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Many efforts have been devoted to modeling asynchronous irregular (AI)
activity states, which resemble the complex activity states seen in the
cerebral cortex of awake animals. Most of models have considered bal-
anced networks of excitatory and inhibitory spiking neurons in which
AI states are sustained through recurrent sparse connectivity, with or
without external input. In this letter we propose a mesoscopic descrip-
tion of such AI states. Using master equation formalism, we derive a
second-order mean-field set of ordinary differential equations describ-
ing the temporal evolution of randomly connected balanced networks.
This formalism takes into account finite size effects and is applicable to
any neuron model as long as its transfer function can be characterized.
We compare the predictions of this approach with numerical simulations
for different network configurations and parameter spaces. Considering
the randomly connected network as a unit, this approach could be used
to build large-scale networks of such connected units, with an aim to
model activity states constrained by macroscopic measurements, such as
voltage-sensitive dye imaging.

1 Introduction

Cortical activity in awake animals manifests highly complex behavior, often
characterized by seemingly noisy activity. At the level of single neurons,
the activity in awake animals is associated with considerable subthreshold
fluctuations of the membrane potential and irregular firing (Matsumara,
Cope, & Fetz, 1988; Steriade, Timofeev, & Grenier, 2001; Destexhe, Rudolph,
& Paré, 2003). It is during this regime that the main computational tasks are
performed, and understanding those network dynamics is a crucial step
toward an analytical study of information processing in neural networks
(Destexhe & Contreras, 2006).

Much effort has been devoted to the study of how such activity emerges.
Balanced networks have been introduced as a possible model to generate
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dynamical states similar to the biological ones (see Figure 1). Two antag-
onistic states have been highlighted: synchronous regular states (SR) and
asynchronous irregular states (AI) (Brunel, 2000). AI states are of particular
interest because their dynamical characteristics are very similar to those
observed in awake animals. For conductance-based integrate-and-fire neu-
ron networks, they have even been observed without external stimulation
(Vogels & Abbott, 2005; El Boustani, Pospischil, Rudolph-Lilith, & Des-
texhe, 2007; Kumar, Schrader, Aertsen, & Rotter, 2008). Large networks
(over 10,000 neurons) are required to yield states consistent with experi-
mental data (El Boustani et al., 2007; Kumar et al., 2008).

In parallel to these studies, population measures of neural activity have
also been of great interest, in particular through the emergence of new
imaging techniques such as voltage-sensitive dye imaging or two-photon
imaging. Although the relation between these signals and single-cell prop-
erties is still not completely clear, these measurements reveal structures and
correlations over large distances (millimeters or centimeters). No model
currently is able to describe neuronal dynamics in large-scale networks at
such distance scales, and there is a need for theoretical models specifically
designed to handle the temporal and spatial scales of optical imaging.

The type of model that seems most appropriate for such scales are
mean-field approaches. Self-consistent mean-field approaches have been
proposed and gave predictions about the network stability in a stationary
regime (Amit & Brunel, 1997; Brunel, 2000; Latham, Richmond, Nelson, &
Nirenberg, 2000; Hertz, Lerchner, & Ahmadi, 2004). However, first-order
mean-field approximation fails to fully describe these networks because of
their inherent dynamics, which can rely dramatically on activity fluctua-
tions. Moreover, the large network limit is usually performed for randomly
connected networks despite the lack of biological relevance.

In this letter, our aim is to obtain a macroscopic description of distributed
neuronal activity during AI states, where the unit is not the neuron but a
small network of neurons. The difficulty, however, is to obtain a description
that captures the statistics of network activity while being consistent with
single-cell behavior. For this reason, we introduce a mesoscopic description
of neuronal activity, in which finite size effects are explicitly taken into
account. We consider networks of typical sizes of a few thousand neurons,
far away from the large network limit.

To obtain such a mesoscopic model, we use a master equation formalism
appropriate for a second-order mean-field description of network activity.
The AI states, characterized by low firing rates and exponential decrease
of the activity autocorrelation, can be incorporated in such a framework. A
complete description of the correlations and covariances can be extracted
for timescales governed by the network time constants. Correlations and
covariances in the neural dynamics convey crucial information and can be
responsible for radical changes in network state according to the parameter
regime. This question has already been addressed with a similar formalism
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Figure 1: Example of a self-sustained asynchronous irregular (AI) state in a
sparsely connected network of conductance-based neurons. The network con-
tains 5000 neurons with a ratio of 4:1 between excitatory and inhibitory neurons
and a connection probability pconn = 0.01. Otherwise the neuron model is iden-
tical to Vogels and Abbott (2005) with �gexc = 7 nS and �ginh = 100 nS. (a) Top:
Raster plot for a subset of excitatory (black dots) and inhibitory (gray dots) neu-
rons. Bottom: Population activity with a bin size of 1 ms (black) and 5 ms (gray).
The network has a mean activity of 23.68 Hz. (b) Autocorrelation of the total
network activity. The dashed gray curve indicates the exponential envelope fit
to the autocorrelation positive peaks. The dashed black curve indicates the slope
at the origin. The decay time is equal to 10 ms, and the activity has been com-
puted with a bin size of 1 ms. (c) Characterizing the asynchronous irregular state
using statistical measures. The population distribution of the interspike interval
coefficient of variation (CV) with a mean value of 1.7933, which is higher than
1 for the Poisson process. In the inset, the averaged pairwise cross-correlation
computed with a bin size of 5 ms. The value at origin (0.034) estimates the
network synchrony. This very low value indicates that there is no substantial
synchrony among the neurons. (d) Stationary activity distribution of the net-
work activity. The dashed gray curve indicates the gaussian fit made with the
same mean value (23.68 Hz) and standard deviation (3.43 Hz). The activity has
been computed with a time bin of 5 ms.
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for binary neural networks (Ginzburg & Sompolinsky, 1994; Ohira &
Cowan, 1993). Here we intend to develop a more general formalism, appli-
cable to spiking neural networks (El Boustani & Destexhe, 2007).

A similar theory has been studied in parallel (Soula & Chow, 2007) with
a discrete description of the network activity. Although a discrete descrip-
tion seems more natural for finite-size networks, several weaknesses appear
when considering many populations, which is necessary for networks dis-
playing spontaneously AI states. Indeed, the core of the theory is the transfer
function, which maps the output firing rate of the neuron as a function of
its synaptic input rates. Theoretical work has been done to obtain analytical
transfer functions for a range of neuron models (Tuckwell, 1988; Brunel
& Sergi, 1998; Brunel, 2000; Fourcaud & Brunel, 2002; Plesser & Gerstner,
2000). However, to take advantage of such results, we have to rely on a
continuous description of network activity to link the neuron statistics to
the network ones.

Those computations are not always possible, and a semianalytical ap-
proach has been used to tackle this problem (Kumar et al., 2008; Soula &
Chow, 2007). In these studies, the neuron transfer function was determined
numerically for every network state and used directly for a mean-field ap-
proach. This method becomes excessively time-consuming as soon as the
network is slightly heterogeneous, which is the case when excitatory and in-
hibitory neurons have different intrinsic properties, for instance. Indeed, it
is necessary to characterize numerically the transfer function for each popu-
lation and conditionally to every population state. A continuous description
is thus necessary to describe heterogeneous networks while benefiting from
the theoretical work that has been made at the single-neuron level.

We consider different neuron models ranging from those for which a
transfer function has been derived, to those for which an approximative
model is required. For the latter, we suggest empirical models that can
account for the network dynamics for a broad range of parameters. In par-
ticular, for conductance-based neurons, a transfer function can be found
that gives a good qualitative description of different network regimes.
Those transfer functions are detailed in the next sections and compared
with numerical simulations for different model configurations. Finally, to
gain some insight into the stability issues of self-sustained AI states and
their lifetime, we use second-order statistics to discuss stability in different
dynamical regimes, as well as discuss the limits of our approach. A prelimi-
nary version of this work has been published previously as a master’s thesis
(El Boustani, 2006) and a conference abstract (El Boustani & Destexhe, 2007).

2 Methods

All simulations were performed using the NEST simulator (http://www.
nest-initiative.org) through the PyNN interface (http://neuralensemble.
org/PyNN). We used different models of AI states in networks of spiking
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neurons, based on previous work (Brunel, 2000; Mehring, Hehl, Kubo,
Diesmann, & Aertsen, 2003; Vogels & Abbott, 2005). Network size will
be 5000 neurons with a ratio of 1:4 between excitatory and inhibitory
(γ = Ninh

Ntot
= 0.2), unless stated otherwise. For current-based models, an

event-based strategy (Brette et al., 2007) was used to solve the network
equations, and in the conductance-based model, a clock-based strategy was
used with a time step of 0.1 ms, which is well beyond every time constant
present in the system. In numerical and analytical models, we consider
networks without any time delay in synaptic interactions. Based on pre-
vious work (Brunel & Hakim, 1999; Brunel, 2000; Vogels & Abbott, 2005),
we expect this model to provide a broad range of AI states. In particular,
the absence of interaction delay should decrease synchronous regions, as
shown in Brunel (2000). Those states will be characterized using the usual
statistical measures. To estimate the firing regularity, we will compute the
mean interspike interval coefficient of variation. Neuron synchronization
will be estimated by computing the mean pairwise cross-correlation among
a set of 500 disjoint pairs and at time lag 0. This correlation coefficient is com-
puted with a time bin of 5 ms, which gives a good estimation of synchrony
among the neurons (Kumar et al., 2008). The measure is normalized so that
it takes values between 0 (no synchrony) and 1 (complete synchrony). Those
statistics quantities are illustrated in Figure 1c.

3 Results

We start by describing the general formalism in section 3.1, then consider
different neuron models in sections 3.2 and 3.3, and end by illustrating the
predictions of this formalism with numerical simulations in section 3.4. The
symbol definitions can be found in Table 1 and the simulation parameters
in Table 2.

3.1 The Master Equation Formalism. In this section, we develop the
mathematical framework in which network dynamics will be described.
The mean-field approach has been proven to be a powerful approach to de-
scribe networks of spiking neurons if pertinent approximations are done.
In previous work, spontaneous activity and networks under stimulation
have been studied with self-consistent equations for the neuron stationary
mean firing rate (Amit & Brunel, 1997; Brunel, 2000). In these contexts, the
individual neuron spike trains are considered as Poisson point processes,
which allows one to take into account current fluctuations due to irregular
firing. In particular, when a Fokker-Planck approach is used, the mem-
brane potential distribution can be obtained and state diagrams drawn for
the network activity. However, once the mean neuron firing rate has been
determined, the self-consistent equations are studied without considera-
tion to the population activity fluctuations and temporal dynamics. We
propose a framework where a second-order description can be done at the
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Table 1: Table of Symbols.

Symbol Definition Unit

Network
Nµ Number of neuron in population µ -
γ Inhibitory/excitatory neuron number ratio -
Cαµ Number of synaptic input from population α to µ -
pconn

αµ Proportion of synaptic connection from population α to µ -
mµ Network activity Hz
mext

µ External network activity Hz
T Network time constant ms

Neuron
νµ Transfer function of a neuron in population µ Hz
Vµ Membrane potential mV
Vrest

µ Resting membrane potential mV
Vreset

µ Firing reset membrane potential mV
Vthreshold

µ Firing threshold potential mV
Rµ Input resistance at rest M�

GL
µ Leak conductance nS

Cmem
µ Membrane capacitance pF

τmem
µ Resting membrane time constant ms

τ
re f
µ Firing refractory period ms

Synapse
Aαµ Current synaptic strength from population α to µ pA
Jαµ Voltage synaptic strength from population α to µ mV
�gαµ Conductance synaptic strength from population α to µ nS
Eα Reversal potential for the α-type synapse mV
τα Synaptic time constant for the α-type synapse ms

population level. In addition to using a stochastic process for the membrane
potential, we invoke the master equation to obtain a stochastic process for
the network activity using the corresponding neuron transfer function. In
AI states, the activity autocorrelation decreases exponentially with the time
lag (see Figure 1b), and our main hypothesis is that the network can be
modeled as a Markov process for time steps in the order of this decay
time.

3.1.1 Main Hypothesis of the Phenomenological Model. Cortical tissue is
made of a great variety of neurons, which can been classified according to
their biophysical properties. More precisely, electrophysiological measure-
ments can be used to categorize neurons in their contribution to network
dynamics. Although those properties exhibit a great diversity, for model-
ing, we can adopt a stereotypic description where only a few homogeneous
populations are considered. In this letter, we consider only two popula-
tions, excitatory and inhibitory neurons, but the formalism can accommo-
date more classes if needed. To keep the model general, we assume that
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Table 2: Network Configurations in Numerical Simulations.

