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Abstract
Bifurcation theory is a powerful tool for studying how the dynamics of a neural network model depends
on its underlying neurophysiological parameters. However, bifurcation theory has been developed mostly
for smooth dynamical systems and for continuous-time non-smooth models, which prevents us from
understanding the changes of dynamics in some widely used classes of artificial neural network models.
This article is an attempt to fill this gap, through the introduction of algorithms that perform a semi-
analytical bifurcation analysis of a spin-glass-like neural network model with binary firing rates and
discrete-time evolution. Our approach is based on a numerical brute-force search of the stationary and
oscillatory solutions of the spin-glass model, from which we derive analytical expressions of its bifurcation
structure by means of the state-to-state transition probability matrix. The algorithms determine how
the network parameters affect the degree of multistability, the emergence and the period of the neural
oscillations, and the formation of symmetry-breaking in the neural populations. While this technique
can be applied to networks with arbitrary (generally asymmetric) connectivity matrices, in particular we
introduce a highly efficient algorithm for the bifurcation analysis of sparse networks. We also provide
some examples of the obtained bifurcation diagrams and a Python implementation of the algorithms.

1 Introduction
Neural complexity refers to the wide variety of dynamical behaviors that occur in neural networks [5, 9,
27]. This set of dynamical behaviors includes variations in the number of stable solutions of neuronal
activity, the formation of neural oscillations, spontaneous symmetry-breaking, chaos and much more
[1, 16]. Qualitative changes of neuronal activity, also known as bifurcations, are elicited by variations of
the network parameters, such as the strength of the external input to the network, the strength of the
synaptic connections between neurons, or other network characteristics.

Bifurcation theory is a standard mathematical formalism for studying neural complexity [20]. It allows
the construction of a map of neuronal activity, known as bifurcation diagram, that links points or sets
in the parameters space to their corresponding network dynamics. In the study of firing-rate network
models, bifurcation theory has been applied mostly to graded (smooth) neural networks with analog firing
rates (e.g. [3–5, 9, 15, 27]), proving itself as an effective tool for deepening our understanding of network
dynamics. The bifurcation analysis of smooth models is based on differential analysis, in particular on
the Jacobian matrix of the system. However, the Jacobian matrix is not defined everywhere for artificial
neuronal models with discontinuous activation function, such as networks of binary neurons. For this
reason, bifurcation theory of smooth dynamical systems cannot be applied directly to these models. On
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the other hand, while the bifurcation analysis of non-smooth dynamical systems has recently received
increased attention, it has been developed only for continuous-time models, described by non-smooth
differential equations or by differential inclusions [2, 21, 22, 24] (see [14] for an example of application
to firing-rate models). Yet, many interesting problems in neuroscience involve the use of non-smooth
discrete-time models [18], therefore this gap prevents us from understanding the changes of dynamics in
these artificial systems.

If we define the states of a binary network of size N as the collection of the rates at which its cells are
firing, then the number of possible stationary states is 2N . Moreover, the number of possible oscillatory
solutions is ∼

(
2N − 1

)
! for large N , as we prove in Appx. (A). In particular, the bifurcation analysis

of the model would unveil the actual solutions in these large sets of states, for any given set of network
parameters. This would represent a tremendous simplification in our comprehension of neural dynamics,
providing great insight into the operation of the network [23].

In this article, we develop brute-force algorithms for the bifurcation analysis of the spin-glass-like
neural network model introduced in [10]. The network is composed of an arbitrary number of neurons
with binary firing rates, connected through arbitrary (generally asymmetric) synaptic connections. The
network dynamics is deterministic and evolves in discrete time steps. In [10] we proved that the bifurcation
structure of the model can be studied semi-analytically, and in particular we were able to characterize the
formation of multistability, neural oscillations and symmetry breaking in the stimuli space. While in [10]
we derived the bifurcation diagrams of simple networks through hand calculations, in the present article
we propose algorithms for automatic bifurcation analysis. Therefore our work complements standard
numerical continuation softwares that are widely used for the bifurcation analysis of graded neuronal
models, such as the MatCont Matlab toolbox [7] and XPPAUT [8].

Previous work focused on the emergence of complexity in ideal mean-field limits of spin-glass mod-
els, see e.g. [6, 26, 28]. On the contrary, in the present article we do not make use of any mean-field
approximation. In particular, we consider exactly solvable finite-size networks to be used in real-world
applications. In Sec. (2) we briefly review the model (SubSec. (2.1)) and we show how the analytical
formula of the state-to-state transition probability matrix can be inverted for any network size N to de-
termine the portions of parameters space where multistability, neural oscillations and symmetry breaking
occur (SubSec. (2.2)). The resulting formula can be written in any programming language. In particular,
we propose a Python implementation, that the reader may find in the Supplementary Materials (scripts
“Multistability_Diagram.py” and “Oscillation_Diagram.py”).

However, the inversion of the state-to-state transition probability matrix requires a priori knowledge
of sets of candidate stationary and oscillatory solutions, as we showed in [10], and as we will explain in
more detail in SubSec. (2.2). For this reason, in SubSec. (2.3) we introduce non-optimized algorithms
that, through a brute-force searching procedure, generate the sets of all the potential stationary and
oscillatory solutions (see the supplemental script “Non_Efficient_Algorithm.py” for a Python implemen-
tation). These algorithms can be applied to networks with any topology of the synaptic connections
(dense or sparse), but their computational time increases exponentially with the network size.

Yet, the study of sparse systems is of particular interest in neuroscience. The average density of
the synaptic connections, defined as the ratio between the actual and the maximum possible number
of connections in the network, is approximately 10−6 − 10−7 across the whole cortex, and it can in-
crease up to ∼ 0.2 − 0.4 in connection pathways linking cortical areas [19]. For this reason, in Sub-
Sec. (2.4) we propose an optimized brute-force algorithm, whose efficiency in generating sets of candidate
stationary and oscillatory solutions increases with the network sparseness (see the supplemental script
“Sparse_Efficient_Algorithm.py” for a Python implementation).

Then, in SubSec. (2.5) we introduce some widely-used examples of network topologies to be tested,
while in Sec. (3) we show the corresponding bifurcation diagrams generated by our codes. To conclude,
in Sec. (4) we discuss the importance and the biological implications of our results. In particular, we
discuss how our work advances the comprehension of neural networks with respect to previous work
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(SubSec. (4.1)), new insights into the dynamics of binary network models revealed by our algorithms
(SubSec. (4.2)), and future directions that need to be pursued to address the limitations of our work
(SubSec. (4.3)).

2 Materials and Methods
In SubSec. (2.1) we describe the spin-glass-like neural network model whose dynamics we would like to
investigate. Moreover, in SubSec. (2.2) we introduce a technique for plotting the bifurcation diagram
of the model, provided a set of candidate stationary states and a set of candidate oscillatory solutions
are known. Then, in SubSec. (2.3) we propose non-optimized brute-force algorithms for generating the
candidate sets. While these algorithms can be applied to networks with any topology of the synaptic
connections, their computational time increases exponentially with the network size. For this reason,
in SubSec. (2.4) we introduce an efficient algorithm that takes advantage of the sparseness of biological
networks for increasing its computational speed. To conclude, in SubSec. (2.5) we introduce two standard
examples of network topologies, whose bifurcation structure will be derived in Sec. (3) through the use
of our algorithms.

