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Limited capacity for visual perception results in various “inattentional blindness” phenomena across a
wide variety of manipulations that load perception. Here, we propose that these phenomena are mediated
by an underlying generalized capacity for visual perception, which also underlies subitizing: the ability
to enumerate a limited number of items in parallel from a brief exposure. We tested this proposal by
examining whether individual differences reveal common intraindividual variance between measures of
visual perception as well as of subitizing capacity. Visual perception was measured in change blindness
(Rensink, O’Regan, & Clark, 1997), load-induced blindness (Macdonald & Lavie, 2008), and multiple
object tracking tasks. Subitizing capacity was measured as the number of items that could be reported in
parallel in an enumeration task. Perceptual capacity as indexed by subitizing was consistently a unique
predictor of performance in change blindness, load-induced blindness, and motion tracking beyond any
general factors that apply to both subitizing and estimation of larger set sizes. Moreover, when measures
of working memory were included, factor analysis indicated two orthogonal factors: perceptual and
working memory. Overall, the results support the hypothesis of a generalized capacity for visual
perception, and establish subitizing capacity as a predictor of individual susceptibility to inattentional
blindness under load.

Public Significance Statement
People have limited capacity for perception and will often fail to notice objects outside their focus
of attention, exhibiting a form of “inattentional blindness.” However, some people may have superior
(whereas others have inferior) visual detection abilities. This study establishes a new measure that
can predict a person’s capacity for visual perception and object detection across multiple tasks.
Results using this measure show that people who can instantly enumerate a greater number of items
are found to be less prone to inattentional blindness: They can more accurately detect unattended
items, changes in complex scenes, and track more moving objects compared with people with a
smaller enumeration capacity. These findings establish a new concept of generalized capacity for
visual perception and awareness, and provide the scientific basis for new tests that can be applied for
operator screening or selection for training in many safety-critical operations (e.g., defense operators,
Closed Circuit Television Monitoring (CCTV), airport security).
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What are the limits of our capacity to be visually aware of the
world around us? This important question has stirred much interest
over the years, ever since the seminal study by Neisser and
colleagues (e.g., Neisser, 1979; Neisser & Becklen, 1975) demon-
strated that people can fail to notice highly conspicuous events,

such as a woman walking with an open umbrella across their field
of view, when they focus attention on another event (e.g., people
playing a ball game).

Limits on Visual Perception and Awareness:
“Inattentional Blindness”

Demonstrations of people’s limited capacity for visual percep-
tion come from a variety of more recent paradigms. Perhaps the
most prominent of these is the inattentional blindness paradigm. In
a typical inattentional blindness task, people are asked whether
they noticed an unexpected and task-unrelated stimulus that is
presented once at the very end of the task (e.g., Cartwright-Finch
& Lavie, 2007; Mack & Rock, 1998; Simons & Chabris, 1999).
Importantly, the unexpected nature of the stimulus is not critical
for inattentional blindness to occur. This is shown in a load-
induced blindness paradigm (e.g., Carmel, Thorne, Rees, & Lavie,
2011; Macdonald & Lavie, 2008; Ward & Scholl, 2015), in which
people are explicitly asked to detect the occasional appearance of
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a stimulus outside their attention focus, yet they still experience
“blindness” in conditions of high perceptual load in the attended
task. Similarly, in the change blindness paradigm (e.g., Beck,
Rees, Frith, & Lavie, 2001; Lavie, Beck, & Konstantinou, 2014;
Rensink, O’Regan, & Clark, 1997), people often fail to detect
changes between stimuli across some visual disruption (e.g., in the
form of a flicker) despite actively searching for them. The visual
disruption does not interfere with the visibility of the change, but
instead interferes with attention capture by the large transient
signal that the change otherwise involves. In all of these tasks,
observers are found to be strikingly unaware of stimuli and
changes outside their focus of attention despite them being clearly
visible. However, different task conditions can lead to different
rates of inattentional blindness or change blindness, and even
under the same task conditions, not all people suffer from inatten-
tional blindness or change blindness to the same degree.

A major factor determining the rates of perception failures in
these paradigms is the level of perceptual load in the attended task.
Perceptual load has been operationally defined by referring either
to the number of task units (e.g., different identity letters in a letter
search task) or the level of perceptual demand (e.g., its complexity)
the task requires for the same number of units (see Lavie, 1995;
Lavie & Tsal, 1994). Higher perceptual load, so defined (e.g.,
search tasks of larger set sizes or those requiring more complex
perceptual discriminations of conjunctions of color and shape
rather than just single color detection), was found to result in
increased rates of change blindness, inattentional blindness, and
load-induced blindness for unattended stimuli (e.g., Carmel et al.,
2011; Konstantinou & Lavie, 2013; Lavie, 2006; Lavie et al.,
2014; Macdonald & Lavie, 2008; Remington, Cartwright-Finch, &
Lavie, 2014). Furthermore measures of detection sensitivity in
these paradigms confirmed that “blindness” reports reflected re-
duction in sensitivity of perception for unattended stimuli under
high load in the task rather than an effect of response criterion.

Importantly, these findings have been replicated with a variety
of perceptual load manipulations, which all converge to show
reduced perception accompanied by reduced visual cortex re-
sponses to unattended stimuli, under conditions of high perceptual
load in the attended tasks (e.g., Bahrami, Lavie, & Rees, 2007;
Rees, Frith, & Lavie, 1997; Vuilleumier, Schwartz, Duhoux,
Dolan, & Driver, 2005; see Lavie, 2005; Lavie et al., 2014; Lavie
& Torralbo, 2010, for reviews). Indeed, in some cases, high
perceptual load has been shown to eliminate noticing of any
task-unrelated stimuli across the entire sample (Cartwright-Finch
& Lavie, 2007).

All of these findings suggest a generalized limit to the capacity
for visual perception, which, when fully consumed with a high-
load task, results in “blindness” elsewhere. Crucially, perceptual
load does not simply correspond to general cognitive load but
rather to specific demands on perceptual processing. Manipula-
tions of nonperceptual “cognitive control” load, for example, in-
creased working memory load, can have similar effect on task
difficulty as perceptual load but lead to opposite effects on dis-
tractor processing to those of perceptual load (e.g., Carmel, Fair-
nie, & Lavie, 2012; de Fockert, Rees, Frith, & Lavie, 2001; Lavie,
2000; Lavie, Hirst, de Fockert, & Viding, 2004). Thus, perceptual
capacity is a distinct construct from working memory and other
cognitive control functions involved in the prioritizing of different

task stimuli (e.g., in primary vs. secondary tasks; see Brand-
D’Abrescia & Lavie, 2008; Lavie et al., 2004).

The purpose of the present study was to further characterize
perceptual capacity as distinct from working memory and other
more general cognitive capacities, using an individual differences
approach. Thus, instead of manipulating the task conditions that
result in blindness across the sample, we assessed the differences
in the rates of blindness for a fixed level of load across different
loading tasks. To test the generality of capacity limits for visual
perception, we included a measure based on “subitizing”: the
ability to accurately report the number of items from very brief
display presentations (lasting a fraction of a second) in addition to
more traditional visual perception tasks. We related subitizing to
visual detection performance in three different tasks—change
blindness, load-induced blindness, and multiple object tracking
(MOT)—by assessing interindividual covariance in subitizing and
detection performance in these tasks. We therefore investigated the
generalized capacity for perception across diverse task demands.
Establishing measures of perceptual capacity and relating these to
subitizing also allows prediction of an individual’s visual detection
ability, and, conversely, their propensity for inattentional blind-
ness, by a brief and simple-to-administer measurement of their
ability to count items from a brief display.