Parameter Value Unit

γ 0.2 -
T 5 (except Figure 4) ms
Vrest

µ −60 mV
Vreset

µ −60 (except Figure 5) mV
Vthreshold

µ −50 mV
Rµ 100 M�

τmem
µ 20 ms

τ
re f
µ 5 ms

Eexc 0 mV
Einh −80 mV
Figure N pconn (τexc , τinh )
2 and 4 5000 0.01 (1,3) ms
3a 15,000 0.01 (1,3) ms
3b and 3c 5000–25,000 0.01 (1,3) ms
1 and 5 5000 0.01 (5,10) ms
6a–6c 10,000 0.02 (5,10) ms
6d–6g 5000–10,000 0.01–0.02 (5,10) ms
7 and 10 10,000 0.01 (5,10) ms
11 10,000 0.02 (5,10) ms
12a and 12b 112,500 0.1 (0.3,0.3) ms
12d–12e 10,000 Variable (5,10) ms

the network contains K homogeneous populations of neurons, denoted by
1, 2, . . . ,K . We define mγ (t) as the network activity at time t,

mγ (t) = lim
�t→0

nγ (t − �t, t)
�tNγ

, (3.1)

where nγ (t − �t, t) is the number of spikes emitted by population γ during
the time interval [t − �t, t] and Nγ is the population size for γ = 1, . . . ,K .
In order to build the master equation and obtain the desired Markovian
description of network dynamics, we are interested in the conditional prob-
ability distribution for a short time interval T ,

P({mγ (t)} | {m′
γ (t − T)}), (3.2)

with γ = 1, . . . , K . The system is assumed to be time invariant, so this prob-
ability depends only on the time constant T , and we write PT ({mγ } | {m′

γ }).
This model is eventually intended to describe balanced network dynamics,
which are made with sparse connectivity. For large enough networks, this
property guarantees the existence of AI states in which pairwise correlations
are negligible (van Vreeswijk & Sompolinsky, 1996; Brunel, 2000). We can
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thus assume that the population-conditional probabilities are independent
from each other beyond the timescale of T :

PT ({mγ } | {m′
γ }) = PT (m1 | {m′

γ }) . . . PT (mK | {m′
γ }). (3.3)

Indeed, for a probabilistic system defined through a joint probability dis-
tribution, if the random variables are assumed to be independent, this
distribution can be factorized in a product of marginal distributions de-
scribing each variable exclusively. As the network dynamics is assumed to
be memoryless beyond the time interval T , we can then define a Markovian
transition operator W({mγ } | {m′

γ }) through the continuous master equation
for population activities,

∂t Pt({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(Pt({m′
γ })W({mγ } | {m′

γ })

− Pt({mγ })W({m′
γ } | {mγ })), (3.4)

where mγ ∈ [0, T−1] and ∂t Pt({mγ }) is the time derivative of the probability
distribution density. In this context, the population activity must be un-
derstood as the proportion of neurons that have fired at least once during
the last period T , divided by the duration T and not as the instantaneous
activity (see equation 3.1). The parameter T controls the temporal resolu-
tion of the model, and therefore the activity variables are bound by T−1.
However, if T−1 is larger than or equal to the neuron maximal firing rate,
then we can avoid underestimation of the activity. Indeed, the fastest be-
havior in the network is defined by the neurons’ maximal firing rate. In
the SR regime, where excitation prevails over inhibition, the network firing
rate is close to the neuron maximal firing rate. However, the time constant
T cannot be taken as 0 because significant correlations at this scale would
not be considered in this Markovian approach. We aim to describe network
states with activity below 50 Hz, which can allow a quite large value for
T without the risk of underestimation. An equivalent discrete formalism
has been studied by Soula and Chow (2007) with a Markovian approach.
Here we insist on keeping a continuous description characterized by the
timescale T in order to obtain a framework entirely consistent with the
Fokker-Planck approach at the neuron level. The crucial quantity, which
must be small to allow this continuous description, is the activity resolu-
tion �m = 1

NT . It describes the minimal change in network activity due
to a supplementary spike. It is thus necessary to find a good compromise
between network size and time resolution to keep �m small. The transition
operator W({mγ } | {m′

γ }) provides the rate of transition from state {m′
γ } to

state {mγ } giving the master equation its intuitive interpretation. It can be



54 S. El Boustani and A. Destexhe

defined using the conditional probability density, equation 3.3, by

W({mγ } | {m′
γ }) = lim

T→0

PT ({mγ } | {m′
γ })

T

= lim
T→0

∏
α=1,...,K PT (mα | {m′

γ })
T

. (3.5)

Therefore, we have to compute PT (mα | {m′
γ }) to fully specify the model. We

will adopt a different definition that is more appropriate to our phenomeno-
logical model. We assume that the network follows a quasi-stationary evo-
lution, which means that during time T , the system reaches a stationary
state, determined by the previous state a time T earlier. This corresponds
to the adiabatic hypothesis used in physics. Of course, this approximation
no longer holds if the system is stimulated by a signal that possesses fre-
quencies larger than T−1, which can bring the system far from equilibrium.
Therefore, and to avoid divergencies due to irrelevant high-order fluctua-
tions, we define the transition function for finite T :

W({mγ } | {m′
γ }) =

∏
α=1,...,K PT (mα | {m′

γ })
T

. (3.6)

Similarly as mentioned before, equation 3.1 is reconsidered for finite T and
is bounded by the maximal activity value. Hence, if T is small enough, the
master equation formalism can be used. If we consider the limit T → 0, the
activity fluctuations become too important, and the transition function di-
verges. This parameter is equivalent to the bin size sampling in experiments,
and it is well known that bin sizes that are too small give rise to irrelevant
fluctuations in the population activity. Furthermore, for an infinitesimal
bin size, those fluctuations become punctual, and the transition operator
should be reduced to a two-dimensional matrix between the states where
the network spikes or does not. To avoid this problem, we require that T
has a finite value in the range of the network time constants. The Marko-
vian approach is intended to describe the network dynamics responsible
for the activity autocorrelation envelope (see Figure 1b). Correlations’ fine
structures in the AI regime are caused by residual global oscillations due
to finite size effects. However, as the network size increases, the time con-
stant T can take smaller values because the temporal finite-size effect in
the autocorrelation vanishes because of sparse connectivity (Brunel, 2000).
Thus, we can define a mesoscopic scale for sparsely connected networks in
which the network is large enough to avoid temporal correlation finite-size
effects but small enough to require second-order statistics to describe its
population dynamics. However, the activity autocorrelation decreases ex-
ponentially on a timescale of the same order as the system time constants.
A Markovian approach should not be acceptable below this timescale, and
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we have to choose T carefully according to the regime under consideration.
A T that is too large could underestimate the firing rate in high-activity
regimes, and T values that are too small will overestimate the second-order
statistics. This point has also been discussed in Soula and Chow (2007), but
no mention has been made of the fact that the typical autocorrelation fine
structure timescales of the network could be smaller than any time con-
stant in the system (Gerstner, 2000), as shown in Figure 1b. Eventually, for a
large enough network, we can consider T = ν−1

max, where νmax is the neuron
maximum firing rate, for almost the whole range of the AI regime.

3.1.2 Differential Equations for the Statistical Moments. Using equation 3.4,
we can obtain a hierarchy of first-order differential equations for the sta-
tistical moments. Indeed, the master equation solution provides the time
evolution of the activity probability density. It generally cannot be solved
exactly, but one can extract a hierarchy of equations for the statistical mo-
ments directly from the differential equation. For balanced networks, this
set of equations can be stopped at the second order, and we avoid the clo-
sure problem. Indeed, the stationary activity distribution during AI states
is well described by a gaussian function when the bin size is not too small
(see Figure 1d). This can be understood thanks to the central limit theorem,
because we are averaging out higher-order fluctuations during time steps
T in the asynchronous activity. Of course, this can hold only if N or T is
large enough.

If we close the master equation statistical moments hierarchy to the
second order, we get (see appendix A)

∂t〈mµ〉= aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη (3.7)

∂tcµν = aµν({〈mγ 〉}) + ∂λaµ({〈mγ 〉})cνλ + ∂λaν({〈mγ 〉})cµλ,

where 〈mµ〉 is the mean population activity and cµν = 〈(mµ − 〈mµ〉)(mν −
〈mν〉)〉 is the activity covariance matrix. Here and in the following, we
use Einstein index summation convention to avoid excessively awkward
expressions. If an index is present in only one side of an equality, implicit
summation over the whole range of value is understood.

The step moment functions aµ({〈mγ 〉}) and aµν({〈mγ 〉}) are defined as
follows:

aµ({〈mγ 〉}) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − 〈mµ〉)W({m′

γ } | {〈mγ 〉})

=
∫ 1/T

0
dm′

µ(m′
µ − 〈mµ〉) P(m′

µ | {〈mγ 〉})
T
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aµν({〈mγ 〉}) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − 〈mµ〉)

× (m′
ν − 〈mν〉)W({m′

γ } | {〈mγ 〉})

=
∫ 1/T

0
dm′

µ

∫ 1/T

0
dm′

ν(m′
µ − 〈mµ〉)(m′

ν − 〈mν〉)

× P(m′
µ | {〈mγ 〉})P(m′

ν | {〈mγ 〉})
T

. (3.8)

The second and last identity has been obtained by using equation 3.5
given by the independence hypothesis. To complete the second-order de-
velopment, we need to describe the correlation matrix of the network
Corrµν(t, t + τ ) = 〈(mµ(t) − 〈mµ(t)〉)(mν(t + τ ) − 〈mν(t + τ )〉)〉. This is done
in appendix B, and the resulting differential equation for a stationary state
is given by

∂τCorrµν(τ ) = ∂λaν

({〈
mstat

γ

〉})
Corrµλ(τ ), (3.9)

where aν({〈mγ 〉}) is defined in equation 3.8 and {〈mstat
γ 〉} is a the stationary

solution of the set in equation 3.7.

3.1.3 A Model for the Transition Function. Finally, to complete this frame-
work, we need to specify the transition functions W(mα | {m′

γ }) for α =
1, . . . , K . These functions depend directly on the neuron properties. When
a neuron is part of network dynamics and is exposed to intense synaptic
inputs, it can be described using a transfer function that maps the neuron
output firing rate to the synaptic inputs, regardless of their origin. In a re-
current neuron network, the synaptic input is provided by other neurons
in the network and thus depends on the network activity. If we assume that
we know the stationary transfer function of neurons in population α, να ,
then the probability pα that a neuron in this population fires during time T
given the previous state of the network {m′

γ } is

pα({m′
γ }) � να({m′

γ })T ≤ 1.

This is a direct consequence of the adiabatic hypothesis we made in sec-
tion 3.1.1. Indeed, the network in its previous state is characterized by a sta-
tionary transfer function so that the network activity is assumed to evolve
near stationary states. During time T , each neuron can fire only once, so
that we can express for the population α the desired conditional proba-
bility PT (mα | {m′

γ }) with a binomial distribution using the independence
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hypothesis,

PT (mα | {m′
γ }) =

(
Nα

mα NαT

)
pα({m′

γ })mα Nα T (1 − pα({m′
γ }))Nα (1−mα T),

(3.10)

where it is implicitly understood that we take the integer part of mα NαT .
However, as population size Nα increases, the correction due to the noninte-
ger part becomes negligible, and we can apply the gaussian approximation
by using the Stirling formula n! ∼ √

2πn(n+1/2)e−n, leading to

PT (mα | {m′
γ }) �

√
Nα

2πνα({m′
γ })(1/T − να({m′

γ }))

× exp

[
−Nα

(mα − να({m′
γ }))2

2να({m′
γ })(1/T − να({m′

γ }))

]
. (3.11)

We see that this population conditional probability density follows a nor-
mal law with a variance that decreases when the neuron firing rate is near
saturation να = 1/T or in a quiescent state να = 0. If symmetries are broken
in the population α and the neurons are not identical, this law is no longer
valid. However, this law is a good first approximation because if the neu-
ron firing rate in the population α follows a particular distribution due to
slight heterogeneities and Nα are big enough, then the central limit theorem
implies that the activity distribution is well described by a normal law with
the same mean value. In this case, this mean value is the neuron transfer
function in population α, formally να . Furthermore, the more Nα increases,
the narrower the normal distribution becomes. Thus, the theory describes
large networks but also accounts for finite-size effects and is therefore close
to a “mesoscopic” description. Indeed, if {Nα} is taken to infinity, the normal
law tends to a Dirac function in the sense of distribution theory. If T is kept
constant while the network size is taken to infinity, the first-order mean
field is recovered because fluctuations are completely averaged out and
the second-order development is irrelevant. This phenomenological model
stays in accordance with numerical models as long as T is kept finite. We
finally get the transition function by dividing the conditional probability
by T according to definition 3.6,

W({mγ } | {m′
γ })

= 1
T

√
det(A)
(2π )K

exp
[
−1

2
(mµ − νµ({m′

γ }))Aµν(mν − νν({m′
γ }))

]
, (3.12)
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where Aµν = δµν
Nµ

νµ({m′
γ })(1/T−νµ({m′

γ })) . The integral of this transition function
over the entire state space gives trivially 1

T , which can now be roughly
interpreted as the degree of fluctuation taken into account. Indeed, if T →
∞, the total integral goes to 0, which means that we are in the first-order
mean-field approximation and the variance has no meaning, whereas if
T → 0, the total integral goes to infinity, which means that infinitesimal
fluctuations are taken into account. These fluctuations are not relevant in our
framework, and we keep T ∼ ν−1

max. If the interneuron correlations become
substantial, the independence hypothesis no longer holds, and we have
to consider another model to replace the binomial transition function. For
large, sparsely connected networks, however, the independence hypothesis
gives accurate results.