2.1 The Network Model
We study the bifurcation structure of the following spin-glass-like network model [10]:

Vi (t+ 1) =
1

Mi

N−1∑
j=0

JijH (Vj (t)− θj) + Ii, i = 0, ..., N − 1. (1)

In Eq. (1), N is the number of neurons in the network, while Vi and Ii are the membrane potential and the
external stimulus of the ith neuron, respectively. Jij is the synaptic weight from the jth (presynaptic) to
the ith (postsynaptic) neuron. The collection of the synaptic weights, for i, j = 0, . . . , N − 1, defines the
synaptic connectivity matrix J , which in this article is supposed to be arbitrary (generally asymmetric).
In Eq. (1), H (·) represents the Heaviside step function:

H (V − θ) =

0 if V ≤ θ

1 otherwise,
(2)

where θ is the firing threshold. The firing rate of the ith neuron is the binary variable defined as
νi

def
= H (Vi − θi) ∈ {0, 1}, so that νi = 0 if the neuron is not firing, and νi = 1 if it is firing at the

maximum rate. Moreover, in Eq. (1) the parameter Mi represents the number of presynaptic neurons
that are directly connected to the ith (postsynaptic) neuron. Therefore Mi is a normalization factor,
that prevents the divergence of the sum

∑N−1
j=0 JijH (Vj (t)− θj) for N � 1.

The state-to-state transition probability matrix P provides a convenient way to describe the dynamics
of the firing rates νi. By defining ν (t)

def
= ν0 (t) ν1 (t) . . . νN−1 (t) as the binary string obtained by

concatenating the firing rates at time t, in [10] we proved that the entries of the 2N × 2N matrix P are:

P (ν (t+ 1) |ν (t)) =
1

2N

N−1∏
j=0

[
1 + (−1)νj(t+1) sgn

(
θj −

1

Mj

N−1∑
k=0

Jjkνk (t)− Ij

)]
, (3)
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where sgn (·) is the sign function, defined as follows:

sgn (x) =

−1 if x < 0

1 otherwise.

P (ν (t+ 1) |ν (t)) ∈ {0, 1} represents the probability of the transition ν (t) → ν (t+ 1) to occur, for
specific firing-rate states ν (t) and ν (t+ 1), given the network is in the state ν (t) at the time instant
t. For example, if at the time instant t the network is in the state ν (t) = 00 · · · 0 and we want to
check if the neurons flip their firing rates at the next time step (so that ν (t+ 1) = 11 · · · 1), then
P (ν (t+ 1) |ν (t)) = 1 if the transition 00 · · · 0→ 11 · · · 1 occurs from t to t+1, and P (ν (t+ 1) |ν (t)) = 0
otherwise. In SubSec. (2.2) we will show how to use Eq. (3) for plotting the bifurcation diagram of the
network.

2.2 Plotting the Bifurcation Diagrams
In this subsection we introduce a general way for plotting the bifurcation diagrams of networks with
arbitrary topology of the synaptic connections. For a given network, its bifurcation diagram is composed
of two panels, namely the multistability and the oscillation diagrams. These diagrams provide a complete
picture of the relation between the stationary/oscillatory solutions of the network and the set of stimuli
(see for example the left and right panels of Figs. (3) and (5)). In SubSecs. (2.2.1) and (2.2.2) we describe
algorithms for calculating the multistability and the oscillation diagrams, which are implemented in the
supplemental Python scripts “Multistability_Diagram.py” and “Oscillation_Diagram.py” respectively.

Finally, in the case of networks with homogeneous populations, we superimpose to these diagrams
the regions of the stimuli space where the system undergoes spontaneous intra-population symmetry-
breaking. In these regions, the stationary and oscillatory solutions calculated by our algorithms show
non-homogeneous firing rates within one or more populations, despite the homogeneity of their neuro-
physiological parameters. More generally, given a neuron i in population α, our algorithms detect the
formation of spontaneous symmetry-breaking in networks where all the terms 1

Mi

∑
j∈β Jij and Ii depend

only on the populations α, β, since this is the most general symmetry condition for the network, according
to Eq. (1). Therefore, networks with homogeneous parameters Mi, Jij , Ii represent only a special case
of this condition.

2.2.1 Multistability Diagram

The firing-rate state ν is stationary if it satisfies the condition P (ν|ν) = 1. From Eq. (3) we observe
that this condition holds if:

1

2

[
1 + (−1)νj sgn

(
θj −

1

Mj

N−1∑
k=0

Jjkνk − Ij

)]
= 1, (4)

for j = 0, . . . , N − 1. By inverting Eq. (4) with respect to the stimulus Ij , we get that the equation is
satisfied whenever:

Ij ≤ Ij if νj = 0

Ij > Ij if νj = 1.
, Ij

def
= θj −

1

Mj

N−1∑
k=0

Jjkνk. (5)
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Generally, if some neurons share the same stimulus, so that for example the neurons with indexes in the
set ΓI receive the same external current I, then from Eq. (5) we get:

I ∈ (ΛI ,ΞI ] , ΛI
def
= max

j∈ΓI : νj=1
Ij , ΞI

def
= min

j∈ΓI : νj=0
Ij . (6)

Eq. (6) provides the ranges of the stimuli (if any) where the firing-rate state ν is stationary. By calculating
the ranges (ΛI ,ΞI ] for every set ΓI , we get a complete picture of the relation between the stationary states
and the set of stimuli (see for example the left panels of Figs. (3) and (5)). If the ranges corresponding
to M different states ν overlap, the overlapping area has multistability degree M. In other words, for
combinations of stimuli lying in that area, the network hasM stationary firing rates. Therefore Eq. (6)
allows the analytical derivation of the multistability diagram, extending the analysis we performed in [10]
to networks with arbitrary topology and size.

Note that Eq. (6) implies the calculation of the set (ΛI ,ΞI ] for each (potentially) stationary firing-rate
state ν. By defining S as the set of the candidate stationary states to be checked, we observe that ν ∈ S
is actually stationary if ΛI < ΞI . In SubSecs. (2.3) and (2.4) we will introduce two different algorithms
for generating S , which are called by the Python script “Multistability_Diagram.py”. Depending on the
algorithm, the cardinality |S | may be different for a given network topology. This will affect the overall
speed with which the multistability diagram is plotted.

2.2.2 Oscillation Diagram

In principle, the same approach discussed in the previous subsection for the multistability diagram of
the network can be extended to the study of neural oscillations. A sequence O, defined as ν (0) →
ν (1) → . . . → ν (T ) with ν (0) = ν (T ), is an actual oscillatory solution (of period T ∈

{
2, . . . , 2N

}
)

if every transition ν (t) → ν (t+ 1) in O satisfies the condition P (ν (t+ 1) |ν (t)) = 1. Similarly to
SubSec. (2.2.1), if some neurons share the same stimulus, so that the neurons with indexes in the set
ΓI receive the same external current I, then the sequence O is an oscillatory solution of the network
dynamics if:

I ∈ (ΦI ,ΨI ] , ΦI
def
= max

t∈T

(
max

j∈ΓI : νj(t+1)=1
Ij (t)

)
, ΨI

def
= min

t∈T

(
min

j∈ΓI : νj(t+1)=0
Ij (t)

)
, (7)

where T
def
= {0, . . . , T − 1} and Ij (t)

def
= θj − 1

Mj

∑N−1
k=0 Jjkνk (t). Finally, by calculating the ranges

(ΦI ,ΨI ] for every set ΓI , we get a complete analytical picture of the relation between the oscillatory
solutions and the set of stimuli (see for example the right panels of Figs. (3) and (5)).

Similarly to the case of the multistability diagram, we observe that Eq. (7) implies the calculation of
the set (ΦI ,ΨI ] for each (potential) oscillatory solution. In SubSecs. (2.3) and (2.4) we will introduce
two different algorithms for generating the set O of the candidate oscillatory solutions, which are called
by the Python script “Oscillation_Diagram.py”.