Subitizing and Perceptual Capacity:
Previous Research

Although subitizing has typically been studied within the do-
main of enumeration, we reasoned that it should reflect more
generalized visual detection and discrimination abilities, as it re-
quires rapid detection and individuation of items simultaneously
presented for a very brief duration. Indeed, in an enumeration task,
responses (accuracy or reaction times [RTs]) typically form a char-
acteristic set size function consisting of two linear components: a very
shallow or flat slope, which then bifurcates at a small number of
items into a serial slope as set size increases further (Kaufman,
Lord, Reese, & Volkmann, 1949). The encoding of sets before the
bifurcation point is thus thought to be simultaneous and parallel (as
we would expect for encoding of items within perceptual capac-
ity); serial processing then becomes necessary when the capacity
for this parallel processing is exhausted (Trick & Pylyshyn, 1993,
1994). Note that although subitizing capacity is quantified by set size
and reported simply as the number of items that can be subitized, this
limit is not a limit on counting ability as such. Clearly, people are able
to count large numbers of items in a serial manner. The limit is rather
in the simultaneous, parallel processing capacity for detection and
individuation of items (see Ester, Drew, Klee, Vogel, & Awh, 2012;
Piazza, Fumarola, Chinello, & Melcher, 2011).

In support of our hypothesis, estimates of subitizing capacity
across the population suggest limited capacity of circa four items,
and these are similar to capacity limits estimated in previous
perceptual load research. For example, Lavie and colleagues have
demonstrated, on multiple occasions, that search tasks that involve
four task-relevant items or fewer do not exhaust perceptual capac-
ity, whereas larger sets do (Forster & Lavie, 2008; Lavie & Cox,
1997; Lavie & Fox, 2000). Finally, as we briefly review here, a
few recent studies of subitizing are suggestive of a link with visual
perception capacity in support of our hypothesis.
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Several studies have related subitizing to attention and capacity-
limited visual perception using the attentional blink paradigm. In
this paradigm, several stimuli are presented in rapid succession.
Stimuli presented within 700 ms of a target in this stream are less
likely to be detected or recognized, and this is attributed to atten-
tional resources still being occupied by the target (Raymond,
Shapiro, & Arnell, 1992). When enumeration stimuli are presented
in the post target blink period, subitizing performance is signifi-
cantly diminished (compared with their presentation with no pre-
ceding target; e.g., Burr, Turi, & Anobile, 2010; Egeth, Leonard, &
Palomares, 2008; Olivers & Watson, 2008; Xu & Liu, 2008).

In other attention tasks, subitizing was significantly worse when
attention was directed toward a spatially (rather than temporally, as
in the attentional blink paradigm) separate task. For example, in a
study by Railo, Koivisto, Revonsuo, and Hannula (2008), subitiz-
ing performance was significantly worse for unexpected dots ap-
pearing while participants were attending a line-length judgment
task similar to that used by Mack and Rock (1998) to assess
inattentional blindness.

Subitizing has also been shown to be significantly affected by
the level of perceptual load in a concurrent task. For example, in
a study by Vetter, Butterworth, and Bahrami (2008), participants
performed an enumeration task concurrently with a primary task of
either low or high perceptual load. Their participants discriminated
target shapes presented at fixation. The targets were defined by
either a single feature (color, low perceptual load) or a conjunction
of features (color and orientation, high load). Participants also
attempted to enumerate the number of stimuli in a surrounding
circle. High perceptual load in the central task reduced subitizing
performance for the peripheral stimuli. Similarly, Chesney and
Haladjian (2011) showed that while tracking multiple moving dots,
the capacity for subitizing squares that were presented briefly
among the dots was reduced proportionally to the number of
objects being tracked. In their study, the average subitizing capac-
ity decreased by approximately one item for every dot that was
being tracked, suggesting that the same capacity limit underlies
both tasks. In contrast to these findings, concurrent “complex
span” working memory load does not impact on subitizing perfor-
mance but does have a detrimental effect on enumeration of higher
quantities (Tuholski, Engle, & Baylis, 2001), thus providing fur-
ther evidence that the capacity limit underlying subitizing per se
(as opposed to enumeration in general) is specific to perceptual
processing.

In summary, the findings of previous research are encouraging
for the hypothesis that there is a general perceptual capacity limit
that underlies subitizing and detection in attention-demanding task
conditions. In the present research, we investigate this further by
assessing common variance across diverse task demands in the
change blindness, load-induced blindness, MOT, and subitizing
paradigms.

Study 1

The aim of Study 1 was to assess whether individual differences
in detection of change between two flickering images can be
predicted from perceptual capacity as measured by subitizing
performance. To measure subitizing capacity, participants per-
formed a canonical enumeration task with brief stimulus presen-
tations. The enumeration task required participants to rapidly es-

timate and report the number of a briefly presented set of squares
(see Figure 1). The point at which the report-accuracy/set-size
function transitioned from parallel to serial was taken as their
maximal subitizing capacity. Change detection was measured us-
ing the flicker task, which is perhaps the best established measure
of the phenomenon of change blindness (Rensink et al., 1997).
Participants were asked to detect the presence or absence of a
change in flickering pairs of images of a real-world scene (see
Figure 2). If a common capacity limit underlies both subitizing and
change detection, there should be a positive association between
subitizing capacity and the ability to detect the presence of
changes.

Method

Participants. A sample of 296 participants (132 male), aged
18 to 64 years (M � 31.33, SD � 13.34), volunteered to participate
in Study 1. Participants did not receive financial compensation for
their time. Participants’ data were excluded from analysis if they
performed at chance-level accuracy in the lowest set size of the
enumeration task (11 participants), or if their false alarm rate was
more than two standard deviations above the group average in the
change detection task (six additional participants). The final sam-
ple analyzed was therefore 279 (127 male), aged 18 to 64 years
(M � 30.40, SD � 12.07).

Stimuli and procedure. The data were collected in the “Live
Science” exhibition at the Science Museum in London over a
period of several consecutive weeks. All participants provided
written informed consent and had normal or corrected-to-normal

Figure 1. The enumeration task used in both Studies 1 and 2. A fixation
cross was presented for 1 s, which was then replaced by a display con-
taining a variable number of (1–9) randomly sized and positioned squares.
After 100 ms, the stimulus display was replaced by a black-and-white noise
mask for 400 ms and then a central “?” for 2,400 ms. Participants were
instructed to respond as quickly as possible after the squares were pre-
sented, indicating how many they thought there were by pressing the
corresponding key on the keyboard number pad.
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vision. The study was conducted in a quiet section of the museum;
this area contained three computers, and so volunteers participated
in groups of one to three at a time. There was always at least one
experimenter present during the study; after explaining the task
and obtaining informed consent, the experimenter initiated the
tasks. Tasks were prepared and presented in MATLAB (Math-
Works, Inc., Natick, MA) using the Cogent toolbox (www.vislab
.ucl.ac.uk/cogent.php). Participants were seated approximately 60
cm from the screen and asked to maintain this distance, but their
head position was not restrained. The entire study took approxi-
mately 25 min to complete.