The whole formalism is completely described by the transition function,
equation 3.12. The set of equations for the first- and second-order statistical
moments can be further specified by injecting this transition function in the
functions 3.8. We integrate over the complete real line because equation 3.12
is centered on 0 < να < T−1 with a variance that vanishes at the boundaries,
so that the corrective terms are of order O(e−N) and can be ignored for
large enough populations. This is a natural consequence of the gaussian
approximation. We then obtain

aµ({〈mγ 〉}) = 1
T

∫ ∞

−∞
dm′

µ(m′
µ − 〈mµ〉)P(m′

µ | {〈mγ 〉})

= 1
T

(νµ − 〈mµ〉) (3.13)

aµν({〈mγ 〉}) =
∫ ∞

−∞
dm′

µ

∫ ∞

−∞
dm′

ν(m′
µ − 〈mµ〉)

× (m′
ν − 〈mν〉)W({〈m′

γ 〉} | {〈mγ 〉})

= δµν

T

∫ ∞

−∞
dm′

µ(m′2
µ − ν2

µ + ν2
µ − 2m′

µ〈mµ〉

+〈mµ〉2)P(m′
µ | {〈mγ 〉})

+ (1 − δµν)
T

(νµ − 〈mµ〉)(νν − 〈mν〉)

= 1
T

(
δµν

νµ(1/T − νµ)
Nµ

+ (νµ − 〈mµ〉)(νν − 〈mν〉)
)

= 1
T

(
δµν A−1

µµ + T2aµaν

))
, (3.14)

where νµ = νµ({〈mγ 〉}) is the transfer function of a neuron in the popula-
tion µ, which depends on the mean activity of every population. To get
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every term in equation 3.7, we need to differentiate equation 3.13. The
corresponding functions and derivatives give

aµ({〈mγ 〉}) = 1
T

(
νµ − 〈mµ〉)

∂λaµ({〈mγ 〉}) = 1
T

(∂λνµ − δµλ) (3.15)

∂λ∂ηaµ({〈mγ 〉}) = 1
T

∂λ∂ηνµ.

Equations 3.7, 3.15, 3.9, and 3.14 provide a complete description of this mas-
ter equation formalism, and we can write the set of differential equations
according to those functions:

T∂t〈mµ〉 = (νµ − 〈mµ〉) + 1
2
∂λ∂ηνµcλη (3.16)

T∂tcµν = δµν A−1
µµ + (νµ − 〈mµ〉)(νν − 〈mν〉)

+ ∂λνµcνλ + ∂λννcµλ − 2cµν

T∂τCorrµν(τ ) = (
∂λνν

({〈mstat
γ 〉}) − δλν

)
Corrµλ(τ ) (3.17)

We see that the determinant function for the first-order differential equation
is the transfer function itself, which can be expected from the usual first-
order analysis. The second-order statistics (covariances and correlations)
are led mainly by the first derivative of the transfer function. We can expect
higher-order statistical moments to depend on higher-order derivatives of
this function in this framework. Thus, the set of transfer function {να} for
α = 1, . . . , K plays a crucial role and should be determined to complete the
model. In the next section, we consider different models.

3.2 The Linear Model. In this section, we illustrate some aspect of
this master equation formalism, which could be harder to analyze once it
is used for more realistic transfer functions. Following Soula and Chow
(2007), we treat the simple case of a linear transfer function for a network of
excitatory and inhibitory cells. Every neuron has the same transfer function
(homogeneous intrinsic properties):

ν({mγ }) = ν0 + kexcmexc + kinhminh . (3.18)

This problem is similar to a balanced network where all neurons receive the
same synaptic input and have the same transfer function. In this case, the
differential equations for the mean activities do not depend on the second-
order moments. The set of second-order differential equations 3.16, can
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thus be written with equation 3.15:

T∂t〈mµ〉= ν0 + kexc〈mexc〉 + kinh〈minh〉 − 〈mµ〉 (3.19)

T∂tcµν = δµν

Nµ

ν(T−1 − ν) + (ν − 〈mµ〉)(ν − 〈mν〉)

+ kλcµλ + kλcνλ − 2cµν. (3.20)

This set of equations is linear, and we can look for the fixed point of the
mean activity, equation 3.19, first. The solution of the linear system gives

m0 = 〈mF P
exc 〉 = 〈mF P

inh 〉 = ν0

1 − �
, (3.21)

where � = kexc + kinh is the transfer function slope, which is modulated by
excitatory and inhibitory strengths. The stability of this fixed point is given
by the eigenvalues of the linear system, and we get the following values:

λ1 = −1

λ2 = � − 1,

and we see as expected that the two populations converge to a common
fixed point, whereas this fixed-point stability depends on the total slope �,
which must be inferior to unity. We can now study the remaining equations
for the second-order moments 3.20. With the fixed-point 3.21, the system
reduced to a simple set of three linear equations, which gives the fixed-point
value for the covariance matrix. The solution is given by the following form:

σ 2(mexc)FP = m0(1/T − m0)
2(� − 2)(� − 1)

×
(

(� − 2)(1 − �) + kexckinh(kinh − 1)
(kexc − 1)Nexc

+ k2
inh

Ninh

)

σ 2(minh)FP = m0(1/T − m0)
2(� − 2)(� − 1)

×
(

k2
exc

Nexc
+ (� − 2)(1 − �) + kinhkexc(kexc − 1)

(kinh − 1)Ninh

)

c FP
exc/ inh = − m0(1/T − m0)

2(� − 2)(� − 1)

(
kexc(kinh − 1)

Nexc
+ kinh(kexc − 1)

Ninh

)
.

(3.22)
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Again we have to compute the eigenvalues of this linear system to study
this fixed-point stability. We get

λ3 =−2

λ4 = 2(� − 1)

λ5 =� − 2.

Those values guarantee the coherence in the covariance matrix. Nothing is
learned about the network stability that was not already deduced from the
mean activity set of equations. There is only a need for a balanced activity
such that � < 1 to avoid the system’s exploding. However, one has to re-
member that the fixed point is described with its fluctuations, so transitions
between states are not excluded in a more complex system. We see from
the set 3.22 that the covariance matrix entries decrease with the network
size, and eventually we recover the first-order mean field when the net-
works are large enough, which is not the case with a description in terms
of the number of spiking neurons. This relation is not exactly observed in
small networks (Soula & Chow, 2007) due to a strong pairwise correlation,
but if the network size is increased to biophysical scales, the relation is
quite correct (Kumar et al., 2008). For finite-size networks, excitatory and
inhibitory variances are different when sizes are different, even though the
mean activity has exactly the same value in the stationary regime. Similar
to Soula and Chow (2007), the network displays large fluctuations when it
operates near the critical point � = 1. Here again, we see that a descrip-
tion in terms of activity gives a unified description between neurons and
networks where the limit N → ∞ is well defined. We give the correlation
matrix (see equation B.5) to finish the example:

T∂τCorrµν(τ ) = (
∂λν(

{
mFP

γ

}) − δνλ)Corrµλ(τ ) (3.23)

= kexcCorrµ/exc(τ ) + kinhCorrµ/ inh(τ ) − Corrµν(τ ), (3.24)

for which the eigenvalues are easily determined, and we find the same
values as for the mean activity λ1 and λ2 with an algebraic multiplicity of
2. They describe the decrease of autocorrelation and cross-correlation. We
see here again that � = 1 corresponds to a critical point where correlations
are infinite spatially (between population activities) and temporally (within
population activities).

3.3 Spiking Network Models.

3.3.1 Network Structure. Chaotic spontaneous activity as well as an
asynchronous irregular regime have been observed in sparsely connected
networks (Brunel, 2000; Brunel & Hakim, 1999; Kumar et al., 2008; van
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Vreeswijk & Sompolinsky, 1996, 1998; Mehring et al., 2003; Vogels & Abbott,
2005). Sparse connections have been shown to be crucial to provide the net-
work’s irregular behavior. However, the connections do not need to be
purely random (Mehring et al., 2003). A degree of locality in the connec-
tions can be tolerated as long as the correlations between neurons do not
become critically strong and destroy the chaotic activity. We will consider
sparsely connected networks with random connectivity. We will show in the
numerical simulations that the model can still give good predictions when
the neurons are locally sparsely connected. For the moment, every neuron
from population µ receives randomly Cαµ synaptic input from population
α where Cαµ

Nα
= pconn

αµ < 1. Usually pconn
αµ is taken between 1% and 10%.

3.3.2 Current-Based Integrate-and-Fire Neurons. We will consider current-
based integrate-and-fire (IAF) neurons with the corresponding membrane
potential equation,

τmem
µ

d
dt

Viµ (t) = − (
Viµ (t) − Vrest

µ

) + Rµ Iiµ (t)µ∈ [0, K ] and iµ ∈ [0, Nµ],

(3.25)

where Vrest
µ is the resting potential and Rµ and τmem

µ are, respectively, the
membrane resistance and time constant of neurons in the population µ. If
the threshold Vthreshold

µ is crossed, the neuron emits a spike, and the mem-
brane potential is clamped to the reset potential Vreset

µ during a refractory
period τ

re f
µ . Iiµ (t) is the external current coming from other neurons in the

network I int
iµ (t) or from an external source I ext

iµ (t). Because each population
is homogeneous, we write µ instead of iµ to simplify the notation.

To build the transition function, we have used a binomial law based on
the independence approximation on timescale T . However, nothing was
specified on the temporal structure of the spike trains emitted by each pop-
ulation during this timescale. If we assume the classical Poisson model for
each neuron, the entire population can be modeled as a Poisson process too.
The internal contribution is then represented as the convolution between
a Poisson spike train and a postsynaptic potential function PSPαµ(t) from
population α to population µ,

Rµ I int
µ (t) =

∑
α=1,...,K

∫
R

PSPαµ(t − s)Nαµ(ds), (3.26)

where Nαµ(ds) are Poisson point processes describing the incoming spike
trains. We discuss different synapse functions in the next section. We con-
sider external stimulation currents also as Poisson spike trains with rate
mext

α .



A Master Equation for Spiking Neuron Networks 63

One of the advantages of a description in term of continuous activity is
that we can benefit from the Fokker-Planck approach to compute different
transfer functions for our neurons. Although neurons can have different
firing rates during the dynamics, we consider that, independently for every
population, the law of large numbers prevails after time T , and only the
mean firing rate of the whole process should be considered. Therefore, if
we have Cαµ incoming spike trains from population α to population µ with
a mean firing rate mα , then the total spike train can be considered a Poisson
process of total rate Cαµmα . Using the diffusion approximation, we can de-
duce the free (without spike mechanism) membrane potential distribution.
This can be used as a first approximation to estimate the neuron transfer
function (Amit & Brunel, 1997). Once the Fokker-Planck solution Pµ(V) is
found, we consider that the output firing rate is given by the distribution
tail that lies above the threshold divided by the membrane time constant:

νµ = 1
τmem
µ

∫ ∞

Vthreshold
µ

dVP(V) = 1
2τmem

µ

(
1 + erf

(
〈Vµ〉 − Vthreshold

µ√
2σ (Vµ)

))
.

(3.27)

This approximation is valid as long as the membrane time constant leads
the dynamics, more specifically in the AI regime. If the spike mechanism is
included in the Fokker-Planck approach, an exact solution can be obtained
for some synapse type for the IAF neuron transfer function. Brunel (2000)
showed that for instantaneous synapses (Dirac functions), the solution is
given by the inverse mean interspike interval of the first passage problem
with white noise (Tuckwell, 1988). More recently (Fourcaud & Brunel, 2002),
a correction has been added to take into account the colored noise produced
by exponential synapses as long as the ratio

√
τsyn

τmem
µ

is small compared to
unity. The transfer function for this first-order correction is similar to the
one used in Brunel (2000) but with a corrective term �hµ ∼ 1.03

√
τsyn

τmem
µ

,

νµ =

τ re f

µ + τmem
µ

√
π

∫ Vthreshold
µ −〈Vµ〉√

2σ (Vµ )
+�hµ

Vreset
µ −〈Vµ〉√

2σ (Vµ )
+�hµ

dueu2
(1 + erf(u))




−1

, (3.28)

where the membrane potential statistics are given by the white noise model
and the new synaptic weights must be normalized to ensure the corre-
spondence between exponential synapses and Dirac synapses when the
synaptic time constants are taken to 0. We have the following relation,
J Dirac
α = J Exp

α
τα

τmem
µ

, where Jα and τα are the synaptic strength and time con-
stant corresponding to synapse α. If we consider a balanced network made
of excitatory and inhibitory neurons, the largest synaptic time constant will
mainly be responsible for the corrective term. In all simulations presented
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here, the inhibitory synaptic time constant will be at least twice as large as
the excitatory time constant, so that the corrective term must be of the or-
der �hµ ∼ 1.03

√
τinh
τmem
µ

. However, in the following, we will consider network
models where the synaptic time constant can be large compared to the mem-
brane time constant (Vogels & Abbott, 2005), so we decided to adopt a differ-
ent model for the transfer function. Instead of using the membrane potential
mean value and variance computed with white noise, we will use shot noise
processes to deduce those values for different synapses and replace 〈Vµ〉 and
σ 2(Vµ) in the transfer function, equation 3.28, without the corrective term:

νµ =

τ re f

µ + τmem
µ

√
π

∫ Vthreshold
µ −〈Vµ〉√

2σ (Vµ )

Vreset
µ −〈Vµ〉√

2σ (Vµ )

dueu2
(1 + erf(u))




−1

. (3.29)

The mean membrane potential 〈Vµ〉 and the variance σ 2(Vµ) depend on the
incoming activity and the chosen synapse. This point is discussed in the
next section, where different types of synapses are considered. As long
as the model allows, we can also estimate the coefficient of variation of
the interspike interval by using the recurrence relation developed for the
first-passage problem (Tuckwell, 1988). For the model introduced in Brunel
(2000), this quantity is given in a stationary point by

CV2
µ = 2π

(
τmem
µ 〈mµ〉stat)2

∫ Vthreshold
µ −〈Vµ〉stat

σ (Vµ )stat

Vreset
µ −〈Vµ〉stat

σ (Vµ )stat

dxex2

×
∫ x

−∞
dyey2

(1 + erf(y))2. (3.30)

It is thus possible to access second-order statistics at the single-neuron level
as well as the network level as long as the neuron model is specified. This
is a powerful aspect of this theory, and it will play a crucial role in applying
this framework to the study of voltage-sensitive dyes optical imaging data.
Indeed, this type of signal is proportional to the subthreshold membrane po-
tential, and we need a simple dynamic description that can give us access to
the membrane potential distribution. This is done on timescales T with the
network activity differential equation. Therefore, it is necessary to have a de-
scription at both levels. The formal equation for the interspike interval coef-
ficient of variation (ISI CV) is not always determined, however, Kumar et al.
(2008) noticed that the activity variance is very informative on the spiking
regularity for self-sustained balanced networks. In some cases, the activity
variance could describe the firing irregularity without the need for an exact
equation for ISI CV. The limitation in the analytical derivation of the trans-
fer function and the ISI CV depends on the chosen synapse or, equivalently,
the nature of correlation in the current input. In the next section, we present
different kind of synapses, some of which allow exact analytical results.
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Synapse models. In the preceding section, we mentioned the Fokker-
Planck approach. We need to determine the relation between the incoming
spike train statistics and the membrane potential probability distribution. In
particular, it is necessary to compute the mean and the variance according to
the firing rate. Under the Poisson approximation, shot noise theory provides
the required relations through Campbell’s theorem,

〈Vµ〉= Vrest
µ +

∑
α=1,...,K

Cαµ

(
mα + mext

α

) ∫
R

dt PSPαµ(t) (3.31)

σ 2(Vµ) =
∑

α=1,...,K

Cαµ

(
mα + mext

α

) ∫
R

dt PSP2
αµ(t), (3.32)

where PSPαµ(t) with α,µ ∈ {1, . . . ,K } are the membrane potential time
courses elicited by population α synapses on population µ. We will con-
sider different synapse functions and compute these functions using equa-
tion 3.25, which is exactly solvable.