2.3 Non-Efficient Algorithms for Generating the Stationary and Oscillatory
Solutions

In SubSec. (2.2) we described an algorithm for plotting the multistability and oscillation diagrams, pro-
vided some sets of candidate stationary and oscillatory solutions, S and O respectively, are known. In
the present section we introduce non-optimized brute-force algorithms, implemented in the Python script
“Non_Efficient_Algorithm.py”, that generate the sets S and O for networks with arbitrary topology.
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2.3.1 Generation of the Set S

The simplest way for generating the set S is to fill it with all the 2N states of the firing rates, from 00 · · · 0
to 11 · · · 1. This approach allows the evaluation of the multistability diagram of small-size networks, since
its computational time increases exponentially with N . We observe that only the states in S that satisfy
the constraint ΛI < ΞI (see SubSec. (2.2)) are actually stationary, therefore the set S generated by this
algorithm is usually oversized. In SubSec. (4.3) we will discuss a way to reduce |S | for specific network
topologies.

2.3.2 Generation of the Set O

Unfortunately, the brute-force approach described above for the generation of the set S is unfeasible for
the study of neural oscillations, due to computational time. Indeed, the number of possible oscillations in
a network of size N is nO =

∑2N

k=2

(
2N

k

)
(k − 1)!, which grows as ∼

(
2N − 1

)
! for N →∞ (see Appx. (A)).

The best solution we found to reduce the computational time, given a network with arbitrary topology, is
to obtain O by discretizing the stimuli space, and then by solving iteratively Eq. (1) for every combination
of stimuli and for every initial condition of the firing rates. In other words, we discretized the stimuli
space through a grid G composed of nG points, each one representing a combination of stimuli. Then we
solved iteratively the equation Vi (t+ 1) = 1

Mi

∑N−1
j=0 Jijνj (t) + Ii, with νj (t) = H (Vj (t)− θi), for each

of the nG combinations of stimuli of the grid G, and for each of the 2N initial conditions ν (0). If the
firing-rate vector ν (t) calculated through Eq. (1) oscillates according to a sequence O for a given initial
condition ν (0), then O ∈ O. Finally, we filtered the set O in order to remove duplicate oscillations, so
that the set will contain every oscillation exactly once (for example, in a 2-neurons circuit, the oscillations
01 → 10 → 11 → 01 and 10 → 11 → 01 → 10 are circularly identical, therefore one must be discarded).
Through this approach, we can derive the actual oscillations in the set O, by solving Eq. (1) 2NnG times.
Generally 2NnG, |O| � nO, so that if we calculate the range (ΦI ,ΨI ] through Eq. (7) for every oscillation
in O, the computational time required for deriving the oscillation diagram now increases as 2N with the
network size, rather than

(
2N − 1

)
!.

However, while being much faster, this algorithm does not guarantee that the resulting oscillation
diagram is complete. Indeed, for some oscillations, the range (ΦI ,ΨI ] could be smaller than the grid
resolution. For this reason, the parameter nG must be chosen accurately in order to avoid relevant infor-
mation loss (which may occur when nG is too small for a given network) and an excessive computational
load of the algorithm (which may occur when nG is too large for the computational power available).

To conclude, we observe that the oscillation diagram may be calculated in a purely numerical way, by
solving Eq. (1) for every combination of stimuli on the grid, without making use of the analytical formula
(7). However, by relying on Eq. (7), our semi-analytical approach allows the analytical derivation of the
oscillation diagram, which would not be possible otherwise. Moreover, it is easy to verify that the use
of Eq. (7) allows a reduction of the resolution of the grid G compared to a purely numerical approach,
resulting in a much faster derivation of the oscillation diagram.

2.4 An Efficient Algorithm for Generating the Stationary and Oscillatory
Solutions in Sparse Networks

We observe that the algorithms described in SubSec. (2.3) can be applied to networks with any topol-
ogy of the synaptic connections (dense or sparse), but their computational time increases as 2N with
the network size. In this subsection we show that, for the specific case of sparse networks, it is pos-
sible to take advantage of the sparseness of the synaptic connections to define an efficient algorithm
for the generation of the sets S and O. This approach, which we implemented in the Python script
“Sparse_Efficient_Algorithm.py”, may outperform of several orders of magnitude the non-optimized ap-
proaches introduced in SubSec. (2.3).
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2.4.1 Generation of the Set S

As we saw in SubSec. (2.2.1), in order to identify the stationary states of the network we need to
check if the condition (4) is satisfied for each neuronal index j = 0, . . . , N − 1, given a set of stimuli
I0, . . . , IN−1. If the jth neuron receives inputs from all the other neurons in the network (i.e. if Jjk 6= 0
for k = 0, . . . , N − 1), the condition (4) must be checked for all the 2N binary states ν of length N , from
00 · · · 0 to 11 · · · 1. On the contrary, in sparse networks some synaptic weights are equal to zero. If some
neurons do not project a synaptic connection to the jth neuron (i.e. if Jjk = 0 for some index k), the
corresponding firing rates νk will not affect the sum

∑N−1
k=0 Jjkνk. Therefore for sparse networks there is

no need to check Eq. (4) for all the binary states of length N , unlike the case of dense networks. This
observation allows us to introduce an efficient algorithm for finding the candidate stationary states of
sparse neural networks, which is described below.

At step 0, we set j = 0 and we call P0 the set of neurons with indexes k 6= 0 that do not project a
synaptic connection to the 0th neuron (i.e. k ∈ P0 if J0k = 0 and k 6= 0). Moreover, we call Q0 the set of
the remaining N −|P0| neurons. This is the set of neurons that can affect the condition (4) through their
firing rates. In particular, the 0th neuron belongs to Q0 since it can affect the condition (4) through the
term (−1)

ν0 even in the case when J00 = 0 (therefore |Q0| = M0 if J00 6= 0, and |Q0| = M0 + 1 if J00 = 0,
where M0 is the incoming vertex degree of the 0th neuron, see Eq. (1)). At this step, we only need to
check Eq. (4) for all the binary states s0 of length |Q0|. If no state s0 satisfies Eq. (4), the network has
no stationary solution and the algorithm is stopped. Otherwise we call S the set of states s0 that satisfy
Eq. (4), and we switch to the neuronal index j = 1, as described below.

At step 1, we set j = 1 and we call P1 the set of neurons with indexes k 6= 1 that do not project
to the 1st neuron. Moreover we call Q1 the set of the remaining N − |P1| neurons, and R1 = Q1 ∩ Q0.
Then we generate all the binary states s1 of length |Q1| − |R1|, and we use each of them to complete the
states in S , by creating new binary states of length |Q0|+ |Q1| − |R1|. For example, we suppose that at
step 0 we got Q0 = {0, 7, 8} and S = {010, 111}, while at step 1 we got Q1 = {1, 2}. Then the states
s1 = 00, 01, 10, 11 will be used to fill the states in S according to the index k, generating the new states
00010, 00110, 01010, 01110 and 10011, 10111, 11011, 11111 (the bits of the states s1 are highlighted
in bold). Then the algorithm checks the condition (4) for j = 1 on the newly generated states (when Q1

is empty, the algorithm checks the condition directly on the states in S ). If no state satisfies Eq. (4),
then the network has no stationary solution, therefore the set S is cleared and the algorithm is stopped.
Otherwise S is cleared and filled with the newly generated states that satisfy Eq. (4). Then we proceed
to the neuronal index j = 2.