Enumeration task. Figure 1 illustrates a typical enumeration
trial. Each trial began with the presentation of a fixation point for
1 s; this was followed by a stimulus set of black squares, presented
for 100 ms, each of which was randomly positioned in an area
subtending 7.5 cm � 7.5 cm (7.15° � 7.15° at a distance of 60 cm)
in the center of the screen. The squares varied in size, ranging from
a minimum of 0.4 cm to a maximum of 4.0 cm (0.38° to 3.8° at a
distance of 60 cm). The stimulus display was followed immedi-
ately by a central noise mask made up of randomly positioned
black-and-white squares covering the same area as the stimulus
display (7.5 cm � 7.5 cm). After 400 ms, the mask was replaced
by a central “?” to prompt a response; this remained onscreen for
an additional 2,400 ms or until a response was made. Participants
were instructed to respond as quickly as possible indicating the
number of squares displayed by pressing a key from 1 to 9 on the
right-hand number pad of the keyboard. They could respond at any
time following the initial stimulus display.

The task comprised of one practice block of six trials, followed
by three experimental blocks of 54 trials each. After the task was
explained to them, participants completed the practice block and
confirmed that they understood the instructions before continuing
to the experimental trials.

Change detection task. Each trial began with a fixation point
for 1 s, which was followed by the presentation of a photograph of
an outdoor scene occupying a space 22.5 cm � 13.52 cm (21.2° �
12.8° at a distance of 60 cm). The image was presented for 200 ms,
followed by a gray rectangle of matching dimensions for 100 ms,
and then by a second image for an additional 200 ms, which was
again replaced by a gray rectangle presented for 100 ms (see

Figure 2). The stimuli cycled repeatedly in this fashion for a
maximum of 15 s or until participants responded. After a response
was made, a green tick (3.1 cm � 3.82 cm) or a red cross (2.5
cm � 2.5 cm) appeared onscreen for 700 ms, indicating that the
response was correct or incorrect, respectively.

The scene stimuli could either be identical (50% of trials) or
could contain a slight but conspicuous change (50% of trials).
Participants were instructed to respond by pressing the right shift
key on the computer keyboard if a change was present, or the left
shift key if there was no change. They were instructed to respond
as soon as they thought they knew the answer; if the 15 s expired
with no response being made, a “no change” response was re-
corded.

The task consisted of 44 trials in total, each of which was
initiated by the participant by pressing the space bar when they
were ready. After the task was explained to them, participants
completed one demonstration practice and then commenced the
experimental trials.

Results

Change detection task performance. Table 1 presents aver-
age change detection performance for the entire sample. As shown
in the table, the false alarm rate was very low (as is typical in
change blindness paradigms); a nonparametric estimate of detec-
tion sensitivity (“A”) was therefore calculated using the formula
described by Zhang and Mueller (2005). The associated measure
of decision bias (b) was also calculated. These measures were used
in subsequent analyses.

Enumeration task performance. A curve-fitting procedure
was used to estimate individual subitizing capacity. Each partici-
pant’s accuracy (% correct) at each set size from 1 to 8 was fit with
a bilinear function.1 The function consisted of two linear compo-
nents fitted to the enumeration accuracy data for each participant
as follows: The function used starting values of 90% intercept and
0% slope of the first line, and �15% for the slope of the second
line. Each integer set size value was tested as a candidate break-
point for the function using these starting values. The value that fit
with the least error was then taken as a starting point, and param-
eters were varied from �1 to �1 of that value using MATLAB’s
fminsearch function to find the best-fitting slope and intercepts.
The average fit of the function to the enumeration data was good.
Across the sample, the average root mean square error (RMSE)
was 8.02 (SD � 4.39) and the average adjusted R-squared value
was 0.78 (SD � .20). Thus, the bilinear function appears to predict
the observed scores with little error.

The mean estimated subitizing capacity was 3.63 (SD � 0.92),
which fits well with typically observed limit of three to four items
in similar tasks that involve very brief display durations (e.g., Burr
et al., 2010). As a measure of performance not dependent upon
subitizing capacity (i.e., “estimation” performance), the average
accuracy across all set sizes above the bifurcation point was
calculated for each participant. The sample mean estimation accu-
racy was 46.02% (SD � 10.91).

1 Set Size 9 was excluded from analysis because of “end effects”
observed in previous research, wherein participants tend to guess the
maximum value when presented with large set sizes; artificially inflating
the number of correct responses.

Figure 2. The change detection task used in Study 1. A photographic
image of a real-world scene was presented for 200 ms, followed immedi-
ately by a gray rectangle of matching size and position, and then another
scene image for 200 ms, creating the appearance of a “flickering” image.
This stimulus cycle repeated for up to 15 s until the participant responded
by pressing either the left or right “shift” key to indicate whether both
images were identical or not, respectively. See the online article for the
color version of this figure.
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Detection rate. Table 2 presents the correlation matrix for all
the variables measured in Study 1. Subitizing capacity was signif-
icantly correlated with change detection rate, r(278) � .31, p �
.001: Individuals who could subitize more items were more likely
to accurately detect changes. There was also a correlation between
change detection rate and estimation accuracy, r(278) � .15, p �
.013, which was significantly weaker than that between subitizing
and detection rate (difference z score � �2.24, p � .03; calculated
using the method described by Hittner, May, & Silver, 2003, and
implemented using the cocor package [Diedenhofen & Musch,
2015] in R [R core team, 2013]).

A hierarchical regression was used to examine the unique con-
tribution of subitizing capacity to change detection when including
estimation accuracy to control for general factors. The regression
included two steps, the first of which included only estimation
accuracy as a predictor of detection rate; subitizing capacity was
then added to the model in a second step. Both steps were signif-
icant (Step 1: adjusted R2 � .02, p � .013; Step 2: adjusted R2 �
.14, p � .001), and both subitizing capacity and estimation accu-
racy accounted for a significant portion of unique variance in the
final model (as shown in Table 3). Any common variance associ-
ated with task-general factors (such as motivation) would be
expected to affect both measures similarly. By establishing a
significant unique contribution of each predictor, we therefore
established that general factors do not account for the relationship
with change detection.

Detection sensitivity. In order to establish that the association
between tasks could not be attributed to differences in response
bias, the analyses were replicated using detection sensitivity (A;
Zhang & Mueller, 2005). Change detection sensitivity was posi-
tively correlated with subitizing capacity, r(278) � .37, p � .001
(see Figure 3). In contrast, the detection decision criterion (b) was
not correlated with subitizing capacity, r(278) � �.08, ns. These
findings support the hypothesis that subitizing can predict visual
perceptual capacity rather than response criterion. Again, there
was also a positive correlation between change detection sensitiv-
ity and average estimation accuracy, r(278) � .15, p � .013 (see

Figure 4), which was significantly weaker than the correlation
between subitizing and detection sensitivity (difference z
score � �3.12, p � .002).