� Dirac synapses (instantaneous). Our first model is the Dirac synapse
current,

synαµ(t) = Aαµτmem
µ δ(t),

with Aαµ the synaptic strength. Once integrated through equa-
tion 3.25, the membrane potential equation, this synapse gives the
following postsynaptic potential,

PSPαµ(t) = Rµ Aαµe−t/τmem
µ H(t),

where H(t) is the Heaviside function. Using equations 3.31 and 3.32,
we finally get the desired statistics characteristics,

〈Vµ〉 = Vrest
µ + τmem

µ

∑
α=1,...,K

JαµCαµ

(
mα + mext

α

)
σ 2(Vµ) = 1

2

∑
α=1,...,K

τmem
µ J 2

αµCαµ

(
mα + mext

α

)
,

(3.33)

with Jαµ = Rµ Aαµ the potential increment.
� Exponential synapses. A more realistic model would include a decay-

ing tail to the synaptic current with a time constant specific to each
synapse type. The next step in modeling realistic synapses is the ex-
ponential synapse model,

synαµ(t) = Aαµe−t/τα H(t)

PSPαµ(t) = Jαµτα

τmem
µ − τα

(
e−t/τmem

µ − e−t/τα
)

H(t),
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where τα is the decay time constant for synapses coming from the
population α, so that we finally get

〈Vµ〉 = Vrest
µ +

∑
α=1,...,K

JαµταCαµ

(
mα + mext

α

)

σ 2(Vµ) = 1
2

∑
α=1,...,K

J 2
αµτ 2

α

τα + τmem
µ

Cαµ

(
mα + mext

α

)
.

(3.34)

� α-synapses. To include a finite rising time of the synaptic current, we
use alpha functions, which correspond to the following forms:

synαµ(t) = Aαµ

t
τα

e1−t/τα H(t)

PSPαµ(t) = Jαµe


 −te−t/τα

τmem
µ − τα

+ τmem
µ τα(

τmem
µ − τα

)2

(
e−t/τmem

µ −e−t/τα
)H(t)

and

〈Vµ〉 = Vrest
µ + e

∑
α=1,...,K

JαµταCαµ

(
mα + mext

α

)

σ 2(Vµ) =
∑

α=1,...,K

(
2τmem

µ + τα

) (
e Jαµτα

2
(
τmem
µ + τα

)
)2

Cαµ(mα + mext
α ).

(3.35)

Neuron transfer function in the master equation. Now that we have speci-
fied the membrane potential mean value and variance, we have to incorpo-
rate these functions in the neuron transfer function to derive the network
dynamics equations. We compute the necessary functions using the free
membrane potential transfer function, as well as the phenomenological
transfer function defined with the Campbell’s theorem in the previous sec-
tion. We thus use the definitions—equation 3.27 or 3.29 into 3.15—to get
a complete description of the set of differential equations. We make some
definitions to simplify the computation for equation 3.27,

Qµ = 〈Vµ〉 − Vthreshold
µ

= αµ

(
mα + mext

α

) + (
Vrest

µ − Vthreshold
µ

)
, (3.36)

where αµ depends on the chosen synapses,

Dirac
αµ = τmem

µ JαµCαµ 
Exp
αµ = τα JαµCαµ αsyn

αµ = eτα JαµCαµ, (3.37)

and similarly

Kµ = 2σ 2(Vµ)

= �αµ

(
mα + mext

α

)
, (3.38)
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with the corresponding synapse functions,

�Dirac
αµ = τmem

µ J 2
αµCαµ �Exp

αµ = J 2
αµτ 2

α

τα + τmem
µ

Cαµ

�αsyn
αµ =

(
2τmem

µ + τα

)
2

(
e Jαµτα(

τmem
µ + τα

)
)2

Cαµ, (3.39)

such that the transfer function, equation 3.27, can be written as

νµ = 1
2τmem

µ

(
1 + erf

(
Qµ√
Kµ

))
. (3.40)

To obtain the full set of differential equations, equation 3.16, we need to
compute the step function derivatives, equation 3.15,

∂λaµ({mγ }) = 1
T


 e− Q2

µ

Kµ

√
πτmem

µ

(
2Kµλµ − Qµ�λµ

2K 3/2
µ

)
− δλµ




and for the second derivative,

∂λ∂ηaµ({mγ }) = e− Q2
µ

Kµ

√
πTτmem

µ

·

2Kµ

(
2Q2

µ−Kµ

)
(λ�η+η�λ)+Qµ

(
3Kµ−2Q2

µ

)
�λ�η−8K 2

µ Qµλη

4K 7/2
µ


.

If we consider the transfer function, equation 3.29, we have to define slightly
different functions,

Qth
µ = Vthreshold

µ − (
Vrest

µ + αµ

(
mα + mext

α

))
Qre

µ = Vreset
µ − (

Vrest
µ + αµ

(
mα + mext

α

))
(3.41)

Kµ =�αµ

(
mα + mext

α

)
,

where αµ and �γµ depend on the chosen synapses and are defined as
previously. We also define

xth
µ = Qth

µ√
K µ

xre
µ = Qre

µ√
K µ
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such that equation 3.29 can be written in a shorter form:

νµ =
(

τ re f
µ + τmem

µ

√
π

∫ xth
µ

xre
µ

dueu2
(1 + erf(u))

)−1

.

As before, we compute the step function derivatives, equation 3.15,

∂λaµ({mγ }) = − 1
T

(
ν2

µτmem
µ

√
π

(
e (xth

µ )2
(1 + erf(xth

µ ))∂λxth
µ

− e (xre
µ )2(

1 + erf(xre
µ

))
∂λxre

µ

) + δλµ

)
∂λ∂ηaµ({mγ }) = 2∂λνµ∂ηνµ

Tνµ

− ν2
µτmem

µ

√
π

T

×
((

2xth
µ e (xth

µ )2
(1 + erf

(
xth

µ

)) + 2√
π

)
∂λxth

µ ∂ηxth
µ

+ e (xth
µ )2

(1 + erf(xth
µ ))∂λ∂ηxth

µ

−
(

2xre
µ e (xre

µ )2
(1 + erf(xre

µ )) + 2√
π

)
∂λxre

µ ∂ηxre
µ

− e (xre
µ )2

(1 + erf
(
xre

µ

))
∂λ∂ηxre

µ

)

with

∂λxth/re
µ = −Qth/re

µ �λµ − 4Kµλµ

4K 3/2
µ

∂λ∂ηxth/re
µ = 4Kµ(λµ�ηµ + ηµ�λµ) + 3Qth/re

µ �λµ�ηµ

16K 5/2
µ

.

From now on, the current-based model can be used to perform a param-
eter space exploration. The stationary solutions can be numerically com-
puted for any set of parameters and compared with network simulations.
This is done in section 3.4.

3.3.3 Conductance-Based Models. For the conductance-based model, every
synaptic event results in an increase in the corresponding conductance, and
the integrate-and-fire equation can be written as

Cmem
µ

d
dt

Vµ(t) = GL
µ

(
Vrest

µ − Vµ(t)
) + Gαµ(t)(Eα − Vµ(t)), (3.42)
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where Cmem
µ and GL

µ are the membrane capacitance and leak conductance,
respectively, such that Cmem

µ

GL
µ

= τmem
µ is the resting membrane time constant.

Gαµ is the total conductance of the synaptic set α and Eα the corresponding
reversal potential. Similar to the current-based model, the synaptic input
can be modeled by Poisson processes, and the total conductance of the
synapses α is

Gαµ(t) =
∫

R

gαµ(t − s)Nαµ(ds), (3.43)

where gαµ(t) is the conductance time course elicited by an incoming spike
from population α. We can write equation 3.42 in an analogous form to the
current-based model with an effective membrane time constant τ

e f f
µ (t),

τ e f f
µ (t)

d
dt

Vµ(t) = −Vµ(t) + GL
µVrest

µ + Gαµ(t)Eα

Gtot
µ (t)

, (3.44)

where the total conductance and the effective time constant are defined as
follows:

Gtot
µ (t) = GL

µ +
∑

α=1,...,K

Gαµ

τ e f f
µ (t) = Cmem

µ

Gtot
µ (t)

.

Even when the synaptic input is considered as white noise, equation 3.42
cannot be solved, and there is no exact solution for the transfer function. We
can use equation 3.27 as a first approximation, but we need to compute the
mean membrane potential 〈Vµ〉 and the variance σ 2(Vµ) in the conductance-
based model. Equation 3.44 can be approximated by the following effective
current-based equation (Kuhn, Aertsen, & Rotter, 2004),

〈
τ e f f
µ

〉 d
dt

Vµ(t) = −Vµ(t) + GL
µVrest

µ + 〈Gαµ〉Eα

〈Gtot
µ 〉 , (3.45)

with

〈Gαµ〉 = Cαµ

(
mα + mext

α

) ∫
R

dsgαµ(ds)

〈
Gtot

µ

〉 = GL
µ +

∑
α=1,...,K

〈Gαµ〉

〈
τ e f f
µ

〉 = Cmem
µ

〈Gtot
µ 〉
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Synapse model. Following Kuhn et al. (2004), we can deduce from equa-
tion 3.45 a good approximation for the mean membrane potential and the
variance. The mean membrane potential is given by the following form,

〈Vµ〉 = 〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ Eα

Cmem
µ

〈Gαµ〉
)

(3.46)

= 〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

))
, (3.47)

where

αµ = Cαµ

Eα

Cmem
µ

∫
R

dsgαµ(ds)

depends on the chosen synapse. Using this mean membrane potential,
equation 3.45 can be integrated for a synaptic event while the neuron is
clamped around the mean value 〈Vµ〉. The corresponding PSPαµ(t) allows
us to compute the variance:

σ 2(Vµ) = Cαµ

(
mα + mext

α

) ∫
R

dsPSP2
αµ(s) (3.48)

= �αµ

2

(
mα + mext

α

)
. (3.49)

We have to specify the form of αµ and �αµ for different synapses. For
the conductance-based model, we consider only exponential synapses and
α-synapses. Following the same computation as in the current-based model,
we can determine the desired functions,

Exp
αµ = τα�gαµCαµ Eα

Cmem
µ

αsyn
αµ = eτα�gαµCαµ Eα

Cmem
µ

(3.50)

and

�Exp
αµ = Cαµ

τα + 〈τ e f f
µ 〉

(
τα�gαµ〈τ e f f

µ 〉(Eα − 〈Vµ〉)
Cmem

µ

)2

(3.51)

�αsyn
αµ = 1

2
Cαµ(2〈τ e f f

µ 〉 + τα)

(
eτα�gαµ〈τ e f f

µ 〉(Eα − 〈Vµ〉)
Cmem

µ (τα + 〈τ e f f
µ 〉)

)2

, (3.52)

where �gαµ is the synaptic strength.