In a similar way, for 2 ≤ j ≤ N − 1, we define Pj as the set of neurons with indexes k 6= j which
do not project to the jth neuron. Moreover we call Qj the set of the remaining N − |Pj | neurons, and
Rj = Qj ∩

(⋃j−1
n=0Qn

)
. The procedure described at step 1 is repeated iteratively through the steps 2, 3,

... by completing the states in S through the binary strings sj of length |Qj |−|Rj |. If the algorithm does
not stop, when the jth step has been completed the states in S have length Lj =

∑j
n=0 |Qn|−

∑j
n=1 |Rn|.

We observe that Lj quickly tends to N for increasing j. For example, if the network has a ring topology
(i.e. if each neuron receives a connection only from the previous neuron and projects a connection only
to the next one), we get |Qn| = 2 for n = 0, . . . , N − 1, |Rn| = 1 for n = 1, . . . , N − 2 and |RN−1| = 2, so
that Lj → N for j → N − 1.

At the end of the process, S will contain the actual stationary states of the network (if any), namely
all the states ν of length N that satisfy the condition P (ν|ν) = 1, if the stimuli I0, . . . , IN−1 are all
known. The efficiency of the algorithm is directly proportional to the sparseness of the matrix J and
inversely proportional to the number of stationary states of the network. Moreover, further speed-up is
achieved by sorting the neuronal indexes with ascending vertex degreesMj , before running the algorithm.
This is due to the fact that the algorithm slows down when both |Qj | − |Rj | and |S | are large. However,
we observe that if at some step j a string of length Lj does not satisfy the condition (4), then during the
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fully-connected network (                   )

Figure 1: Speed test of the algorithm for sparse networks. This figure shows the improvement of
performance achieved by the algorithm for sparse networks described in SubSec. (2.4.1), compared to the non-
optimized algorithm of SubSec. (2.3.1). We tested the algorithms by calculating the stationary states of a sparse
circulant network with topology J = Jcirc (0, 1, . . . , 1, 0, . . . , 0). Each neuron has incoming vertex degree M ∈
[0, N − 1], so that the sparseness of the network is proportional toM , according to the formula # synapses

N2−N = M
N−1

∈
[0, 1]. Moreover, we set the overall synaptic strength to J = 10 and the external stimuli to I0 = . . . = IN−1 = 0.
For these values of the parameters, the network has two stationary states, ∀M, N considered in this figure.
The left panel shows the computational times Tsparse and Tnon−opt (see text) that are required for calculating
the stationary states by means of an IntelR© CoreTM i5-5300U CPU clocked at 2.30GHz with 16 GB RAM. In
particular, we observe that Tsparse � Tnon−opt if M is sufficiently smaller that N −1, while for small, highly dense
networks the non-optimized algorithm may outperform the algorithm for sparse networks. Moreover, note that
Tnon−opt does not depend on M . The right panel shows the ratio Tnon−opt\Tsparse, namely the speed gain of the
algorithm for sparse networks with respect to the non-optimized one, as a function of N and M . Similar results
hold for the calculation of the oscillatory solutions, when Tsparse is evaluated through the algorithm introduced
in SubSec. (2.4.2) for Tmax � N

maxj(Mj−|Rj |) (see text). For increasing values of Tmax the algorithm for sparse

networks becomes less and less efficient compared to the non-optimized algorithm of SubSec. (2.3.2) (results not
shown).

next steps the algorithm will not check all the 2N−Lj binary states of length N that contain that string.
Since Lj ≈

∑j
n=0Mn −

∑j
n=1 |Rn|, if the vertex degrees Mn are small ∀n ≤ j, then the string length Lj

must be small. For this reason, the number of (non-stationary) states containing the string of length Lj
is large (2N−Lj ). Being non-stationary, this large number of states will not fill the set S , which therefore
remains small. When the algorithm will proceed by iterating over the indexes j with large degree Mj

(which are computationally more expensive, since the algorithm has to iterate over all the binary states of
length |Qj |− |Rj | ≈Mj−|Rj |), the number of states in S will be small. This reduces the computational
load in the slowest part of the algorithm, resulting in an overall speed-up. On the contrary, for the same
reason the algorithm slows down when the neurons are sorted with descending Mj .

Fig. (1) shows a comparison between the computational time Tsparse required by our algorithm for
calculating the stationary states of a given network topology for a fixed set of stimuli I0, . . . , IN−1, and
the computational time Tnon−opt required for performing the same calculation through the non-optimized
brute-force approach introduced in SubSec. (2.3.1). The figure shows that the speed gain Tnon−opt

Tsparse
of the

algorithm for sparse networks with respect to the non-optimized algorithm is generally much larger than
1, and it increases with the network size and sparseness. The computational time of the non-optimized
algorithm increases exponentially as 2N regardless of the network sparseness. However, for small and
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highly dense networks this algorithm could outperform that for sparse networks (Tnon−opt

Tsparse
< 1).

As we said, when the currents I0, . . . , IN−1 are all known, the algorithm for sparse networks generates
a set S containing the actual stationary states of the network. However, since our purpose is to plot
the multistability diagram, we observe that the values of the currents that define the parameter space
of the diagram are generally not fixed (see e.g. Fig. (2), where the currents I3 and I4 are unspecified
since they represent the bifurcation parameters of the network). For this reason, in order to derive the
multistability diagram, the algorithm described above must be adapted for generating a set S whenever
some inputs are unspecified. In what follows we propose two different solutions.

The first is to apply our algorithm for all the combinations of the bifurcation stimuli on a grid in
the stimuli space, similarly to the method described in SubSec. (2.3.2) for the study of oscillations. This
approach works for any set of stimuli (e.g. when all the neurons share the same stimulus or when each
neuron receives a distinct external input), but it does not guarantee that the resulting multistability
diagram is complete if the resolution of the grid is not high enough.

Unlike the first method described above, the second way to use our algorithm (which is the one
we implemented in the Python script “Sparse_Efficient_Algorithm.py”) is specific to systems where the
external currents that we vary during the bifurcation analysis are injected into a limited number of
neurons. In other words, we suppose that the stimuli that span the bifurcation diagram are Ix, . . . , IN−1,
where x is an integer close or equal to N −1 (see e.g. the network considered in Eq. (9), where x = N −2
after a proper rearrangement of the neural indexes). We also suppose that the remaining stimuli, i.e.
I0, . . . , Ix−1, are known and fixed, so that the algorithm for sparse networks can be applied for j =
0, . . . , x− 1. The algorithm will generate a set S containing incomplete stationary states, namely binary
strings of length Lx−1. Now, the 2y binary states of length y def

= N − Lx−1 from 00 · · · 0 to 11 · · · 1 must
be used to complete the states in S , creating K = 2y |S | binary strings of length N . For example, in the
case of the 5-neurons network shown in Fig. (2), we suppose we got S = {1001, 1101} after the step x−1
(with x = 3) has been completed, and that the states in S are the firing rates of the neurons with indexes
{0, 1, 2, 4}. Then y = 1, therefore the complete binary strings are ν = 10001, 10011, 11001, 11011 (the
bit corresponding to y is highlighted in bold). These are candidate stationary states, which can be used
to derive the multistability diagram by inverting the relation P (ν|ν) = 1 in the currents Ix, . . . , IN−1.
Note that the relation between x and y depends on the topology of the network. However, if x is close or
equal to N − 1, then y is generally small, because most of the binary digits in every stationary firing-rate
state are determined, through our algorithm, by the known currents I0, . . . , Ix−1. In this case, the overall
efficiency of the algorithm will be high for large N , since K does not diverge exponentially with the
network size.