Hierarchical regression was run, using subitizing capacity this
time to predict change detection sensitivity, while controlling for
estimation accuracy as before. Both steps of the regression were
significant (Step 1: adjusted R2 � .02, p � .013; Step 2: adjusted
R2 � .19, p � .001), and both subitizing capacity and estimation
accuracy accounted for a significant portion of unique variance in
the final model (as shown in Table 4), replicating the detection rate
findings.

The results of Study 1 support the hypothesis that perceptual
capacity as measured by subitizing can predict the rates of
change detection or blindness. These results held when predict-
ing either detection rates or detection sensitivity. Thus, in-
creased capacity to subitize was associated with better ability to
accurately detect changes and not simply an effect of response
criterion. This relationship is unlikely to be explained simply by
general factors such as motivation because subitizing accounted
for a significant portion of unique variance when such factors
were controlled by including estimation accuracy in multiple
regression analyses. Larger number estimation is thought to
reflect a different cognitive process to subitizing (e.g., Burr et
al., 2010; Cutini, Scatturin, Moro & Zorzi, 2014; Vetter, But-
terworth, & Bahrami, 2011) yet should have also been affected
by general factors such as motivation. The finding of unique
variance explained by subitizing capacity when estimation ac-
curacy is controlled suggests that the perceptual capacity un-
derlying subitizing is a specific predictor of change detection.
The significant association between estimation accuracy and
detection sensitivity was less expected. It is possible that the
relationship may be related to some other cognitive process, to
which Study 2 may provide insight.

Table 1
Average Performance in the Change Detection Task of Study 1

Measure Mean SD

Detection rate .68 .13
False alarm rate .44 .06
Detection sensitivity (A) .89 .06
Response bias (b) 1.99 .49

Table 2
Correlation Matrix of Performance Measures for all Tasks in Study 1

Measure 1 2 3

1. Subitizing —
2. Estimation .24�� [.14, .34] —
3. Detection sensitivity (A) .37�� [.27, .48] .15� [.06, .25] —
4. Detection rate .31�� [.20, .42] .15� [.04, .25] .80�� [.75, .84]

Note. Detection sensitivity and detection rate refer to performance on the change detection “flicker” task.
Upper and lower 95% confidence intervals are presented in brackets.
� p � .05. �� p � .005.

Table 3
Hierarchical Regression Predicting Change Detection Rates
From Subitizing (Step 2) While Controlling for Estimation
Accuracy (Step 1)

Model Predictor � t p

Step 1 Constant 37.79 �.001
Adjusted R2 � .02, p � .013 Estimation .24 2.49 .013
Step 2 Constant 11.57 �.001
Adjusted R2 � .14, p � .001 Estimation .24 4.12 �.001

Subitizing .36 6.35 �.001
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Study 2

Study 1 established that individuals with greater subitizing
capacity were better able to detect changes in the flicker change
detection paradigm, indicating a greater capacity for visual per-
ception. In Study 2, we further investigated whether subitizing
capacity is predictive of visual detection in a modified load-
induced blindness task (Macdonald & Lavie, 2008). Participants
performed a central task in which they made a line-length judg-
ment of a centrally presented cross, the difficulty of which was
established to be of an intermediate level of load in prior research
(Remington et al., 2014). While performing the central task, par-
ticipants attempted to detect the presence of a contrast increment in

peripherally presented grating stimuli (see Figure 5). Our hypoth-
esis of a generalized capacity for visual perception leads to the
prediction that there should be a positive association between
individuals’ subitizing capacity and the ability to detect the pres-
ence of a contrast increment in the visual periphery.

Method

Participants. A total of 165 participants (80 male), aged 18 to
62 years (M � 26.56, SD � 9.75), completed Study 2. Partici-
pants’ data were excluded from analysis if they performed at
chance-level accuracy in the lowest set size of the enumeration
task (10 participants), if their detection sensitivity was more than
two standard deviations below the group average in the control
block of the load-induced blindness task (13 participants), or if
their accuracy in the central cross arm judgment was near chance
in the main block of the load-induced blindness task (20 partici-
pants). The final sample analyzed was therefore 122 (59 male),
aged 18 to 62 years (M � 25.22, SD � 8.89).

Table 4
Hierarchical Regression Predicting Change Detection Sensitivity
From Subitizing (Step 2) While Controlling for Estimation
Accuracy (Step 1)

Model Predictor � t p

Step 1 Constant 114.75 �.001
Adjusted R2 � .02, p � .013 Estimation .15 2.50 .013
Step 2 Constant 47.16 �.001
Adjusted R2 � .19, p � .001 Estimation .25 4.55 �.001

Subitizing .43 7.74 �.001

Figure 3. Change detection sensitivity and subitizing capacity correlation
in Study 1. Dashed lines indicate 95% confidence intervals for the corre-
lation. See the online article for the color version of this figure.

Figure 4. Change detection sensitivity and estimation accuracy correla-
tion in Study 1. Dashed lines indicate 95% confidence intervals for the
correlation. See the online article for the color version of this figure.

Figure 5. Example trial for the load-induced blindness task used in Study
2. Participants responded to the cross task during the first blank interval,
and then upon the presentation of the question mark symbol, responded to
the detection task.
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As in Study 1, the sample size was dependent upon the number
of museum visitors who were interested in taking part. Our sample
of 122 provides a power greater than .99, assuming a similar effect
size to that in Study 1 (i.e., Cohen’s f2 � .21 for a �R2 of .17 when
predicting change detection sensitivity).

Stimuli and procedure. The study was run in the museum’s
“Live Science” exhibition over a period of several consecutive
weeks, which followed the run of Study 1. The study was run
under the same conditions as Study 1, in groups of one to three,
with at least one experimenter present at all times. The experi-
menters explained the tasks to the participants, and then initiated
the study after obtaining written informed consent. Once again,
volunteers received no payment for their participation. Participants
completed the same visual enumeration task as described in Study
1. Instead of the change detection flicker task, this time, partici-
pants also completed a load-induced blindness task. The entire
study took approximately 25 min to complete.

Each trial started with a central fixation dot presented for 1 s.
This was followed by a central cross shape and four peripheral
black-and-white square gratings for 120 ms. A blank screen was
then presented for 1,880 ms, followed by a central “?” for 100 ms,
and then another blank screen for a further 1,900 ms. The cross
shape was formed of one vertical and one horizontal line, one of
which was always longer (4.5 cm; 4.1° at a distance of 60 cm) than
the other (3.5 cm; 3.3° at a distance of 60 cm). On a randomly
selected 50% of trials, the vertical arm was longer; on other trials,
the horizontal arm was longer. Each square grating was 3.6 cm �
3.6 cm (3.4° � 3.4° at a distance of 60 cm) and was presented in
one of the four display corners 6.4 cm (6.1°) from the nearest
grating edge to the center of the screen (extending to a maximum
of 10.9° into the periphery). The contrast of the (nontarget) grat-
ings was 10%; on 25% of trials, the contrast of one (target) grating
was incremented by an additional 28%.

Participants were instructed to respond immediately after the
stimulus presentation by pressing either the up-arrow key or the
left-arrow key to indicate which cross arm (vertical or horizon-
tal) was longer. A 1,900-ms blank interval followed the task
presentation and this interval elapsed irrespective of the partic-
ipant’s response latency. A central question mark symbol “?”
was then presented and participants were instructed to indicate
whether the contrast increment was present in any of the four
gratings by pressing the spacebar upon seeing this dis-
play.

