variation around shared
bases for how information is encoded in fine-scale topographic patterns.
This is a promising step forward for efforts to link individual differences
in brain function to individual differences in behavior. As translational
neuroscience matures (Dubois and Adolphs, 2016; Gabrieli et al., 2015;
Poldrack, 2017; Woo et al., 2017), hyperalignment will be instrumental
in building more detailed, clinically-relevant biomarkers.
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