2.4.2 Generation of the Set O

The algorithm introduced in SubSec. (2.4.1) can be naturally extended to find the oscillatory solutions
of the network, as we describe below. In SubSec. (2.2.2) we observed that the sequence ν (0)→ ν (1)→
. . .→ ν (T ), with ν (0) = ν (T ), is an oscillatory solution if every transition ν (t)→ ν (t+ 1) satisfies the
condition P (ν (t+ 1) |ν (t)) = 1. For this reason, the initially empty set O of the oscillatory solutions
with fixed period T is populated as follows. First, at the jth step of the algorithm (for j = 0, . . . , N − 1),
we need to generate all the binary states of length |Qj | − |Rj | (where Qj and Rj are defined as in
SubSec. (2.4.1), and R0

def
= {}) for each time instant t = 0, . . . , T − 1. In other words, the algorithm

creates all the 2T (|Qj |−|Rj |) T -tuples of states of length |Qj | − |Rj |. Then, similarly to SubSec. (2.4.1),
we have to use these states for completing those in the set O, and to check if the states in O satisfy the
condition 1

2

[
1 + (−1)

νj(t+1)
sgn

(
θj − 1

Mj

∑N−1
k=0 Jjkνk (t)− Ij

)]
= 1 for t = 0, . . . , T − 1. At the end of

the jth step, the set O, if not empty, is cleared and filled with the newly generated states that satisfy
the condition, before proceeding to the (j + 1)th step of the algorithm. The algorithm is stopped only if
O is empty or after the (N − 1)th step is completed. Then, similarly to the method of SubSec. (2.3.2),
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Step 0:

Step 1:

Step 2:

Step 3:

The states in are the firing rates of the neurons with indexes .
The 3rd neuron is still missing, therefore the states in are completed by placing
one bit ( ) on the third position of the strings (see text). 

Figure 2: An example of the progression of the efficient algorithm for a specific connectivity
matrix. The left panel shows the directed graph of the connectivity matrix, so that each node represents a
neuron in the network, while a black arrow from a node j to a node i represents a synaptic connection with weight
Jij . Moreover, each node i receives an external input current Ii. In the specific case considered in this figure, the
inputs to the neurons 0, 1, 2 are known (i.e. I0 = −1, I1 = 0, I2 = 3), and we want to derive the multistability
diagram with respect to the unspecified inputs I3 and I4. The right panel shows the progression of the efficient
algorithm for sparse networks during the evaluation of the set of the candidate stationary states, S . In the first
three steps, the algorithm determines the states that satisfy the condition (4) for j = 0, 1, 2, since the currents
I0,1,2 are known. In other words, the algorithm determines the binary strings, composed of the firing rates of
the neurons 0, 1, 2 (since their external currents are known) and of the firing rates of the neurons that project
a synaptic connection to the nodes 0, 1, 2 (i.e. the neuron 4 in this example), to be put in S . These strings of
length 4 do not represent yet the candidate stationary states of the network, since the firing rate of the 3rd neuron
is still missing. Therefore in the final step the strings in S are completed by inserting the bit of the 3rd neuron.
We observe that, unlike for the neurons 0, 1, 2, the condition (4) cannot be checked for the 3rd neuron, since the
current I3 is unspecified. For this reason, each string in S will give rise to two candidate stationary states, one
for each possible value (0 or 1) of the firing rate of the 3rd neuron (see text). At the end of this process, S will
contain candidate stationary states ν of length 5, which will be used by the script “Multistability_Diagram.py”.
Finally, the latter will derive the multistability diagram by inverting the relation P (ν|ν) = 1 in the unspecified
currents I3 and I4, for all the states ν in S . This technique will be extended to the study of neural oscillations,
in SubSec. (2.4.2).
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we discard the duplicate oscillations in the set O . At the end of the process, if the currents I0, . . . , IN−1
are all known, the set will contain exactly once all the actual oscillatory solutions of the given network
topology with fixed period T . Whenever some external stimuli are unspecified, the algorithm is adapted
as we discussed in SubSec. (2.4.1) for the stationary states.

We observe that this approach, which we implemented in the script “Sparse_Efficient_Algorithm.py”,
detects only the oscillations with a fixed period T . Therefore this procedure must be repeated for
T = 2, . . . , Tmax, where the maximum period Tmax is a user-defined parameter, that should be chosen
according to the computational power available. Generally, for Tmax < 2N the algorithm is not guaranteed
to find all the oscillatory solutions. However, setting Tmax close to or larger than Z

def
= N

maxj(Mj−|Rj |)
results in an overall (at least exponential with N) slowing down of the algorithm, due to the generation of
the 2T (|Qj |−|Rj |) ≈ 2T (Mj−|Rj |) T -tuples. Therefore, similarly to SubSec. (2.3.2), the study of oscillations
proves to be computationally expensive, requiring a compromise between precision and computational
speed, which in this case is generally achieved by setting 2 � Tmax � Z for large Z. We observe that
Z increases with the network sparseness for a fixed network size N , therefore in sparse networks the
algorithm will detect more oscillation periods in a fixed amount of time, compared to dense networks.
Unfortunately, it is not possible to know a priori the effective maximum period of the oscillations generated
by a network. However, in the sparse topologies we analyzed, this was usually small, and oscillations
with period equal to or larger than the network size appear much more rarely (see e.g. the right panels
of Fig. (5), where random sparse networks of size N = 4, 6, 8 showed only oscillations with period 2 and
4). Typically, oscillation periods larger than N occur in systems with built-on-purpose, and usually very
regular, topologies.

To conclude, we observe that more generally this technique can be used to calculate efficiently
the whole state-to-state transition probability matrix P. According to Eq. (3), this is defined as the
2N × 2N binary matrix of the conditional probabilities P (·|·) of the firing rates. More precisely, Pij =
P (bN (i) |bN (j)) ∈ {0, 1}, for i, j = 0, . . . , 2N − 1, where the firing rate bN (k) is the binary represen-
tation of length N of the index k (e.g., if N = 5, then bN (14) = 01110). Our algorithm provides all
the firing-rate pairs (bN (i) , bN (j)) such that P (bN (i) |bN (j)) = 1, from which we can calculate the
corresponding (decimal) indexes (i, j). In other words, the algorithm calculates P efficiently and in a
convenient sparse-matrix notation, since it provides only the coordinates (i, j) of the non-zero entries of
the matrix. The matrix P describes all the possible transitions between the firing rates, which are not
restricted to stationary and oscillatory solutions only. Eventually, the stationary and oscillatory solutions
of the network may be calculated from P through a cycle-finding algorithm (in particular, the stationary
solutions may be considered as oscillations with period T = 1). To the best of our knowledge, the fastest
cycle-finding algorithm was introduced by Johnson [17], and is implemented in the function simple_cycles
of the Python library NetworkX. However, this approach proved to be even slower than the non-optimized
algorithm of SubSec. (2.3), therefore we will not consider it here any further.

2.5 Examples of Network Topologies
In this section we report two standard examples of network topologies, whose bifurcation diagrams will
be studied in Sec. (3): fully-connected networks (SubSec. (2.5.1)) and sparse networks with random
synaptic weights (SubSec. (2.5.1)). In these examples, we suppose that the networks are composed of one
excitatory (E) and one inhibitory (I) population. Two-population networks are commonly considered
a good approximation of a single neural mass [12], however our analysis may be extended to systems
composed of an arbitrary number of populations, if desired. We define NE (NI) to be the size of
the excitatory (inhibitory) population, with N = NE + NI . Note that NE,I can be arbitrary, but
for illustrative purposes in this section we consider the case NE = NI (rather than the NE\NI = 4
ratio experimentally observed in biological systems [25]), because we found that the network complexity
increases with the size of the inhibitory population. Interestingly, the same phenomenon was found to
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occur also in multi-population networks with graded activation function [9]. Moreover, without further
loss of generality, we index the neurons of the excitatory population as i = 0, . . . , NE−1 and the inhibitory
neurons as i = NE , . . . , N − 1, so that the synaptic connectivity matrix J and the stimulus vector I can
be written as follows:

J =
[

JEE JEI
JIE JII

]
, I =

[
IE
II

]
.