The task included one practice block of 10 trials, followed by
two experimental blocks of 32 trials, and, finally, one control block
of 32 trials. The control block was identical to the experimental
blocks except that participants were not required to attend to arm
length discrimination. In the control block, the “?” prompt ap-
peared immediately after the stimulus display, and participants
were instructed to respond by indicating whether a contrast incre-
ment was present in one of the gratings. The control block was
used to ensure visibility did not play a role in detection perfor-
mance. Participants with a chance level of performance on this
block were excluded from the main analysis, as described in the
Participants section. Participants were instructed to maintain fix-
ation throughout the task, as no one grating was more or less likely
to be brighter than the others.

Results

Load-induced blindness task performance. Table 5 presents
average performance in the contrast detection task for the entire
sample. The same measures of detection sensitivity (A) and re-
sponse criterion (b) as used in Study 1 were calculated for this data
and used in subsequent analyses.

Enumeration task performance. As in Study 1, individual
subitizing capacity was estimated by fitting a bilinear function to
the individual accuracy data at each set size (excluding Set Size 9).
Again, the bilinear function fit the data well (average RMSE �
8.10, SD � 4.40; average R2 � .77, SD � .20). Average subitizing
capacity was 3.32 (SD � 0.83), which again fits well with the
typically observed limit of three to four items. Average estimation
accuracy was 51.03% (SD � 11.01).

Detection rate. Table 6 presents a matrix of the correlations
between performance measures of each of the tasks in Study 2.
Subitizing capacity was positively correlated with detection rate in
the load-induced blindness task, r(121) � .29, p � .001, as was
estimation accuracy, r(121) � .22, p � .014, and these correlations
were not significantly different (z � �0.65, p � .51).

As in Study 1, hierarchical regression was used to measure the
unique contribution of each variable. The regression consisted of
two steps: the first step included only estimation accuracy, and the
second step included estimation accuracy followed by subitizing
capacity. Both steps of the regression were significant (Step 1:
adjusted R2 � .04, p � .014; Step 2: adjusted R2 � .09, p � .008).
As can be seen in Table 7, subitizing capacity accounted for a
significant portion of unique variance in the final model whereas
estimation accuracy did not. As in Study 1, common variance
associated with general factors such as motivation would be ex-
pected to affect both subitizing and estimation performance simi-
larly. The finding that subitizing alone was a significant unique
predictor of stimulus detection provides evidence against alterna-
tive accounts in terms of any general task performance factors.

Detection sensitivity. Detection sensitivity was positively
correlated with subitizing capacity, r(121) � .38, p � .001 (see
Figure 6). The detection decision criterion (b) was not significantly
correlated, r(121) � .08, ns. Estimation accuracy was also corre-
lated with detection sensitivity, r(121) � .25, p � .006 (see Figure
7), and although the correlation was numerically smaller than that
with subitizing capacity, the two were not significantly different
(difference z score � �1.25, p � .21).

Once again, a hierarchical regression was used to measure the
unique contribution of each variable as in the analysis of detection
rate. Both steps of the regression were significant (Step 1: adjusted
R2 � .05, p � .006; Step 2: adjusted R2 � .15, p � .001). As can
be seen in Table 8, subitizing capacity accounted for a significant

Table 5
Average Performance in the Load-Induced Blindness Task of
Study 2

Measure Mean SD

Detection rate .70 .21
False alarm rate .24 .18
Detection sensitivity (A) .80 .12
Response bias (b) 1.16 .55
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portion of unique variance in the final model, whereas estimation
accuracy did not. As in Study 1, the finding that subitizing alone
was a significant unique predictor of stimulus detection provides
evidence against alternative accounts in terms of any general task
performance factors such as motivation, as these would be ex-
pected to affect both subitizing and estimation performance simi-
larly.

The results of Study 2 replicate the relationship between subi-
tizing capacity and visual detection abilities established in Study 1.
The positive association between these measures indicates a com-
mon underlying resource, one that cannot be attributed to general
factors such as motivation, as demonstrated by the unique variance
accounted for by subitizing. Although estimation accuracy in this
study was positively correlated with stimulus detection, this cor-
relation was not significant in a multiple regression including
subitizing capacity, suggesting estimation accuracy alone was not
a predictor of detection.

The dissociation between the correlation of estimation accuracy
with detection sensitivity in change detection, but not load-induced
blindness, tasks is potentially interesting. One may speculate that
the association between large set size estimation and detection of
changes in a meaningful visual scene is related to the ability to
extract the “gist” (or summary statistic) of a visual display (e.g.,
Alvarez & Oliva, 2008). Outside of focused attention, the numer-
ical gist of large quantities or the gist of a change versus no-change
image may benefit from the same cognitive process. In contrast the
local contrast increment detection required in the load-induced
blindness task may depend on a more precise level of representa-
tion that can only be obtained within perceptual capacity, thus
accounting for the selective correlation with subitizing capacity
but not estimation of larger set sizes (see Ward, Bear, & Scholl,
2016, for a relevant discussion). As this is mere speculation at
present and the focus of the present study was on subitizing rather
than estimation, we do not dwell on this further.

Study 3

Studies 1 and 2 established subitizing as a predictor of visual
detection in the change detection and load-induced blindness par-
adigms. In both studies, subitizing was a significant predictor
when controlling for larger number estimation. This provides some
evidence that an individual’s subitizing capacity represents a dis-
tinct predictor of visual detection that is unlikely to reflect general
cognitive factors or strategies, as these would apply to the estima-
tion performance for larger numbers. In Study 3, we sought to
further assess our hypothesis that subitizing capacity is reflective
of a generalized perceptual capacity, as distinct from general
cognitive ability, by specifically examining the relation to working
memory capacity. Working memory is a well-established predictor
of individual differences in a range of attention tasks, including,
for example, the Stroop task, spatial cuing, and task switching
(e.g., Kane, Bleckley, Conway, & Engle, 2001; Kane & Engle,
2000; Redick & Engle, 2006). However, as discussed earlier, in
load theory, perceptual capacity and working memory capacity are
two dissociable functions, and there are numerous demonstrations
of opposite effects of working memory load and perceptual load on
attention in support of this claim (see Lavie et al., 2004, for
review). Thus, if subitizing reflects perceptual capacity, it should

Table 6
Correlation Matrix of Performance Measures for all Tasks in Study 2

Measure 1 2 3

1. Subitizing —
2. Estimation .25�� [.08, .44] —
3. Detection sensitivity (A) .38�� [.22, .52] .25�� [.08, .41] —
4. Detection rate .29�� [.12, .43] .22� [.05,.38] .69�� [.58, .78]

Note. Detection sensitivity and detection rate refer to performance on the load-induced blindness task. Upper
and lower 95% confidence intervals are presented in brackets.
� p � .05. �� p � .005.