Neuron transfer function in the master equation. The main difference with
the current-based model is that the effective time constant is now activity
dependent, and �αµ depends on the mean membrane potential. We consider
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that the leading time constant in the neuron dynamic is the effective time
constant whatever the regime. The corresponding approximated transfer
function can be written as

νµ = 1

2〈τ e f f
µ 〉

(
1 + erf

(
〈Vµ〉 − Vthreshold

µ√
2σ (Vµ)

))
. (3.53)

The computation is thus more complicated but still straightforward. We
first define as previously the functions

Qµ = 〈Vµ〉 − Vthreshold
µ (3.54)

Kµ = 2σ 2(Vµ) (3.55)

xµ = Qµ√
Kµ

. (3.56)

Because those functions now depend on mα in a more intricate way, the step
function derivatives, equation 3.15, must be written as follows:

∂λaµ({mγ }) = 1
T

(
e−x2

µ

√
π〈τ e f f

µ 〉

(
2Kµ∂λ Qµ − Qµ∂λKµ

2K 3/2
µ

)

− νµ

∂λ〈τ e f f
µ 〉

〈τ e f f
µ 〉

− δλµ

)
, (3.57)

and for the second derivative,

∂λ∂ηaµ({mγ })

= e−x2
µ

√
πT〈τ e f f

µ 〉

(
1

4K 7/2
µ

(
2Kµ(2Q2

µ−Kµ)(∂λ Qµ∂η Kµ + ∂η Qµ∂λKµ)

+ 4K 3
µ∂η∂λ Qµ − 8K 2

µ Qµ∂λ Qµ∂η Qµ

+ Qµ(3Kµ − 2Q2
µ)∂λKµ∂η Kµ−2K 2

µ Qµ∂η∂λKµ

)

−
(

2Kµ∂λ Qµ − Qµ∂λKµ

2K 3/2
µ

)
∂η〈τ e f f

µ 〉
〈τ e f f

µ 〉

−
(

2Kµ∂η Qµ − Qµ∂η Kµ

2K 3/2
µ

)
∂λ〈τ e f f

µ 〉
〈τ e f f

µ 〉

)

+ 2
∂λ〈τ e f f

µ 〉∂η〈τ e f f
µ 〉

T〈τ e f f
µ 〉2

− ∂λ∂η〈τ e f f
µ 〉

T〈τ e f f
µ 〉

,
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with

Qµ =〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) − Vthreshold
µ

∂λ Qµ = ∂λ〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) + 〈τ e f f
µ 〉λµ

∂η∂λ Qµ = ∂η∂λ〈τ e f f
µ 〉

(
Vrest

µ

τmem
µ

+ αµ

(
mα + mext

α

)) + ∂η〈τ e f f
µ 〉λµ

+ ∂λ〈τ e f f
µ 〉ηµ

and

Kµ = �αµ

(
mα + mext

α

)
∂λKµ = ∂λ�αµ

(
mα + mext

α

) + �λµ

∂η∂λKµ = ∂λ∂η�αµ

(
mα + mext

α

) + ∂η�λµ + ∂λ�ηµ.

The derivatives of functions 〈τ e f f
µ 〉 and �αµ are given in appendix C. The

conductance-based model is now completely specified and can be used for
a parameter space exploration as well.

3.4 Numerical Results. Simulations were done to compare the pre-
dicted stationary states given by the master equation and the corresponding
neuron networks. In section 3.4.1, we explore different parameter spaces for
the current-based neuron model, and the conductance-based neuron net-
work is studied in section 3.4.2. Section 3.4.3 is devoted to more general
models where a more realistic connectivity scheme is used.

3.4.1 Current-Based Models. We consider here two types of state diagrams
based on the literature. The three concerned parameters are the external ex-
citatory firing rate stimulation mext

exc and the excitatory/inhibitory synaptic
strength Aµ with µ ∈ {exc, inh}. With those parameters, we were interested
in the (mext

exc, g) space where g = Ainh
Aexc

, as in Brunel (2000) and Mehring et
al. (2003). The second type of state diagram is generated by varying inde-
pendently the excitatory and inhibitory synaptic strength (Aexc, Ainh) by
feeding the network with a constant current in every neuron to sustain the
activity (Vogels & Abbott, 2005). For each simulation, we want to investigate
whether the model can provide a good prediction for the first and second
statistical moments. Therefore, we systematically compare the mean activ-
ity and the standard deviation. First-order predictions have already been
studied for similar network models (Brunel, 2000), and the corrective term
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due to the second-order development does not contribute much. How-
ever, because we suggest using another neuron transfer function in the
following, it is still interesting to perform the first-order analysis. For those
simulations, N = 5000 neurons with a probability connection pconn = 0.01.
Neurons’ intrinsic properties are homogeneous, with a membrane time
constant τmem

µ = 20 ms, a refractory period τ
re f
µ = 5 ms, the resting poten-

tial and the reset potential Vrest
µ = Vreset

µ = −60 mV, the threshold poten-
tial Vthreshold

µ = −50 mV, and the membrane resistance Rmem
µ = 100 M� for

µ ∈ {exc, inh}. Synaptic properties and external stimulations depend on the
parameter space under consideration.

The (mext
exc, g) parameter space. For this state diagram we took exponential

synapses with τexc = 1 ms and τinh = 3 ms for the excitatory and inhibitory
synaptic time constants. The external stimulation will be considered in
the νth unit which is the frequency needed to bring the mean membrane
potential to threshold with an excitatory Poisson input. As we are using
exponential synapses we have, based on equation 3.34,

νth = Vthreshold − Vrest

J excCexcτexc
,

where J exc = Rmem Aexc , we have omitted the second index because of
network homogeneity. We chose Aexc = 0.02 pA such that the resulting
EPSP peak is J exc = 2 mV. The inhibitory synaptic strength is defined by
Ainh = g Aexc where g is the second parameter. We represent in Figure 2a
the network mean cross-correlation and interspike interval to characterize
the asynchronous irregular states.

Three regions can be outlined: a broad AI domain, an intermediate
asynchronous regular (AR) region where neurons begin to fire periodically,
and saturated synchronous regular (SR) states.We were interested in the AI
regime in which the Markovian approximation is assumed to apply. There-
fore, we limited our analysis of the parameter regime to firing rates below
1/τmem = 50 Hz. Above this frequency, long-range correlations in each neu-
ron firing appear, and the analytical framework is not well suited to predict
the macroscopic quantities. This is manifest by the emergence of a new
peak near 0 in the ISI CV distribution (not shown), whereas interneuron
correlations reach very small values. The absence of synchronous irregular
states (SI) for high firing rates is essentially due to the absence of interaction
delays between the neurons (Brunel, 2000). When a finite homogeneous de-
lay is present, SI states could occur in the transitory region (Mehring et al.,
2003); however, if the delays are drawn randomly from a broad distribution,
this SI transition region is replaced by AR states. In the low-activity region,
there is an increase of synchrony concomitant with a decrease in the mean
ISI CV typical of slow SI states. For the whole region, as long as the network
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Figure 2: Characterization of the AI states and the first- and second-order statis-
tics of the excitatory population activity in the (mext

exc, g) parameter space, similar
to Brunel (2000). The network contains N = 5000 neurons randomly connected
with probability pconn = 0.01 and current-based synaptic interactions. Every
statistical quantity has been computed with a time bin of T = 5 ms, and the
analytical model was solved with the same parameters. (a) The AI region is de-
limited using the mean ISI CV and the mean pairwise cross-correlation. In the
right panel, we compute the activity CV to evaluate the validity of the indepen-
dence hypothesis. (b) Top: Mean activity estimated from numerical simulations
(left) and computed using the master equation formalism (middle). In the right
panel, the relative difference between measured and predicted values. Bottom:
The activity standard deviation is estimated from numerical simulations and
compared as well with the mean-field predictions.

is homogeneous and the neuron are independents, the synchrony phase
diagram should be well predicted by the activity second-order statistics.
More precisely, it should be directly related to the activity coefficient of
variation (CV). Therefore, in the last panel in (see Figure 2a), we computed
the activity CV, which can be compared with the synchrony panel. Both di-
agram exhibit the same tendency according to the parameter regime. Thus,
this quantity could be estimated in the framework of the independence
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hypothesis as long as the first- and second-order statistics are well
predicted.

In Figure 2b, we computed and compared the mean excitatory activity
and the standard deviation of excitatory activity for the parameter space.
For each point, a simulation was run for 10 s in order to have an accept-
able evaluation of the second-order statistics. The corresponding stationary
quantities were numerically computed using the master equation formal-
ism, equation 3.16, with the transfer function, equation 3.29. To compare
our prediction with simulations, we computed the relative difference,

�
(
mext

exc, g
) = OSimulation

(
mext

exc, g
) − OPrediction

(
mext

exc, g
)

| OSimulation
(
mext

exc, g
) | + | OPrediction

(
mext

exc, g
) | ,

where O can be either the mean activity or the standard deviation. First-
order and second-order statistics are in good agreement over almost the
entire AI region with a relative error smaller than 0.1. However, the relative
error is larger in the low-activity regime, as can be seen in Figure 2b. The
reasons are twofold. On the one hand, for small networks exhibiting low
activity, the synaptic input impinging on each neuron is equally low, and
the diffusion approximation at the membrane potential level is not a good
approximation anymore. On the other hand, the increase of pairwise corre-
lations among neurons could partially invalidate the model, as can be seen
from the discrepancies between the synchrony and the activity CV. For very
large networks, a mean-field approach can be recovered even in the low-
activity regime, and it provides accurate predictions (Kumar et al., 2008).

As the in vivo activity in awake animals usually displays low firing
rates, we further investigated whether larger networks could generate more
realistic cortical activity regimes. In Figure 3a, we show the results of a
simulation of a larger network (N = 15, 000 neurons) while keeping other
parameters exactly the same as used in the simulation of a smaller network
described in Figure 2. It is apparent that the region between 6 Hz and 10 Hz,
which was not well predicted previously, can now be better described by
the mean-field approach (with relative errors smaller than 0.1). This region
is delimited by black curves in Figure 3a.

To pursue this analysis, we chose a row of parameters in the phase dia-
gram and computed the mean firing rate numerically and with the master
equation for various network sizes. We found that the relative error for each
network size increased very slightly for smaller firing rates, as expected (see
Figure 3b). However, the relative error still stays below 0.1, even for firing
rates around 5 Hz. The corresponding predicted firing rates are given in
Figure 3c for the different network sizes. The error bars are computed with
the relative error using OPrediction(mext

exc, g) | �(mext
exc, g) |. In the right panel,

we show for a particular point of the phase diagram (mext
exc, g) = (6 · νth, 141)

a decrease in firing rate as well as an increase in the relative error. The
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Figure 3: Master equation predictions for low firing rates depend on network
size. (a) A large network of N = 15, 000 neurons has been used to draw a similar
phase diagram as in Figure 2. The region between the two black curves exhibits
firing rates smaller than 10 Hz (higher curve) and relative errors smaller than
0.1 (lower curve). The predictions are improved for a broad range of frequen-
cies compared to a smaller network. (b) The relative error between numerical
simulations and predictions for a row of parameters in the phase diagram (in-
dicated by a dashed rectangle in a for different network sizes. (c) The relative
error is slightly increasing for larger networks, but the firing rate decreases at
the same time. Left: Predicted firing rate in the row for each network size. The
error bars indicate the relative error in units of the corresponding predicted
value. The firing rates decrease quickly compared to the error. Right: The firing
rate decreases as a function of network size, for a particular point in the phase
diagram (mext

exc, g) = (6 · νth, 141). Inset: Decay of the standard deviation with the
network size. All networks had indentical parameters as in Figure 2.

predicted firing rate seems to decrease exponentially compared to the rela-
tive error, which does not change much. A similar tendency has been found
for the standard deviation. The inset of the right panel of Figure 3c shows
that the error remains almost constant while the activity standard deviation
decreases for larger networks. The activity coefficient of variation indicates
that the averaged pairwise correlations also decrease. Therefore, based on
this result, it should be possible to find large enough networks to cover a
realistic range of firing frequencies.
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Figure 4: Correlation functions for the specific point (mext
exc, g) = (8 · νth, 41) of

Figure 2. (a) Cross-correlation between inhibitory and excitatory population
activity for the master equation (thick line) and the numerical simulations (thin
line). (b) Autocorrelation functions computed from the master equation for the
inhibitory and excitatory activity (thick lines) and with T = 10 ms. The same
functions have been estimated from the numerical simulations (thin lines). The
activity traces have been computed with a bin size of 1 ms and then filtered with
a gaussian function to get a smoother curve. The gaussian standard deviation
was chosen to be 1.5T to match the corresponding function without filtering.

Covariance and inhibitory population statistics are equally well pre-
dicted. To compare the activity correlations, we chose a point in the param-
eter space for which we estimated the inhibitory and excitatory autocorrela-
tion and the cross-correlation. The corresponding functions were computed
from the master equation using the last equation of equation 3.16 and the
stationary mean activity computed for that particular state (see Figure 4).
To keep a good resolution of the numerical functions, we took a time bin
T = 10 ms and filter the signal with a gaussian function with a standard
deviation equal to 1.5T . This gives a good prediction except for some part
of the function, which can be due to a temporal finite-size effect. Indeed,
the network is homogeneous, so the only difference between both pop-
ulations is the size. If those populations are not large enough, residual
oscillations that could not be predicted in our framework occur in the cor-
relation functions. These oscillations also appear when the bin size T is too
small (see Figure 1b). According to equation 3.16, we know that the inter-
play between network size and the considered timescale must be carefully
taken into account to validate the model. For a very large network size
or time constant T , the fast oscillations completely vanish. Moreover, we
know from equation 3.16 that the correlation matrix depends directly on
the neuron transfer function first derivative. More precisely, the predicted
correlation exponential decrease as well as the activity standard deviation
are led by this function. Therefore, regions where the autocorrelation and
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the cross-correlation functions can be correctly described are regions where
the second-order statistics match the numerical simulations.

The (Aexc, Ainh) parameter space. To reproduce results obtained in Vogels
and Abbott (2005), we chose a similar model to probe the (Aexc, Ainh)
parameter space. In the AI regime, current-based neurons cannot sustain
activity without external stimulation, and one needs to inject a constant
input in each neuron by bringing the resting potential to Vrest = −49 mV, as
in the original letter. We also took exponential synapses with excitatory and
inhibitory time constant τ exc = 5 ms and τ inh = 10 ms, respectively. The only
free parameters remaining are the current quantal increments (Aexc, Ainh).
We first computed the mean ISI CV, the mean pairwise cross-correlation,
and the activity CV to find the boundaries of the AI region. As in the previ-
ous section, the state diagram was drawn in the AI regime for the excitatory
population with the master equation prediction using equation 3.29 and the
neuron network simulations (see Figure 5). The mean activity prediction
is in good agreement with the numerical simulations, with a relative error
smaller than 0.1, as shown in the first row of Figure 5b. The relative error is
larger for the low-activity regime (<8 Hz), where it can reach 0.2. This can
be understood as previously; in this region, the synaptic input is not strong
enough to fulfill the required conditions for the diffusion approximation.
This error can be reduced for larger networks (see Figure 3). The prediction
for the standard deviation matches quite well except for the region of high
and low activity, where the difference is more substantial. The latter can
be expected from the first-order comparison. Concerning the former, the
region is at the boundary of the AR regime, and the Markov hypothesis be-
gins to fail because of the emergence of regularities in the neuron individual
firing.