Jαβ , for α, β = E, I, is a Nα ×Nβ matrix that describes the synaptic connections from the population β
to the population α. The entries of the matrices JEE and JIE must be non-negative, while those of the
matrices JII and JEI must be non-positive, since the populations E and I are composed of excitatory
and inhibitory neurons, respectively. Moreover, self-connections are not present in biological networks, so
that the main diagonals of the matrices JEE and JII should be set to zero (even though, more generally,
our algorithms could be applied also to networks with self-connections). In a similar way, Iα represents
the collection of stimuli to the population α. Note that Jαβ and Iα depend on the structure of the specific
network we study, as we will show below. Finally, we will call θα the (homogeneous) firing threshold of
all the neurons in the population α.

2.5.1 Fully-Connected Networks

Our first example is a fully-connected network with homogeneous intra-population inputs, whose param-
eters are:

Jαβ =

Jαα (INα − IdNα) , for α = β

JαβINα,Nβ , for α 6= β
, Iα = Iα1Nα . (8)

The parameters Jαβ describe the strength of the homogeneous synaptic connections from the population
β to the population α, while Iα represents the stimulus current to each neuron of the population α.
Moreover, INα,Nβ is the Nα × Nβ all-ones matrix (here we use the simplified notation INα

def
= INα,Nα),

while IdNα is the Nα ×Nα identity matrix and 1Nα is the Nα × 1 all-ones vector.

2.5.2 Sparse Random Networks

The second example we consider is a sparse network with random synaptic weights, whose parameters
are:

Jαβ = Rαβ , Iα =
[

0Nα−1

Iα

]
. (9)

Rαβ is a Nα×Nβ sparse random matrix, whose entry [Rαβ ]ij , either for α = β and i 6= j, or for α 6= β and
∀i, j, is equal to a non-zero random number with probability pαβ , while it is equal to zero with probability
1 − pαβ . For example, we suppose that the non-zero entries of Rαβ are generated from a homogeneous
and uniform (i.e. rectangular) distribution with support

[
Jmin
αβ , Jmax

αβ

]
, where the parameters Jmin

αβ and
Jmax
αβ describe the minimum and maximum strength of the synaptic connections, respectively. Moreover,

in Eq. (9), Iα represents the stimulus current to one neuron of the population α, while 0Nα−1 is the
(Nα − 1)×1 all-zeros vector (so that the remaining neurons of the population do not receive any external
input).
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J =


0 80 −30 −30
91 0 −35 0
49 0 0 −95
42 0 −91 0

 , J =


0 94 0 −30 −47 0
97 0 80 −44 0 −48
0 81 0 −30 −49 0
0 46 43 0 −84 −94
0 0 0 −89 0 −94
0 0 36 −100 −81 0



J =



0 89 0 94 −46 0 −42 0
99 0 100 0 −45 −40 0 0
0 92 0 0 0 −43 0 0
0 0 0 0 0 −45 0 −39
0 0 0 47 0 −91 −94 −95
0 40 0 0 −91 0 −80 −90
0 0 0 43 −90 −93 0 0
46 0 0 33 −94 −89 −100 0



Table 1: Synaptic connectivity matrices used to plot Fig. (5). The non-zero entries of the
matrix Rαβ (see Eq. (9)) are generated with probabilities pEE = pIE = 0.4 and pEI = pII = 0.6,
while the strengths of the synaptic connections are random integers generated from homogeneous and
uniform distributions with Jmin

EE = −Jmax
II = 80, Jmax

EE = −Jmin
II = 100, Jmin

IE = −Jmax
EI = 30 and

Jmax
IE = −Jmin

EI = 50.

3 Results
In this section we report the bifurcation diagrams generated by our algorithms for the network topologies
described in SubSec. (2.5). In Fig. (3) we show the (codimension two) bifurcation diagrams of the fully-
connected network (see SubSec. (2.5.1)) in the IE−II plane, forN = 4, 6, 8. The left and right panels have
been obtained from Eqs. (6) and (7) respectively, for ΓIE = {0, . . . , NE − 1} and ΓII = {NE , . . . , N − 1}.
In particular, we observe that the case N = 6 is the same considered in [10], and whose bifurcation
diagram was derived through hand calculations. Due to the homogeneity of the synaptic connections, the
bifurcation diagrams show symmetric structures, characterized (also for N > 8, results not shown) by an
increase of the maximum degree of multistability with the network size and by low-period oscillations.
Interestingly, while spontaneous symmetry-breaking may occur in both the populations during neural
oscillations, only the inhibitory one may undergo the formation of heterogeneous activity during the
stationary states. As we discuss in SubSec. (4.3), for any homogeneous multi-population network it is
generally possible to take advantage of this phenomenon, in order to speed up the non-optimized algorithm
of SubSec. (2.3.1).

Moreover, in Fig. (4) we show some examples of changes of dynamics that occur in the state-to-state
transition probability matrix of the fully connected network for N = 4. This figure shows that the graph
of the matrix, as given by Eq. (3), changes its structure as a function of the stimuli. In particular, the
graph undergoes changes in the degree of multistability and in the period of the oscillations, which are
more conveniently described by Fig. (3) (top panels).

To conclude, Fig. (5) shows the bifurcation diagrams of the sparse random networks (see Sub-
Sec. (2.5.2)) in the IE − II plane, which have been obtained for N = 4, 6, 8 and ΓIE = {NE − 1} , ΓII =
{N − 1}. As expected, the randomness of the synaptic connections is reflected in the irregular struc-
ture of both the multistability and the oscillation diagrams, as opposed to the regular structure of the
fully-connected networks shown in Fig. (3). In the random networks, high multistability degrees and
high-period oscillations can occur only by chance, depending on the randomness of the synaptic weights
and on the sparseness of the synaptic topology.
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Multistability Diagrams Oscillation Diagrams

Figure 3: Examples of bifurcation diagrams for fully-connected networks. This figure is obtained for
the network structure of Eq. (8), with N = 4 (top), 6 (middle), 8 (bottom), and JEE = −JII = 80, JIE = −JEI =
70, θE = θI = 1. The left panels (multistability diagrams) show how the degree of multistability of the network,
namely the number of stationary solutions, depends on the external currents IE,I . Each color represents a different
degree of multistability (e.g., blue = tristability). In a similar way, the right panels (oscillation diagrams) show
how the number of oscillatory solutions and their period are affected by the stimuli. The notation x:y reveals
the presence of y different oscillations with period x in a given region of the diagram. Note that, unlike the
multistability diagrams, generally there is no correspondence among the colors of the three oscillation diagrams.
The script “Oscillation_Diagram.py” assigns the user-defined colors to each region of the oscillation diagrams
regardless of the specific pairs x:y that form that region (e.g., red = 2:2 for N = 4, while red = 3:1 for N = 8).
Since the total number of possible regions of the oscillation diagrams is very large and the actual regions are not
known a priori, this prevents the user from defining too many colors, most of which typically remain unused.