Table 7
Hierarchical Regression Predicting Detection Rate in the Load-
Induced Blindness Task From Subitizing Capacity (Step 2)
While Controlling for Estimation Accuracy (Step 1)

Model Predictor � t p

Step 1 Constant 5.48 �.001
Adjusted R2 � .04, p � .014 Estimation .22 2.51 .014
Step 2 Constant 3.43 .001
Adjusted R2 � .09, p � .008 Estimation .16 1.75 .083

Subitizing .24 2.70 .008

Figure 6. Detection sensitivity in the load-induced blindness task and
subitizing capacity in Study 2. Dashed lines represent 95% confidence
intervals for the correlation. See the online article for the color version of
this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1247INDIVIDUAL DIFFERENCES IN PERCEPTUAL CAPACITY



remain a significant unique predictor of visual perception when
controlling for individual differences in working memory capacity.
In order to specifically address the cognitive control aspect of
working memory, we chose three complex span tasks that involved
not only memory retention but also load cognitive control in the
form of multiple task demands. These have been reliably shown to
predict performance of tasks requiring cognitive control of atten-
tion (e.g., Redick & Engle, 2006), and are thus predicted by load
theory to be dissociable from perceptual capacity. In addition,
recent research has demonstrated that using multiple versions of
these tasks, which involve different stimulus categories (such as
numerical, spatial, and verbal memoranda), can produce measures
more sensitive to domain-general working memory functions than
when using only a single task (e.g., Foster et al., 2015; Oswald,
McAbee, Redick, & Hambrick, 2015).

Furthermore, in Studies 1 and 2, the enumeration task and both
visual detection tasks required detection of briefly presented (less
than a quarter of a second) or transient stimuli. It is plausible that
the common variance is restricted to the capacity for perception
from rapid, transient presentations rather than perceptual capacity
in a wider sense, which extends to longer and more continuous
presentations. To test this in Study 3, we included a continuous
measure of perceptual capacity (MOT), which does not involve
rapid or transient displays. In Study 3, we thus assessed individual
differences in working memory capacity, subitizing, transient change
detection in the flicker task (as used in Study 1), and continuous
perception of moving objects with the MOT task.

Method

Participants. Seventy-two (43 female) participants, aged 18
to 52 years (M � 24.42, SD � 6.99), were recruited from the
University College London (UCL) psychology research volunteer
database, and each received £7.50 (approximately $10.50) for their
time. All participants provided written informed consent prior to

taking part. As in Study 1, participants were excluded if their
accuracy was near chance for the lowest set size of the enumera-
tion task, leading to the exclusion of four participants (three male)
and a final sample size of 68. Assuming a similar effect size as
Studies 1 and 2 (i.e., Cohen’s f 2 � .21; see Study 2), the sample
of 68 provided a power of .96 to detect a change in R2 in a
regression controlling for estimation accuracy and three measures
of working memory capacity (see Procedure).

Procedure. Study 3 was run at UCL, in a quiet testing room,
and volunteers participated one at a time. Participants completed a
total of five tasks: three complex span working memory tasks, an
enumeration task, an object tracking task (MOT), and a change
detection flicker task. There was always a researcher present in the
room with the participants during the study. The study took ap-
proximately 1 hr.

Enumeration task. Participants completed the same enumer-
ation task as in Studies 1 and 2, except for the following changes:
The length of each block was increased to 81 trials, and a fourth
experimental block was added to the task (producing a total of 324
trials).

Change detection task. Participants completed the same
change detection task as used in Study 1; however, this time the
task included eight additional trials (total � 52 trials). The task
structure was the same except that the flickering presentation time
was reduced to 8 s.

MOT task. Participants completed a MOT task in which they
were required to track four target dots as they moved around the
center of the screen among four nontarget dots (see Figure 8). The
dots subtended 0.5 cm � 0.5 cm (0.5° at a distance of 60 cm) and
moved randomly within an area subtending 6 cm � 6 cm (5.72° at
a distance of 60 cm) at the center of the screen. On each trial, eight
black dots were presented against a gray background; after 500 ms,
four of the dots became blue for 1.5 s, after which they returned to
being black. After another 500 ms, the dots began to move at a rate
of 2.15°/s; the dots bounced off one another and off the edges of
the movement area. After 8 s, the dots ceased movement and a
single probe dot became blue once more. Participants responded to
the probe by pressing the “1” key on the keyboard number pad if
the probe was a target, and the “2” key, if not. The probe then
turned either green or red to indicate a correct or incorrect re-
sponse, respectively. A fixation cross was then presented for 1 s
before the next trial started.

Complex span tasks. Participants completed three complex
span working memory tasks: the operation span (OSPAN) task, the
reading span (RSPAN) task and the symmetry span (SSPAN) task
(the same as those described in Oswald et al., 2015). These

Table 8
Hierarchical Regression Predicting Detection Sensitivity in the
Load-Induced Blindness Task From Subitizing Capacity (Step 2)
While Controlling for Estimation Accuracy (Step 1)

Model Predictor � t p

Step 1 Constant 13.71 �.001
Adjusted R2 � .05, p � .006 Estimation .25 2.77 .006
Step 2 Constant 10.43 �.001
Adjusted R2 � .15, p � .001 Estimation .16 1.77 .080

Subitizing .34 3.89 �.001

Figure 7. Detection sensitivity in the load-induced blindness task and
estimation accuracy in Study 2. Dashed lines represent 95% confidence
intervals for the correlation. See the online article for the color version of
this figure.
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shortened versions of the tasks provide the opportunity for a more
representative measure of working memory, nonspecific to a par-
ticular cognitive modality (numerical, lexical, or spatial). Using a
variety of shortened working memory span tasks in lieu of a single
full-length task has been shown to provide a better measure of
underlying capacity (see Foster et al., 2015, and Oswald et al.,
2015, for an in-depth discussion).

E-Prime 2.0 was used to run these tasks. The task procedure was
similar for all three tasks. In the OSPAN task (see Figure 9),
participants were presented with a series of sums (e.g., [8/2] � 9 �
13). They responded to each sum by clicking “yes” or “no” icons
on the screen to indicate whether the given answer was correct.
Following each sum, participants were presented with a letter,
which they memorized. After a variable number of sum and letter
presentations (range from 4–6), the participant was presented with
a memory response screen, from which they selected the memo-
rized letters in the order in which they were presented. If they were
uncertain of a given memoranda, they responded with “blank.”
The number of letters recalled in the correct sequential position
over the course of the task provided the participant’s “span” score.

Before starting the task, the participants completed a series of
practice trials, first performing only the “sum” component with no
memoranda, and then only the “memory” component with no
sums, and, finally, both together, as in the experimental trials. The
average RT from the final practice section plus two standard
deviations was used as the time limit in experimental trials.
Throughout the task, the participant’s accuracy (% correct) in the
operation portion of the task was displayed, and they were in-
structed to maintain a minimum of 80% accuracy.

The RSPAN task followed the same task structure; however,
instead of a sum on each trial, the participant read a sentence and
responded to indicate whether or not the sentence made sense (e.g.,
“The prosecutor’s dish was lost because it was not based on fact”).
The SSPAN task followed the same structure, but instead of a sum

or sentence, the participant responded to a black-and-white block
image, indicating whether or not the left and right sides were
mirror-symmetrical. In the SSPAN task, instead of memorizing
letters, the participant memorized the position of a black square in
a white grid.