Similar simulations were done using the transfer function, equation 3.28,
and the resulting predictions were worse compared to previous results (not
shown). This transfer function has been obtained as a first-order approx-
imation for exponential synaptic noise when the ratio

√
τsyn

τmem is small. In
the numerical simulations here, the inhibitory synaptic time constant is
only half the membrane time constant, and the assumption underlying
equation 3.28 begins to fail. The phenomenological transfer function, equa-
tion 3.29, therefore seems more appropriate for these neuron properties.

3.4.2 Conductance-Based Models. Conductance-based neuron networks
have been shown to display self-sustained activity for specific parameter
space (Vogels & Abbott, 2005). For the (�gexc,�ginh) parameter space, two
regions have been identified exhibiting, respectively, AI and SR states (see
Figures 6a–6c).

In this section, we study a similar model with the resting membrane
time constant τmem = 20 ms, the membrane resistance Rmem = 100 M�, the



A Master Equation for Spiking Neuron Networks 79

Figure 5: Characterization of AI states and the first- and second-order statis-
tics of the excitatory population activity in the (Aexc, Ainh) parameter space, in
a Vogels-Abbott-type current-based network. The network contains N = 5000
neurons randomly connected with probability pconn = 0.01. Every statistical
quantity has been computed with a time bin of T = 5 ms, and the analytical
model was solved with the same parameters. (a) The AI region is delimited us-
ing the mean ISI CV and the mean pairwise cross-correlation. In the right panel,
we compute the activity CV to evaluate the validity of the independence hy-
pothesis. (b) Top: Mean activity estimated from numerical simulations (left) and
computed using the master equation formalism (middle). In the right panel, the
relative difference between measured and predicted values. Bottom: The activ-
ity standard deviation is estimated from numerical simulations and compared
as well with the mean-field predictions.

resting and reset membrane potential Vrest = Vreset = −60 mV, the thresh-
old Vthreshold = −50 mV, and the refractory period τ re f = 5 ms. Synaptic
time constant and reversal potential are taken to be τexc = 5 ms, Eexc = 0 mV,
τinh = 10 ms, and Einh = −80 mV for excitatory and inhibitory synapses, re-
spectively. Given the state diagram (see Figures 6a–6c), we see that the AI
region is surrounded by unstable states, which is not present in the current-
based correspondent (compare with Figure 5). This is a specificity of the
conductance-based model and an interesting issue that should be discussed
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Figure 6: Sources of instabilities in Vogels-Abbott-type networks. Study of the
stability (a), the mean activity (b), and the mean ISI CV (c) in the (�gexc, �ginh)
parameter space for a self-sustained conductance-based neuron network. The
network in panels a to c contains N = 10,000 neurons, each randomly connected
with pconn = 0.02 of the population. The network is considered stable if its ac-
tivity lasts longer than 1 s. (a–c modified, with authorization, from Vogels and
Abbott, 2005). (d–f ) Excitatory population mean activity for different network
structures. For these numerical simulations, the network is considered stable if
its activity lasts longer than 3 s. The transitory region between the AI and the
SR domain in the (�gexc,�ginh) parameter space is sensitive to synaptic input
fluctuation. (d) Network of N = 5000 neurons with pconn = 0.01. The AR domain
is fully stable. (e) Network of N = 5000 neurons with pconn = 0.02. Some dis-
parate points in the AR domain lose their stability. (f ) Network of N = 10, 000
neurons with pconn = 0.01. The AR domain is almost completely unstable.
(g) Network lifetime in log scale computed in the (�gexc,�ginh) parameter space
for a network of N = 10, 000 neurons and pconn = 0.01. We took mcrit = 1 Hz for
the critical activity because no self-sustained activity of 1 Hz could be produced
with this network model. Furthermore, this prediction has been computed by
using the effective transfer function introduced below. Stability criteria match
qualitatively with f for the low-activity AI region.
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about the network stability in numerical simulation and the corresponding
master equation prediction.

Stability in self-sustained networks. According to the stationary solution of
the master equation, the active state could be unstable or stable in the usual
sense. However, for stable points, there is an important consideration to take
into account to match the numerical simulations. The framework presented
here is a mean-field solution that does not take into account every finite-
size effect that can be encountered in numerical models. For instance, stable
states in the model with very weak activity are not sustained in network
simulation. In some cases, the network activity fluctuations are too strong
and can bring the dynamics to a quiescent state after a transient period. It has
been shown that for multi-unit systems such as neural networks, a quasi-
stationary state could survive for a period that is exponentially proportional
to the system size (Crutchfield & Kaneko, 1988). More particularly, in self-
sustained conductance-based networks, the state loses its stability when
the network activity exhibits fluctuations that are too strong (Kumar et al.,
2008). Therefore, we can adopt a criterion to keep those states with large
fluctuations according to the timescale we are interested in. For instance,
in Vogels and Abbott (2005), a network is said to be stable if it can sustain
its activity longer than a second. Those networks will eventually fall into a
quiescent state after a long transient. In our framework, once the equations
are solved, we can compute the total mean activity and the total variance.
For a balanced network, we have

〈mtot〉= 〈(1 − γ )mexc + γ minh〉
= (1 − γ )〈mexc〉 + γ 〈minh〉

σ 2(mtot) =〈((1 − γ )mexc + γ minh)2〉 − 〈(1 − γ )mexc + γ minh〉2

= (1 − γ )2σ 2(mexc) + γ 2σ 2(minh) + 2(1 − γ )γ cexc/ inh .

As mexc and minh are described as a normal law defined by only the first
two statistical moments, the total activity also follows a normal law with
the following characteristics:

mtot ∼ N ((1 − γ )〈mexc〉 + γ 〈minh〉, (1 − γ )2σ 2(mexc)

+ γ 2σ 2(minh) + 2(1 − γ )γ cexc/ inh
)
. (3.58)

Therefore, we can use a simple criterion for stability by saying that the
survival time is inversely proportional to the probability for the activity to
be below a critical value mcrit near 0. Indeed, the spontaneous AI state is
said to be quasi-stationary such that its activity is described by a stationary
distribution. Eventually the dynamics will fall into this quiescent state,
which is represented in mean-field theory by the probability below mcrit
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normalized by the minimal time step,

Tsurvival = T
P(mtot < mcrit)

(3.59)

= T
F (mtot = mcrit)

, (3.60)

where F (mtot = m) is the repartition function. A similar criterion has been
proposed in Kumar et al. (2008) but based on a first-order semianalytical
model. In their argument, they mention a critical time window that corre-
sponds to our network effective time constant T . In numerical simulations,
they could estimate its value around 1 ms, which is very short compared
to other time constants in the network model. This is encouraging for con-
sidering the master equation formalism well beyond large time constants.
We can easily see from equations 3.16 and 3.22 that the covariance matrix
is inversely proportional to the number of neurons in each population, so
that Tsurvival grows exponentially with the number of neurons. Discrepancy
from this result can be caused by residual correlations between neurons that
could invalidate the binomial model. We can further estimate the network
lifetime dependency on other parameters. We show in Figure 6g in a log
scale the network lifetime evaluated with equation 3.59 for the (�gexc,�ginh)
parameter space for a network of N = 10, 000 neurons with pconn = 0.01.
We see that the AI region considered unstable in Figure 6f matches the re-
gion where the lifetime is beyond the order of a second. Therefore, the state
diagram for self-sustained networks is sensitive to the time-scale under
consideration.

Despite the stability issue, which is due to the limited lifetime of the
network activity, there is finally an important source of instability that can
also cause the network to reach the quiescent state. We can see numerically
in Figures 6d to 6f that if the subthreshold membrane potential fluctuations
are too strong, this induces supplementary fluctuations at the network level,
which can destroy the activity spontaneously. These strong fluctuations can
be caused by high levels of connectivity. Therefore, the upper AI region,
which is predicted to be stable, can be numerically unstable because of
those strong fluctuations. In Kumar et al. (2008), this region is not systemat-
ically unstable, and the lack of evidence with a second-order theory seems
to reveal an artifact of the simulation or the breakdown of the model pre-
diction. The sensitive region lay between the AI and the SR regime in which
correlations can become critical. Indeed, the AR region displays correlated
spike trains, which is not taken into account within the Poisson hypothesis,
and this could go beyond the Markovian prediction. Kumar et al. (2008),
have also suggested that the initial stimulation could contribute to this insta-
bility. Indeed, the initial stimulation must be adequate to allow the network
to reach a self-sustained state. Increasing the network size will diminish the



A Master Equation for Spiking Neuron Networks 83

firing rate, as predicted by the numerical and analytical transfer function,
making the network more likely to shut down given the fluctuation state.
This instability is reduced for sparser connectivities.

The (�gexc,�ginh) parameter space. We focus on the last configuration
shown in Figure 6 to check the validity of the theoretical prediction. For
each stable point of the state diagram, the set of differential equation 3.16, is
solved with the transfer function, equation 3.53. The resulting analysis (see
Figure 7) shows that the predictions are qualitatively correct, but the relative
difference increases rapidly for low activity. There is a narrow region in the
AI regime where the prediction is good for the first and second statistical
moments. This important discrepancy is due to the approximation made
for the transfer function, which is not derived for a complete conductance-
based neuron with threshold. Similar results have already been reported in
Kuhn et al. (2004) using the same transfer function.

To circumvent this problem, a semianalytical method has been proposed
(Soula & Chow, 2007; Kumar et al., 2008), where the conductance-based
neuron transfer function is determined numerically and then used directly
in the model for a first-order or second-order prediction. Although this
approach can give good predictions in the AI regime, it requires computing
numerically the transfer function for each point of the state diagram, which
can be time-consuming for heterogeneous networks. Indeed, the transfer
function is determined by computing the neuron firing rate for a given
population and for every state of each population in the network. Therefore,
it is necessary to find an effective analytical function that can provide a
better approximation. Although we cannot have an exact expression, it is
still possible to fit a phenomenological model to the numerical simulations.
Based on previous observations, two parameters seem critical in the transfer
function: the time constant τ in the denominator and a corrective term �h,
which takes into account colored noise in the synaptic input (Brunel & Sergi,
1998; Fourcaud & Brunel, 2002). The phenomenological function based on
equation 3.27 can thus be written

ν = 1
2τ

(
1 + er f

( 〈V〉 − Vthreshold

√
2σ (V)

+ �h
))

. (3.61)

Considering the limited region of the whole (�gexc,�ginh) parameter space
in Figure 7, we can estimate the total error made for the set of transfer
function, equation 3.61, according to the free parameters (τ,�h). The total
error is estimated by taking the sum of the relative difference between the
simulation mean activity and the mean activity given by equation 3.61 in
absolute value normalized by the number of stable points. For this opti-
mization problem, there is a global minimum for which the error is small
(see Figure 8). This computation depends on the network configuration and
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Figure 7: AI states characterization and the first- and second-order statis-
tics of the excitatory population activity in the (�gexc, �ginh) parameter space
in a Vogels-Abbott-type conductance-based network. The network contains
N = 10, 000 neurons randomly connected with probability pconn = 0.01. Every
statistical quantity has been computed with a time bin of T = 5 ms, and the
analytical model was solved with the same parameters. (a) The AI region is de-
limited using the mean ISI CV and the mean pairwise cross-correlation. In the
right panel, we compute the activity CV to evaluate the validity of the indepen-
dence hypothesis. (b) Top: Mean activity estimated from numerical simulations
(left) and computed using the master equation formalism with the neuron trans-
fer function, equation 3.53 (middle). In the right panel, the relative difference
between measured and predicted values. Bottom: The activity standard devi-
ation is estimated from numerical simulations and compared as well with the
mean-field predictions.

the portion of the state diagram used to estimate the error. Therefore, this
procedure gives a local good approximation that is acceptable as long as
the network parameters (here the synaptic strengths) are kept in the fitted
region.

The second-order statistics depends on the transfer function behavior
around the stationary point through the first and second derivative of this
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Corrective Term ∆h
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Figure 8: Error landscape for the optimization problem that determines the
best parameter set for the effective transfer function, equation 3.61. It has been
computed for a network of N = 10, 000 neurons and pconn = 0.01. The minimal
solution (circle) gives τ = 5.3 ms and �h = 1.5.

function. In particular, the covariance and correlation matrix are strongly af-
fected by the slope of the transfer function in the stationary point. Therefore,
we compare for some point of the parameter space the effective transfer
function with the semianalytical approach (see Figure 9). For each network
configuration, the transfer function of a neuron is computed numerically
and compared with the optimized transfer function. The local behavior
around the stationary point is in good agreement with the latter.

Using the optimized transfer function, we can compare the prediction
to the numerical simulation (see Figure 10). The error is reasonable com-
pared to Figure 7, especially for the standard deviation for which prediction
is much improved. Therefore, for a given network configuration, there is
an effective transfer function that can provide a good description of the
network dynamics in a large part of the parameter space. This allows us
to avoid the semianalytical approach but requires solving an optimization
problem based on numerical simulations.