14



Figure 4: Examples of bifurcations in the state-to-state transition probability matrix. This figure
shows the changes of dynamics that occur in the fully-connected network of Eq. (8) for N = 4, when varying
the input current IE for II = −30. The nodes in these graphs are the (decimal representations of the) possible
2N firing-rate states of the network (e.g. the node 3 corresponds to the firing rate ν = 0011), while the arrows
describe the transitions between the firing rates according to the state-to-state transition probability matrix (see
Eq. (3)). The figure highlights in red all the stationary and oscillatory solutions of the network (compare with
the areas crossed by the dashed line in the top panels of Fig. (3), when moving from left to right).
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Multistability Diagrams Oscillation Diagrams

Figure 5: Examples of bifurcation diagrams for sparse random networks. This figure is obtained for
the network structure of Eq. (9), with N = 4 (top), 6 (middle), 8 (bottom), the synaptic connectivity matrices
in Tab. (1), and θE = θI = 1. Similarly to Fig. (3), the left (right) panels show how the stationary (oscillatory)
solutions are affected by the stimuli IE,I . For example, in the case N = 8, both the algorithm for sparse networks
and the non-optimized algorithm derived the multistability diagram in 0.7s, since the size of the network is too
small for observing differences between the two algorithms. Moreover, by setting Tmax = 2, 3, 4, the algorithm
for sparse networks calculated the oscillation diagram in Tsparse ≈ 1.2, 7, 226 seconds, respectively (note that in
this example Tmax = 2 is large enough for obtaining the complete diagram, because the network does not undergo
oscillations with period larger than 2). On the other hand, the non-optimized algorithm derived the oscillation
diagram in Tnon−opt ≈ 238s, through a grid of 5, 624 points in the IE − II plane (so that the algorithm cannot
detect areas below the resolution ∆I = 2). Therefore in this example the algorithm for sparse networks calculated
the oscillation diagram Tnon−opt\Tsparse ≈ 198 times faster than the non-optimized algorithm.
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4 Discussion
We studied how the dynamics of the spin-glass-like neural network model (1) depends on its underlying
parameters. The network is composed of a finite and arbitrary number of neurons with binary firing
rates, that interact through arbitrary (generally asymmetric) synaptic connections. While in artificial
neural networks with graded (smooth) activation functions this study is performed by means of standard
bifurcation theory [20], the discontinuity of the activation function of the spin-glass model at the firing
threshold prevents us from using this powerful tool.

Due to the discrete (binary) nature of the network, the number of possible stationary states and neural
oscillations is finite. For this reason, in SubSec. (2.3) we developed brute-force algorithms for studying the
bifurcations of the model. By taking advantage of the state-to-state transition probability matrix, these
algorithms find the actual stationary and oscillatory solutions of the network, and build the corresponding
bifurcation diagram in the parameters space. In particular, in Sec. (3) we provided examples that show
how the network dynamics depends on the external stimuli, the network size and the topology of the
synaptic connections. Similarly to the case of graded firing-rate network models [3–5,9,15,27], this analysis
revealed a complex bifurcation structure, encompassing several changes in the degree of multistability of
the network, oscillations with stimulus-dependent frequency, and various forms of spontaneous symmetry-
breaking of the neural activity.

The computational time of these algorithms increases as 2N with the network size, regardless of
the network topology. In particular, the study of neural oscillations proved very challenging due to
combinatorial explosion, causing us to find a compromise between speed and precision. The best solution
we found was to discretize the parameter space of the oscillation diagram and to run a searching algorithm
for every combination of the parameters on the grid. While this solution allowed us to perform the study
in exponential time, it may generate incomplete oscillation diagrams, due to the finite grid resolution.

Since biological networks are sparse [19], in SubSec. (2.4) we introduced an efficient algorithm that
takes advantage of the limited number of synaptic connections. This algorithm may outperform of several
orders of magnitude the non-optimized approaches introduced in SubSec. (2.3). While the computational
time of the non-optimized algorithms increases as 2N regardless of the network topology, the speed of
the efficient algorithm increases with the network sparseness and is inversely proportional to the number
of stationary/oscillatory solutions. For these reasons, the algorithms introduced in SubSec. (2.4) prove
to be particularly convenient when applied to large sparse networks. However, for highly dense networks
their speed decreases significantly, therefore in this case the algorithms of SubSec. (2.3) should be used
instead.

While the study of multistability did not reveal any complication, the study of neural oscillations
proved again to be computationally demanding, also for sparse networks. Our algorithm does not rely on
the discretization of the parameter space, therefore it can detect areas at any resolution. Nevertheless,
it outperforms the non-optimized algorithm of SubSec. (2.3) only in detecting oscillations with period
T � Z

def
= N

maxj(Mj−|Rj |) . Since Z increases with the network sparseness for a fixed network size N , in
sparse networks the algorithm will detect more oscillation periods in a fixed amount of time, compared to
dense networks. While generally it is not possible to know a priori the effective maximum period of the
oscillations generated by a network (an exception is represented by symmetric networks, which can sustain
only oscillations with period T = 2, see [11]), in the sparse random topologies we analyzed, this period
was usually small (see e.g. the right panels of Fig. (5), where we showed that the networks corresponding
to the topologies of Tab. (1) undergo only oscillations with period 2 and 4). Oscillations with period equal
to or larger than the network size occur much more rarely by chance, usually in very small regions of the
parameter space (a formal explanation of this phenomenon is reported in SubSec. (4.2)). Nevertheless,
special (usually very regular) topologies may show large oscillation periods, therefore a complete analysis
of these networks is beyond the capability of our algorithm for large N . Moreover, while for most of
the sparse random topologies we analyzed the algorithm proved to be very fast, for some networks the
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script “Sparse_Efficient_Algorithm.py” generated large sets of candidate oscillatory solutions (only few
of which were actual neural oscillations), resulting in a considerable slowing down of the bifurcation
analysis. This phenomenon occurs in those networks where the activity of the neurons that receive the
fixed external stimuli does not provide enough information for determining which oscillations are allowed
and which are not. In other words, depending on the topology of the synaptic connections, in these special
networks the number of oscillatory solutions was strongly influenced by both the fixed stimuli and the
free stimuli that define the parameter space of the oscillation diagram. Interestingly, this phenomenon
occurred despite the free currents were injected only into a limited number of neurons by hypothesis
(see SubSec. (2.4)). In these cases, a grid implementation of the algorithm (similar to that used in the
script “Non_Efficient_Algorithm.py”) could be considerably faster, since at every point of the grid in the
parameter space the algorithm for sparse networks would generate only actual oscillatory solutions (see
SubSec. (2.4)).

In the following we discuss the advances of our results with respect to previous work (SubSec. (4.1)),
the implications of our work to better understand neural network dynamics (SubSec. (4.2)), and future
directions that need to be pursued to address the limitations of our results (SubSec. (4.3)).

4.1 Progress with Respect to Previous Work on Bifurcation Analysis
Previous studies on the complexity of dynamics in firing-rate network models focused either on ideal
mean-field limits of spin-glass-like models with discontinuous firing rates (e.g. [6, 26, 28]), or on systems
with graded (smooth) firing rates (e.g. [3–5, 9, 15, 27]). On the contrary, in this article we studied finite-
size networks with discontinuous activation functions. The analysis of these models is typically more
complex, since we can rely neither on mean-field approximations, nor on the powerful methods developed
in bifurcation theory for smooth systems. Moreover, our model evolves in discrete-time steps according
to the recurrence relation (1). This also prevents us from using the methods recently developed for
the bifurcation analysis of non-smooth dynamical systems, which can be applied only to continuous-
time models described by non-smooth differential equations or by differential inclusions [2, 21, 22, 24].
This proves that the model we considered in this article is particularly hard to tackle with standard
mathematical techniques.