Results

Enumeration task performance. A bilinear function was
fitted to the individual accuracy data at each set size (excluding set
size nine), as before, in order to estimate individual subitizing
capacity. Again, the bilinear function fit the data well. The same
curve-fitting procedure was used as in Studies 1 and 2 to estimate
individual subitizing capacity. The average RMSE for the fit was
8.26 (SD � 4.75) and average adjusted R2 was .76 (SD � .22),
indicating a good fit of the model to the data. As previously, a
subitizing range was estimated for each participant based on the
point at which the two linear components of the bilinear function
intersected. Average subitizing capacity was 3.17 (SD � 0.84),
which is within range of our previous findings using this task.
Accuracy at set sizes beyond the subitizing range was averaged as
a measure of “estimation” ability; average estimation accuracy was
49.10 (SD � 14.35), which was also within the range found earlier.

Change detection task performance. Table 9 presents aver-
age performance for the change detection task in Study 3; once
again, false alarm rates were very low, so the nonparametric
measure of detection sensitivity (A) was calculated with the cor-
responding measure of bias.

MOT task performance. Average accuracy in the MOT task
was well above chance (mean accuracy � 75.19%, SD � 12.76).
In order to obtain an estimate of tracking capacity comparable with
the subitizing capacity estimate, we calculated the effective num-
ber of objects tracked (ENOT) using the formula described by
Scholl, Pylyshyn, and Feldman (2001). ENOT scores are calcu-

Figure 8. The Multiple Object Tracking task used in Study 3. Participants were presented with eight black dots,
four of which briefly turned blue before turning back to black; all eight dots then moved around randomly for
8 s. The dots then stopped moving, one turned blue again, and the participant responded by indicating whether
or not this was one of the original targets. See the online article for the color version of this figure.
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lated as m � n (2p � 1), where m is the estimated tracking capacity
(ENOT), n is the number of tracking targets, and p is the propor-
tion of correct responses. The average capacity based on this
formula was 1.90 (SD � 0.84).

Complex span task performance. Table 10 presents average
performance data for each of the complex span tasks. The total
score on each task was used, as this has previously been estab-
lished as the better measure of individual capacity (Redick et al.,
2012). The total score is calculated as the total number of mem-
oranda (letters or square positions) reported in the correct position
in sequence (ignoring incorrect or unknown items). The SSPAN
score is necessarily lower, as there were fewer overall trials in this

task. The maximum possible scores are 30 for the OSPAN and
RSPAN tasks, and 24 for the SSPAN task. As can be seen from
Table 10, average accuracy on the “operation” portion of the tasks
was very high: No participant scored below 80% (the recom-
mended cutoff to ensure that participants are performing both parts
of the task).

Predicting change detection from subitizing capacity. We
first examined whether perceptual capacity as measured by subi-
tizing significantly predicted change detection rates when control-
ling for working memory capacity using hierarchical regression.

Figure 9. (a) A typical trial in the Operation span task. Participants perform a series of sums and memorize
subsequently displayed letters. (b) After a variable number of trials a memory test screen is presented. (c) In the
Symmetry span task, symmetry judgments take the place of sums and location probes take the place of letter
memoranda. See the online article for the color version of this figure.

Table 9
Average Performance in the Change Detection Task of Study 3

Measure Mean SD

Detection rate .50 .12
False alarm rate .01 .09
Detection sensitivity (A) .82 .08
Bias (b) 2.41 .69

Table 10
Average Span Score and Operation Accuracy in Each of the
Complex Span Tasks

Task Mean score (SD) Mean accuracy (SD)

OSPAN 25.27 (5.34) 96.74 (3.48)
RSPAN 23.50 (4.51) 95.81 (3.90)
SSPAN 18.09 (4.62) 98.04 (2.65)

Note. OSPAN � Operation span; RSPAN � Reading span; SSPAN �
Symmetry span.
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The first step included only the working memory span scores;
subitizing range and estimation accuracy were added in the second
step. The full regression is presented in Table 9. The first step of
the regression including all the working memory span tasks did not
significantly predict change detection (adjusted R2 � �.03, ns).
The second step was significant (adjusted R2 � .18, p � .001), as
predicted. As can be seen in Table 11, subitizing capacity and
estimation accuracy were both significant predictors of change
detection rates when controlling for working memory.

These results were fully replicated when the same analyses
were run using detection sensitivity (A). The stepwise regres-
sion showed that subitizing significantly predicted detection
sensitivity (� � .29, t � 2.26, p � .027), while controlling for
working memory. In addition, as in Study 1, there was no
relationship between response bias (b) in the change detection
task and either subitizing, r(68) � �.05, ns, or estimation accuracy,
r(68) � �.14, ns.

Thus, in replication of Study 1, both subitizing capacity and
estimation accuracy appeared to measure distinct constructs, both
of which are predictive of change detection performance. Study 3
further showed that this prediction cannot be explained by working
memory or other general task-taking aptitudes, as the prediction
remains significant when controlling for complex span working
memory capacity.

Predicting MOT from subitizing capacity. Next, we exam-
ined whether subitizing capacity could predict a more continuous
measure of perceptual capacity, as reflected in the MOT task,
while controlling for any shared variance with working memory
capacity. We thus used a multiple regression, in which the first
step included working memory capacity as a control variable, and
the second step included subitizing and estimation accuracy, as in
previous analyses. The full regression is presented in Table 12.
The first step of the regression was significant (adjusted R2 � .09,
p � .029). More importantly the second step was also significant
(adjusted R2 � .22, p � .004), indicating common variance be-
tween subitizing and MOT capacity separate from any variance
associated with working memory capacity (see Figure 10), as
predicted from our general perceptual capacity hypothesis and in
line with load theory.

Taken together, the findings that subitizing predicted both
change detection and MOT independently of working memory

supports the hypothesized perceptual capacity as the construct
underlying common variance between subitizing and visual per-
ception tasks. Moreover, the differences in the transient versus
continuous nature of change blindness and MOT, respectively,
supports further the notion that their covariance with subitizing
reflects individual differences in a more generalized perceptual
capacity.

Testing the generalized perceptual capacity hypothesis.
The perceptual capacity hypothesis predicts that individual differ-
ences in MOT, change detection, and subitizing all depend upon
the same underlying capacity, which is distinct from working
memory capacity. To further examine this hypothesis, it is neces-
sary to establish the relationship between MOT and change detec-
tion. This relationship should not be attributable to working mem-
ory capacity but rather to perceptual capacity, as previously measured
with subitizing. Therefore, MOT capacity should predict change de-

Table 11
Hierarchical Regression Predicting Change Detection From
Complex Span Working Memory Capacity (Step 1), Subitizing,
and Estimation Accuracy (Step 2)

Model Variable � t p

Step 1 Constant 4.585 �.001
Adjusted R2 � �.03, ns OSPAN �.032 �.224 .823

RSPAN .059 .424 .673
SSPAN .108 .806 .423

Step 2 Constant 2.641 .010
Adjusted R2 � .18, p � .001 OSPAN .028 .206 .837

RSPAN �.126 �.950 .346
SSPAN �.006 �.048 .962
Estimation .310 2.469 .016
Subitizing .390 3.270 .002

Note. OSPAN � Operation span; RSPAN � Reading span; SSPAN �
Symmetry span; ns � not statistically significant.