This method could be useful when considering several network units
described by the master equation. Indeed, eventually we would like to apply
the master equation formalism to large-scale cortical recordings. In order to
do so, it will be necessary to acquire a more realistic transfer function than
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Figure 9: Transfer function estimated with the semianalytical approach com-
pared with the optimized effective transfer function for several points of the
(�gexc, �ginh) parameter space. For each figure, the excitatory synaptic strength
is fixed, and the inhibitory synaptic strength take the values �ginh = 1, 11, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 41, 51, 61, 71, 81, and 91 nS from the top-most
curve to the lowest monotonically. In the first-order mean-field approximation,
the network stationary activity is found by imposing that the input and output
rate must be equal. The intersection with the diagonal line marks this first-order
solution. (a) Effective transfer function and (b) numerical transfer function for
�gexc = 7 nS. (c) Effective transfer function and (d) numerical transfer function
for �gexc = 10 nS.

the one obtained from integrate-and-fire neurons. Using the optimization
strategy, we could consider a large family of functions based on the usual
theoretical results and obtain a representative transfer function adapted
to high-conductance states. This could be done with dynamic-clamp in
vitro experiments by finding autoconsistent solutions for a broad range of
stimulation regimes. The resulting transfer function would then be used
as a kernel in the master equation formalism to represent the dynamical
property of the corresponding neuron population in the network unit. In
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Figure 10: First- and second-order statistics of the excitatory population activity
in the (�gexc, �ginh) parameter space. A Vogels-Abbott network was simulated
with N = 10,000 conductance-based neurons randomly connected with prob-
ability pconn = 0.01. The moments are computed with a time bin of T = 5 ms,
and the analytical model was solved with the same parameter and an effec-
tive transfer function (see equation 3.61). (Top) Mean activity and standard
deviation estimated from numerical simulations. (Middle) Mean activity and
standard deviation computed from the master equation formalism. (Bottom)
Relative difference between measured and predicted values.

the context of voltage-sensitive dyes optical imaging, this unit would be
associated with a small set of neighbor pixels. Once effective couplings
between these units are extracted from data, it should be possible to obtain
a theoretical comparative model in order to study activity propagation
within large-scale cortical areas, in particular, dynamical phase transitions
according to different network-controlled conditions.

3.4.3 Effect of Topology and Heterogeneity. In this section, we discuss the
generality of the master equation formalism and possible sources of devi-
ations from the predictions. Heterogeneity in the synaptic input across the
network can create a bias in the mean activity of the network that is not
taken into account in a mean-field model. Indeed, if neurons in the network
do not receive exactly the same number of synapses, the firing rate distribu-
tion in the network will tend to be skewed compared to the sharp gaussian
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Figure 11: The neuron firing rate distribution in the AI state according to the
degree of heterogeneity in the number of incoming synapses per neuron. The
network contains N = 10,000 neurons with a mean connectivity proportion
pconn = 0.02. The synaptic strengths are given by (�gexc, �ginh) = (6, 67) nS. The
number of incoming synapses is taken from a gaussian distribution. From the
back curve to the front curve, the standard deviation is increasing, resulting in
skewer curves.

distribution for a homogeneous system. If the incoming connection num-
ber is gaussian distributed, the skewness of the firing rate distribution will
increase with the standard deviation of the gaussian (see Figure 11), re-
sulting in a shift of the mean activity. Similar results were reported by van
Vreeswijk and Sompolinsky (1998) for heterogeneous thresholds. Therefore,
predictions given by the master equation could lose some accuracy if the
network is not perfectly homogeneous. However, this kind of heterogeneity
does not create dramatic changes in the mean firing rate, so the model still
provides good predictions.

Another interesting aspect of the theory concerns the connectivity
schemes of the network. When the theoretical framework was built, two
important hypotheses were made that directly concern network circuitry.
We assumed that the connectivity is sparse and that the spiking probability
is independent from one neuron to another at each time step. Any connec-
tivity scheme that can account for those two hypotheses should be describ-
able by this master equation formalism. Although connections in the cortex
are highly specific, they are known to exhibit the sparseness property. As
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we are describing macroscopic quantities of the network dynamics, high-
order structure in the connectivity should not affect the analytical validity.
However, the independence hypothesis can be broken if substantial cor-
relations appear between neurons. In our simulations, we used a random
connectivity scheme to avoid this situation. This choice is reasonable for
very small networks, but for larger networks, it is necessary to consider
a more realistic connectivity scheme. In previous work (Mehring et al.,
2003), a numerical study of the (mext

exc, g) parameter space has been made
for networks of locally random connected neurons with periodic boundary
conditions. In this model, each neuron was connected to a fixed proportion
pconn = 0.1 of its neighbors according to a gaussian probability law (see
Figure 12c). The standard deviation is taken to be 0.3 mm for a square net-
work with boundary length of 2 mm. This network contains N = 112,500
current-based neurons with a ratio of 4:1 between excitatory and inhibitory
neurons. Neurons interact with a fixed delay of 1.5 ms. The network is ho-
mogeneous with membrane time constant τmem = 10 ms, refractory period
τ re f = 2 ms, resting and reset potential Vreset = Vrest = −70 mV, and thresh-
old Vthreshold = −50 mV. α-synapses were used with τexc = τinh = 0.3 ms,
and the excitatory synaptic strength was chosen such that the EPSP peak
equals 0.14 mV. We implemented the same network in the formalism with
the transfer function (see equation 3.29) and computed the excitatory mean
activity to compare with their results (see Figures 12a and 12b). For this
macroscopic quantity, it seems that correlations due to local connections do
not dramatically alter the first-order mean-field predictions. This is very en-
couraging, and we hope to get qualitatively good descriptions of large-scale
cortical networks based on this generic behavior of balanced networks. Of
course, those who are interested in higher-order statistics of the dynamics
have to rely on a more specific model of the network connectivity.

We investigated this question for a network that integrates some
realistic features. Based on the anatomical data for the rat (DeFelipe,
Alonso-Nanclares, & Arellano, 2002), we modeled a portion of the cortex
as a layer with periodic boundary conditions respecting the superficial
neuron density. This is defined as ρVe = ρS ∼28,183 neurons/mm2 with
ρV ∼61,670 neurons/mm3 for layer 2–3 volume density, and e ∼0.457 mm
the depth of these layers. We also took distance-dependent delays with a
homogeneous propagation speed of vprop = 5 mm/ms. Intrinsic neuron
properties are identical to the model used in Vogels and Abbott (2005),
and the network contains N = 10,000 neurons. Connections for a neuron
follow a uniform law on a disc centered on the neuron. We considered
as free parameters the radius of the connectivity disc and the proportion
of connected neurons pconn inside the disc (see Figure 12f). For a given
synaptic strength set (�gexc,�ginh) = (6, 67) nS, we computed the mean
excitatory activity as well as the mean interspike interval coefficient of
variation to probe the first- and second-order properties of the dynamics
(see Figures 12d and 12e). We notice the existence of isostatistics lines where
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Figure 12: Effect of local network connectivity on macroscopic statistics.
(a–c) Comparison of mean excitatory activity for a locally randomly connected
current-based network (Mehring et al., 2003) in the (mext

exc, g) parameter space.
(a) Numerical simulations with gaussian distribution (panel reproduced, with
permission, from Mehring et al., 2003). (b) First-order mean-field predictions.
(c) The gaussian distributed connectivity scheme. (d–f) Effect of local uniformly
random connectivity. The parameter space is described by the connectivity disc
radius and the connection probability inside the disc. (d) Mean excitatory ac-
tivity. (e) Mean excitatory interspike interval coefficient of variation. (f) The
uniform local random connectivity scheme.

the network displays the same macroscopic behavior. Those lines lie on
network configurations where the number of inputs per neuron is constant.
Indeed, if the disc radius is increased, the number of incoming synapses
will also increase, and it is necessary to decrease the connection probability
to recover the same statistical properties. This confirms the previous results
shown in Figures 12a and 12b. Interneuron correlations due to more local
connections do not seem to invalidate drastically the mean-field predictions
as long as the number of connections per neuron is kept fixed and homoge-
neous. Note that in Figure 12, the case of the randomly connected network
does not appear as a stable state because of the distant-dependent delays.
Indeed, self-sustained activity cannot occur if the interactions among the
network are too slow and we see a large domain of the state diagram that is
unstable.

Following the discussion started at the end of the previous section,
this result provides an encouraging foundation for large-scale modeling.
Indeed, at first sight, it seems intractable to obtain a realistic model of
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mesoscopic cortical dynamics when considering the high specificity of the
wiring. However, this should not be relevant if population quantities are
considered. Extrinsic optical imaging data provide such a quantity that
could be related to the master equation variables. Therefore, all high-order
patterns in the connectivity should be translated by statistical principles in
effective macroscopic coupling available from large-scale data. Further in-
vestigations should be devoted to this question to ensure that specific high-
order characteristics would not have a dramatic impact on global network
dynamics.

4 Discussion

In this letter, we have proposed a mean-field description of AI cortical
activity states in balanced networks. We have considered a master equation
formalism to describe the activity of networks of size N for timescales
larger than a characteristic time T . These numbers were kept finite in order
to account for finite-size effects and thus obtain a “mesoscopic” level of
description. The resulting phenomenological theory provides a dynamical
description of spiking neuron networks that sought to predict state
diagrams, but could also be used beyond stability analysis. Furthermore,
this framework can be used for any type of neuron as long as its transfer
function is known. We obtained a closed set of equations for the mean and
variance of the activity and showed that the state diagrams predicted by
the mean-field model well matched the diagrams obtained numerically for
different types of networks proposed previously (Brunel, 2000; Mehring
et al., 2003; Vogels & Abbott, 2005).

Studies of network dynamics have shown that higher-order statistics are
crucial in balanced networks. Indeed, chaotic behavior in those systems is
produced by the balanced dynamics at the membrane potential level (van
Vreeswijk & Sompolinsky, 1996, 1998; Brunel, 2000). Once the mean mem-
brane potential is “clamped” at its subthreshold value, only fluctuations can
bring the neuron to fire, thereby providing an irregular firing rate. However,
although firing irregularity can be estimated from the stationary interspike
interval coefficient of variation (Tuckwell, 1988), no model is able to describe
the dynamics of second-order statistics at the network level. The Markovian
approach is directly constrained by the population activity correlation’s fine
structure during AI states and the minimal bin size to capture network dy-
namics. According to the numerical model, those values seem to be of the
same order, which considerably simplifies the choice of the parameter T .

The master equation model directly relies on the neuron transfer func-
tion, which can be chosen according to the desired network model. This
transfer function can be exactly determined in current-based networks
provided that the input spike trains follow Poisson processes with Dirac
synapses (Tuckwell, 1988; Brunel, 2000). However, to cover a broad range of
synapse models, we adopt a phenomenological function that can account
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for first- and second-order network statistics. For conductance-based mod-
els, no exact solution of the equation can be found. We also have to seek
approximations to obtain the transfer function. Two main solutions have
been proposed: estimating the transfer function numerically (Kumar et al.,
2008; Soula & Chow, 2007) or using an approximation with the mean mem-
brane potential of the conductance-based model and the variance taken
from an effective current-based model Kuhn et al. (2004). To stay in an ana-
lytical framework, we decided to use the second approach, which can easily
be implemented in our model.

In current-based models, the predicted state diagrams are in good agree-
ment with the numerical simulations. In this case, the discrepancies are
likely to be due to residual correlations caused by finite size effects or by the
phenomenological transfer function. Indeed, for activity in small networks
that is too low, the diffusion approximation is no longer legitimate, and the
corresponding transfer function leads to incorrect predictions. We showed
that those frequencies can be better described for larger networks, provid-
ing a good model for cortical dynamical regimes. In conductance-based
models, the predicted diagrams match the numerical simulations qualita-
tively but give poor quantitative predictions. It is, however, possible to find
an optimized transfer function from a set of functions described by two free
parameters. This significantly improves the predictions. In section 3.4.2,
we discussed the possibility of adapting this method to dynamics-clamp
recordings in order to obtain biophysically more realistic transfer functions
directly estimated from real neurons. At a large-scale level, this model could
faithfully represent the behavior of conductance-based balanced networks
and is therefore a good candidate for building macroscopic models of local
field potentials or optical imaging data.

Preliminary results have shown that considering more local
connectivities—instead of random schemes—does not alter significantly
the master equation predictions as long as the sparseness is strong enough.
Therefore, first- and second-order activity statistics do not require an exact
description of the network structure. However, heterogeneity among the
neurons can be responsible for slight discrepancies between simulations
and predictions. Although our model does not take into account specific
delays between neurons, for random delays of the order of T , the numerical
simulations are even closer to predictions (data not shown). Indeed, global
oscillations are destroyed by heterogeneous delays, and the AI region is
larger. We are currently working on a systematic study of phase diagrams
and their dependence on various parameters.

In conclusion, we have proposed here a mean-field approach to describe
the activity of large networks but still staying in the finite-size regime.
Such a “mesoscopic” description constitutes a first step toward obtaining
a large-scale model of cerebral cortex tissue. The typical size of the net-
works considered here (N ∼5000 neurons) can be thought of representing
the population of cortical neurons seen under one or several pixels of optical
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imaging data. Typical values are 100×100 pixels, covering from about
3 × 3 mm to 3 × 3 cm of cortical tissue, which gives about 5 to 5000 neurons
per pixel in superficial layers according to neuronal densities published
previously (Braitenberg & Schüz, 1998). Thus, constructing a 100 × 100 net-
work of such populations, each described by a master equation analogous
to the model presented here, would be possible if the connectivity between
adjacent and distant populations could be incorporated in the formalism.
This important addition will require studying interconnected networks of
neurons in AI states, which constitutes a natural extension of the modeling
effort examined in this letter.