However, in [10] we showed that it is possible to derive the bifurcation structure of this model by
combining a brute-force search of the stationary and oscillatory solutions of the network, with the an-
alytical formula of the state-to-state transition probability matrix. Our proof of concept was limited
to the specific case of a fully-connected network, whose bifurcation structure was calculated through
tedious hand calculations. In the present article we developed fast algorithms that perform this analysis
automatically, for any topology of the synaptic connections. Therefore our work complements standard
numerical continuation softwares such as the MatCont Matlab toolbox [7] and XPPAUT [8], that are
widely used in neuroscience for the bifurcation analysis of graded neuronal models (see e.g. [9,13,29,30]).

4.2 New Insights into the Dynamics of Discrete Network Models
In his pioneering work [23], Little underlined the importance of identifying the states that characterize the
long-term behavior of a neural network, which would provide a great simplification in our comprehension
of the network dynamics. In particular, given a deterministic network model, this problem is equivalent
to identifying the actual stationary and oscillatory solutions for t → ∞. While the actual stationary
states must be identified out of the set of 2N possible solutions in a network of size N , the problem of
selecting the actual oscillations is even more formidable, since in large asymmetric networks the number
of possible oscillatory solutions is ∼

(
2N − 1

)
! (see Appx. (A)).

In our work, we developed algorithms that identify the actual stationary and oscillatory solutions
of Eq. (1). The algorithms are particularly efficient when applied to sparse networks, providing great
insight into the operation of the network. Moreover, the algorithms make use of this knowledge to
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deepen further our understanding of the network dynamics, by calculating the corresponding bifurcation
structure. Interestingly, our algorithms revealed the formation of complex bifurcation diagrams also in
small networks. The diagrams strongly depend on the network size, N , and on the topology of the
synaptic connections, J . However, a detailed analysis of the network dynamics as a function of N and J
is computationally very expensive (due to the large number of possible topologies for each fixed network
size) and beyond the purpose of this article. Nevertheless, our study revealed that the spin-glass-like
network model (1) can undergo three different kinds of bifurcations.

The first is a change in the degree of multistability of the network. This phenomenon occurs through
the formation and destruction of stationary solutions, similarly to the limit-point (also known as saddle-
node) bifurcations that occur in graded models [20].

The second kind of bifurcation is the formation of neural oscillations. If this phenomenon occurs
through the annihilation of a stationary state (see e.g. the formation of the period-4 oscillation in the
middle panels of Fig. (3)), then it may be interpreted as the discrete counterpart of the Andronov-Hopf
bifurcation of graded models [20]. Otherwise, the number of oscillatory solutions may change with no
variation in the number of stationary states (see e.g. the transition between the blue and red areas in
the top-right panel of Fig. (3)), similarly to the limit point of cycles bifurcation of graded models [20]. It
is interesting to observe that usually large-period oscillations occur more rarely and in smaller regions of
the parameter space (for example, compare the green area of the period-4 oscillation in the middle-right
panel of Fig. (3), with the blue and red areas of the period-3 and period-2 oscillations). The reason of
this phenomenon can be easily deduced from Eq. (7): the larger the period of the oscillation, the more
probable is that the function ΦI = max

t∈T
(·) (respectively, ΨI = min

t∈T
(·)) will be large (respectively, small).

In turn, this implies that the range (ΦI ,ΨI ] where the large-period oscillation occurs will be narrower,
and in particular if ΦI ≥ ΨI the oscillation will not occur at all.

The third kind of bifurcation is characterized by spontaneous symmetry-breaking. This phenomenon
is similar to the branching-point bifurcations [20] that occur in homogeneous multi-population graded
models (see e.g. [9]). Here we observe the formation of heterogeneous intra-population neural activity,
even if Eq. (1) does not contain any term that breaks explicitly the network symmetry. In particular, the
symmetry may be broken at the stationary states or during oscillations, in both excitatory and inhibitory
neural populations, depending on the network topology and parameters.

To conclude, we observe that our algorithms also calculate the number of stationary and oscillatory
solutions, as well as the number of areas with distinct degrees of multistability, the number of oscillations
with a given period, etc. We propose that these measures could be used to quantify rigorously the
complexity of the neural dynamics in relation to the network size.

4.3 Future Directions
Neural networks with discrete activation functions may be considered as caricatures of the corresponding
graded models. By discretizing the activation function, we gain the possibility to solve exactly the
network equations [10], but currently it is not known to which extent this approximation oversimplifies
the dynamical behavior of the system. For this reason, in future work we will investigate a potential
reduction of the underlying neural complexity of the network by comparing the two classes of models.

Moreover, note that while in this article we introduced new algorithms for the bifurcation analysis
of Eq. (1), we did not perform an exhaustive analysis of the relationship between the neural dynamics
and the network parameters. In Sec. (3) we showed some relevant examples of the codimension two
bifurcation diagrams for specific networks sizes and topologies, while in future work we will systematically
investigate, through a large scale analysis, to which extent the network parameters correlate with the
neural complexity.

To conclude, we observe that while we introduced fast algorithms for the bifurcation analysis of sparse
networks, efficient solutions for dense networks are still missing. Ad hoc solutions can be developed for
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specific network topologies. For example, in the case of multi-population fully-connected networks with
homogeneous weights, such as that considered in Eq. (8), it is possible to prove that the symmetry of the
excitatory populations is never broken when the network is in a stationary state. The same phenomenon
occurs in homogeneous multi-population networks with graded activation function [9]. Accordingly, the
method described in SubSec. (2.3.1) can be easily modified in order to include in the set S only the
states with homogeneous excitatory firing rates. In the case of the two-populations network described by
Eq. (8), this approach would generate a set with cardinality |S | = 21+NI , rather than |S | = 2NE+NI ,
reducing considerably the computational time for NE � 1. However, this idea can be applied only
to specific network topologies, and a general method for speeding up the bifurcation analysis of dense
networks with arbitrary topology is still missing. This represents another challenge that needs to be
addressed in future work, and that will complete the tools at our disposal for studying the dynamical
behavior of binary neuronal network models.

Appendix A: Asymptotic Estimation of the Number of Possible
Oscillatory Solutions in Large Networks
In this appendix we want to determine how the number of possible oscillatory solutions in an asymmetric
network of size N grows for N →∞. Given any finite N , we define N def

= 2N and we observe that
(N
k

)
is

the total number of sets (known as k-combinations) containing k distinct neural states among which the
network may oscillate. For example, for k = 3, the oscillations 0→ 1→ 2→ 0 and 0→ 1→ 3→ 0 occur
among the states in the 3-combinations {0, 1, 2} and {0, 1, 3}, respectively. Now we observe that any given
set of k states gives rise to (k − 1)! distinct oscillations. For example, 0→ 1→ 2→ 0 and 0→ 2→ 1→ 0
are two distinct oscillations generated by the set {0, 1, 2}, while the oscillations 0 → 1 → 2 → 0 and
1 → 2 → 0 → 1 are (circularly) identical. Therefore, by summing over all the oscillation periods k from
2 to N (the case k = 1 corresponds to the stationary states and therefore is not considered), we get that
the total number of distinct oscillations is

∑N
k=2

(N
k

)
(k − 1)! (see also [17]). Then, by observing that:

(k − 1)! =

ˆ ∞
0

xk−1e−x dx

N∑
k=0

(
N
k

)
xk =(1 + x)N ,

we finally get the following asymptotic expansion:

N∑
k=2

(
N
k

)
(k − 1)! =

N∑
k=2

(
N
k

) ˆ ∞
0

xk−1e−x dx =

ˆ ∞
0

(1 + x)N −Nx− 1

x
e−x dx

∼
ˆ ∞

0

xN−1e−x dx = (N − 1)!

in the limit N →∞. �
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