Appendix A: Mean Activity and Covariance Matrix
Differential Equations

In this appendix, we compute the set of differential equations for the mean
activity and the covariance matrix from the master equation. For bin-sized
activity defined on the time interval T , the central limit theorem allows one
to stop the statistical moment hierarchy at the second order. In other words,
we consider a gaussian approximation of the stochastic process. We note
the mean activity 〈mµ〉 so that

∂t〈mµ〉

=∂t

∏
α=1,...,K

∫ 1/T

0
dmαmµ Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmαmµ∂t Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

β

(
mµ Pt({m′

γ })W({mγ } | {m′
γ })

− mµ Pt({mγ })W({m′
γ } | {mγ }))

=
∏

α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

β (m′
µ−mµ)W({m′

γ }|{mγ })Pt({mγ })

=
∏

α=1,...,K

∫ 1/T

0
dmαaµ({mγ })Pt({mγ })

=〈aµ({mγ })〉, (A.1)

with

aµ({mγ }) =
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µ − mµ)W({m′

γ } | {mγ }).
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To obtain the first-order equation, we develop this function around each
populations mean activity values to the second order,

aµ({mγ }) = aµ({〈mγ 〉}) + ∂λaµ({〈mγ 〉}) · (mλ − 〈mλ〉) +

+ 1
2
∂λ∂ηaµ({〈mγ 〉}) · (mλ−〈mλ〉)(mη−〈mη〉)+O(δm3),

which becomes, after averaging,

〈aµ({mγ })〉 = aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη,

where we have introduced the covariance matrix cλη = 〈(mλ −
〈mλ〉)(mη − 〈mη〉)〉 containing the second-order moments. This gives the
first-order set of equations:

∂t〈mµ〉 = aµ({〈mγ 〉}) + 1
2
∂λ∂ηaµ({〈mγ 〉})cλη

aµ({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − mµ)W({m′

γ } | {mγ }).
(A.2)

To compute the second-order equations, we proceed as before:

∂tcµν = ∂t〈(mµ − 〈mµ〉)(mν − 〈mν〉)〉
= ∂t〈mµmν〉 − ∂t

(〈mµ〉〈mν〉
)

= ∂t〈mµmν〉 − 〈mν〉∂t〈mµ〉 − 〈mµ〉∂t〈mν〉. (A.3)

Following the previous equations, we can write,

∂t〈mµmν〉=
∏

α=1,...,K

∫ 1/T

0
dmα

×
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µm′

ν − mµmν)W({m′
γ } | {mγ })Pt({mγ }).

Using the relation

m′
µm′

ν−mµmν = (m′
µ − mµ)(m′

ν − mν) + mν(m′
µ − mµ) + mµ(m′

ν − mν),

we have

∂t〈mµmν〉= < aµν({mγ }) > +〈mνaµ({mγ })〉 + 〈mµaν({mγ })〉 (A.4)
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with

aµν({mγ }) =
∏

β=1,...,K

∫ 1/T

0
dm′

β (m′
µ − mµ)(m′

ν − mν)W({m′
γ } | {mγ }).

Inserting equation A.4 into A.3, and using A.1, we get

∂tcµν =〈aµν({mγ })〉 + 〈mνaµ({mγ })〉 + 〈mµaν({mγ })〉
−〈mν〉∂t〈mµ〉 − 〈mµ〉∂t〈mν〉

= 〈aµν({mγ })〉 + 〈aµ({mγ }) · (mν − 〈mν〉)〉
+ 〈aν({mγ }) · (mµ − 〈mµ〉)〉.

The first term can be expanded to the second order as we did for the first-
order set of equations. Concerning the two other terms, we have,

〈aµ({mγ }) · (mν − 〈mν〉)〉
= 〈(mν − 〈mν〉) · (

aµ({〈mγ 〉})
+ ∂λaµ({〈mγ 〉}) · (mλ − 〈mλ〉)

)〉 + O(δm3)

= ∂λaµ({〈mγ 〉})〈(mν − 〈mν〉)(mλ − 〈mλ〉)〉 + O(δm3)

= ∂λaµ({〈mγ 〉})cνλ + O(δm3),

and the same for the third term but with µ and ν inverted. The second-order
set of equations can finally be written (van Kampen, 2003)

∂tcµν = aµν({〈mγ 〉}) + ∂λaµ({〈mγ 〉})cνλ + ∂λaν({〈mγ 〉})cµλ

aµν({mγ }) =
∏

α=1,...,K

∫ 1/T

0
dm′

α(m′
µ − mµ)(m′

ν − mν)W({m′
γ } | {mγ }).

(A.5)

Appendix B: Correlation Matrix Differential Equation

In this appendix, we compute the set of differential equations that describes
the correlation matrix in a stationary state. The derivation is slightly differ-
ent from the computation in appendix A. A similar computation has been
done in Ginzburg and Sompolinsky (1994). The derivative can be written as:

∂τCorrµν(τ ) = ∂τ 〈
(
mµ(t) − 〈mµ(t)〉) (mν(t + τ ) − 〈mν(t + τ )〉)〉

= ∂τ

(〈mµ(t)mν(t + τ )〉 − 〈mµ(t)〉〈mν(t + τ )〉) . (B.1)
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If we consider the first term of equation B.1,

∂τ 〈mµ(t)mν(t + τ )〉 =

= ∂τ

∏
α=1,...,K

∫ 1/T

0
dmα

∏
β=1,...,K

∫ 1/T

0
dm′

βmµm′
ν P(

{
m′

γ

}
, t

+ τ | {
mγ

}
, t)Pt(

{
mγ

}
)

=
∏

α=1,...,K

∫ 1/T

0
dmαmµ


 ∏

β=1,...,K

∫ 1/T

0
dm′

βm′
ν∂τ P(

{
m′

γ

}
, t

+ τ | {
mγ

}
, t)


 Pt(

{
mγ

}
).

The conditional probability P({m′
γ }, t + τ | {mγ }, t) is also a solution of the

master equation, so that the term in the bracket is similar to equation A.1,
and we can write

∂τ 〈mµ(t)mν(t + τ )〉 = 〈mµ(t)aν(
{
mγ (t + τ )

}
)〉. (B.2)

The second term in equation A.1 is simply

∂τ 〈mµ(t)〉〈mν(t + τ )〉 = ∂τ 〈mµ(t)〉∂τ 〈mν(t + τ )〉 (B.3)

= 〈mµ(t)〉〈aν(
{
mγ (t + τ )

}
)〉.

Combining equations B.2 and B.3 into B.1, we get

∂τCorrµν(τ ) =〈(mµ(t) − 〈mµ(t)〉)aν(
{
mγ (t + τ )

}
)〉. (B.4)

As we are considering time-scales that are beyond the decreasing time of
the network activity correlations, we can develop aν({mγ (t + τ )}) around
the mean values to the second order,

aν(
{
mγ (t + τ )

}
) = aν(

{〈mγ (t + τ )〉}) + ∂λaν(
{〈mγ (t + τ )〉})

× (mλ(t + τ ) − 〈mλ(t + τ )〉) + O(δm2),

so that equation B.4 becomes, to second order,

∂τCorrµν(τ ) = ∂λaν(
{〈mγ (t + τ )〉})Corrµλ(τ ). (B.5)

We are interested in the activity correlations in the stationary state; therefore,
the mean activities {〈mγ 〉} no longer depend on τ . Moreover, the initial
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conditions for those differential equations are given by the stationary values
of the covariance matrix.

Appendix C: Conductance-Based Synaptic Functions
for the Master Equation

In this appendix, we compute the remaining functions necessary to use the
conductance-based model. The effective time constant is activity dependent
in the conductance-based model, and it is given by

〈
τ e f f
µ

〉 = 1
1

τmem
µ

+ ∑
α=1,...,K

〈Gαµ〉
Cµ

.

We need to compute the first and second derivatives:

∂λ

〈
τ e f f
µ

〉 =−〈
τ e f f
µ

〉2 λµ

Eλ

∂η∂λ

〈
τ e f f
µ

〉 = 2
〈
τ e f f
µ

〉3 ηµ

Eη

λµ

Eλ

.

The function �αµ depends on the chosen synapse, and we compute the
corresponding derivatives for exponential and α-synapses:

� Exponential synapses. The function is given by

�Exp
αµ = Cαµ

τα + 〈
τ

e f f
µ

〉
(

τα�gαµ〈τ e f f
µ 〉(Eα − 〈Vµ〉)

Cµ

)2

,

so that

∂λ�
Exp
αµ =�Exp

αµ

(
∂λ

〈
τ e f f
µ

〉 ( 2〈
τ

e f f
µ

〉 − 1〈
τ

e f f
µ

〉 + τα

)

− 2∂λ Qµ

(Eα − 〈Vµ〉)
)

∂η∂λ�
Exp
αµ = ∂η�αµ∂λ�αµ

�αµ

+ �αµ

(
∂η∂λ〈τ e f f

µ 〉

×
(

2〈
τ

e f f
µ

〉 − 1〈
τ

e f f
µ

〉 + τα

)
+ ∂η

〈
τ e f f
µ

〉
∂λ〈τ e f f

µ 〉

×
(

1

(
〈
τ

e f f
µ

〉 + τα)2
− 2〈

τ
e f f
µ

〉2
)

−2∂λ Qµ∂η Qµ

(Eα − 〈Vµ〉) − 2∂λ∂η Qµ

(Eα − 〈Vµ〉)2

)
.
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� α-synapses. Similarly

�αsyn
αµ = 1

2
Cαµ(2

〈
τ e f f
µ

〉 + τα)

×
(

eτα�gαµ

〈
τ

e f f
µ

〉
(Eα − 〈Vµ〉)

Cµ(τα + 〈
τ

e f f
µ

〉
)

)2

,

so that

∂λ�γµ = 2�γµ


∂λ

〈
τ e f f
µ

〉  1(
2
〈
τ

e f f
µ

〉 + τγ

) + 1〈
τ

e f f
µ

〉

− 1(〈
τ

e f f
µ

〉 + τγ

)

 − ∂λ Qµ

(Eγ − 〈Vµ〉)




∂η∂λ�γµ = ∂λ�γµ∂η�γµ

�γµ

+

∂η∂λ

〈
τ e f f
µ

〉  1(
2
〈
τ

e f f
µ

〉 + τγ

) + 1〈
τ

e f f
µ

〉

− 1(〈
τ

e f f
µ

〉 + τγ

)



+∂η

〈
τ e f f
µ

〉
∂λ

〈
τ e f f
µ

〉  1(〈
τ

e f f
µ

〉 + τγ

)2

− 2(
2
〈
τ

e f f
µ

〉 + τγ

)2 − 1〈
τ

e f f
µ

〉2



− ∂η∂λ Qµ

(Eγ − 〈Vµ〉) − ∂η Qη∂λ Qµ

(Eγ − 〈Vµ〉)2

)
.
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Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocor-
tical neurons in vivo. Nature Reviews Neurosci., 4, 739–751.

El Boustani, S. (2006). Information transport in networks during irregular activity states
(in French). Master’s thesis, Ecole Normale Supérieure, France.

El Boustani, S., & Destexhe, A. (2007). Mesoscopic model of balanced neuron net-
works using a master equation formalism. (abstract) In Computation and Neural
Systems 2007 Conference. Available online at http://www.cnsorg.org.

El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Acti-
vated cortical states: Experiments, analyses and models. J. Physiol. Paris 101, 99–
109.

Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy
integrate-and-fire neurons. Neural Comput., 14, 2057–2110.

Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asyn-
chronous states, and locking. Neural Comput., 12, 43–89.

Ginzburg, I., & Sompolinsky, H. (1994). Theory of correlations in stochastic neural
networks. Phys. Rev., 50, 3171–3191.

Hertz, J., Lerchner, A., & Ahmadi, M. (2004). Mean field methods for cortical network
dynamics. Comput. Neurosci., 3146, 71–89.

Kuhn, A., Aertsen, A., & Rotter, S. (2004). Neuronal integration of synaptic input in
the fluctuation-driven regime. J. Neurosci., 24, 2345–2356.

Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state
of cortical networks. Comput. Neurosci., 20, 1–43.

Latham, P. E., Richmond, B. J., Nelson, P. G, & Nirenberg, S. (2000). Intrinsic dynamics
in neuronal networks. I. Theory. J. Neurophysiol., 83, 808–827.



100 S. El Boustani and A. Destexhe

Matsumura, M., Cope, T., & Fetz, E. E. (1988). Sustained excitatory synaptic input
to motor cortex neurons in awake animals revealed by intracellular recording of
membrane potentials. Exp. Brain Res., 70, 463–469.

Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity
dynamics and propagation of synchronous spiking in locally connected random
networks. Biol. Cybern., 88, 395–408.

Ohira, T., & Cowan, J. D. (1993). Master-equation approach to stochastic neurody-
namics. Phys. Rev. E, 48, 2259–2266.

Plesser, H. E., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From
stochastic input to escape rates. Neural Comput., 12, 367–384.

Soula, H., & Chow, C. C. (2007). Stochastic dynamics of a finite-size spiking neural
network. Neural Comput., 19, 3262–3292.

Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A
view from inside neocortical neurons. J. Neurophysiol., 85, 1969–1985.

Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge
University Press.

van Kampen, N. G. (2003). Stochastic processes in physics and chemistry. Amsterdam:
North-Holland Personal Library.

van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with
balanced excitatory and inhibitory activity. Science, 274, 1724–1726.

van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of
cortical circuits. Neural Comput., 10, 1321–1371.

Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks
of integrate-and-fire neurons. J. Neurosci., 25, 10786–10795.

Received February 12, 2008; accepted May 16, 2008.