Table 12
Hierarchical Regression Predicting MOT Capacity From
Working Memory Capacity (Step 1), Subitizing, and Estimation
Accuracy (Step 2)

Model Variable � t p

Step 1 Constant .085 .933
Adjusted R2 � .09, p � .029 OSPAN .134 .996 .323

RSPAN .187 1.429 .158
SSPAN .156 1.240 .219

Step 2 Constant –1.559 .124
Adjusted R2 � .22, p � .004 OSPAN .210 1.599 .115

RSPAN .032 .247 .806
SSPAN .090 .732 .467
Estimation .160 1.303 .198
Subitizing .361 3.088 .003

Note. MOT � Multiple object tracking capacity; OSPAN � Operation
span; RSPAN � Reading span; SSPAN � Symmetry span.

Figure 10. Object tracking capacity (Effective number of objects tracked)
and subitizing capacity correlation in Study 3. Dashed lines represent 95%
confidence intervals for the correlation. See the online article for the color
version of this figure.
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tection performance when controlling for working memory span but
not when controlling for subitizing.

To test this hypothesis, we first ran a regression that included the
working memory span scores and estimation accuracy in its first
step (thus controlling for executive working memory capacity and
general cognitive factors involved in estimation but not perceptual
capacity), and both working memory and tracking capacity
(ENOT) in the second step. The findings (see Table 13) show that
MOT significantly predicted change detection (adjusted R2 � .10,
p � .04; see (see Figure 11) when working memory was controlled
in support of our first prediction.

A further regression (see Table 14) was run to test the second
prediction that subitizing (rather than working memory) accounts
for the common variance between MOT and change detection.
This regression included working memory span measures, estima-
tion accuracy, and subitizing capacity as control variables in its
first step, and MOT capacity in the second step. The first step was
significant (adjusted R2 � .18, p � .003), indicating that subitizing
and estimation significantly predicted change blindness, as before,
whereas the second step was not significant (adjusted R2 � .18,
ns), indicating that MOT does not contribute unique variance to the
prediction of change detection when controlling for subitizing, in
line with our hypothesis.

Thus, MOT capacity appears to significantly predict change
detection when controlling for variance accounted for by working
memory capacity, paralleling the profile observed with perceptual
capacity for subitizing. Taken together, the results indicate that a
single underlying construct appears to underlie subitizing, change
detection, and MOT, and this construct is distinct from working
memory capacity. This is in accordance with our prediction of a
general perceptual capacity as distinct from the capacity for cog-
nitive control (as stipulated in load theory, e.g., Lavie et al., 2004).

Reliability of measures. The far larger number of trials in the
enumeration task in Study 3 afforded a reliability analysis based on
split-half correlations.2 The data for each task was split such that
every other trial throughout the task was assigned to one split or
the other, respectively. Spearman-Brown-corrected correlation co-
efficients are presented in Table 15. As shown in the table, positive
correlations between the split halves were significant for each of

the measures. Importantly, the reliability of estimation accuracy
(r � .89) was higher than that of subitizing capacity (r � .70).
Thus, clearly, the unique relationship between subitizing and the
other perceptual measures is not attributed to greater reliability of
the subitizing measure compared with the estimation measure.

Factor Analysis

Principle components analysis. The results reported thus far
suggest that there are two distinct constructs underlying perfor-
mance across the tasks—one representing perceptual capacity and
another representing working memory capacity. To examine this
possibility further, we applied a factor analysis approach to the
data.

Behavioral performance scores for each of the variables of
interest (subitizing, change detection sensitivity, MOT, OSPAN,
RSPAN, and SSPAN scores) were first entered into a principle
components analysis (PCA) with an orthogonal (varimax) factor
rotation. The Keyser-Meyer-Olkin (KMO) measure of sampling
adequacy indicated that the sample was adequate (KMO � .59;
Field, 2009; Kaiser, 1970). Bartlett’s test for sphericity was sig-
nificant, 	2(15) � 60.02, p � .001, suggesting that there were
sufficient interitem correlations for PCA.

Principle components were extracted with eigenvalues greater
than 1 (Kaiser, 1974). This resulted in a two-factor solution, and
was also supported by examination of a scree plot in which there
was a clear point of inflection at the third factor. The first factor
accounted for 35.25% of the overall variance and the second factor
accounted for 22.44% (57.69% cumulatively).

The rotated factor loadings for each variable are presented in
Table 16 and Figure 12. As can be seen from the table, the first

2 For the enumeration task in Studies 1 and 2, there were an insufficient
number of trials to effectively fit the bilinear function with only half of the
data.

Figure 11. Object tracking capacity (Effective number of objects tracked)
and change detection rate correlation in Study 3. Dashed lines represent
95% confidence intervals for the correlation. See the online article for the
color version of this figure.

Table 13
Hierarchical Regression Predicting Change Detection Rate
From Working Memory Capacity and Estimation Accuracy (Step
1), Followed by MOT Capacity (Step 2)

Model Variable � t p

Step 1 Constant 4.382 �.001
Adjusted R2 � .06, ns OSPAN �.090 �.651 .518

RSPAN .015 .113 .910
SSPAN �.002 �.011 .991
Estimation .352 2.628 .011

Step 2 Constant 4.518 �.001
Adjusted R2 � .10, p � .041 OSPAN �.116 �.852 .398

RSPAN �.026 �.196 .845
SSPAN �.025 �.193 .848
Estimation .301 2.262 .027
MOT .254 2.007 .041

Note. MOT � Multiple Object Tracking capacity; OSPAN � Operation
span; RSPAN � Reading span; SSPAN � Symmetry span; ns � not
statistically significant.
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component is indicated by working memory variables, all of which
have high, positive loadings. Conversely, the second factor is
indicated by the “perceptual” variables, which have similarly high
and positive loadings. The results of this analysis therefore support
the conclusion that two distinct and dissociable factors underlie
working memory and perceptual capacity, respectively. Interest-
ingly, MOT appears to not just load on the perceptual component
but also to moderately load on the first component of working
memory. Thus, in addition to perceptual resources, MOT appears
to also involve some working memory capacity.

Confirmatory factor analysis. As a further test of the hy-
pothesis that two distinct factors underlie performance across the
tasks, we replicated the model provided by the PCA in a confir-
matory factor analysis. This allowed us to formally compare the
best-fitting model provided by the PCA with other possible mod-
els, providing a better insight into the nature of the latent structure
of the data. This and other models were assessed using LISREL 8
(Scientific Software International, Inc., Chicago, IL) using a max-
imum likelihood estimation procedure based on the correlation
matrix presented in Table 17.

First, we tested the null hypothesis of an independence model
(with no structure) and established that it was significantly differ-
ent to the observed date, 	2(15) � 67.517, p � .001; thus, a model
with no structure does not fit the data well.

We then tested our hypothesized model, which included two
latent variables: One representing working memory, indicated by
the three complex span tasks; the other representing perceptual
capacity, indicated by subitizing, MOT, and change detection
sensitivity. In line with the PCA results, MOT was also allowed to
cross-load on both latent factors.

This model fit the data well; the minimum fit function chi-
square test of difference to the observed data was nonsignificant,
	2(8) � 10.83, p � .21, indicating that the model does not
significantly differ from the observed data. The standardized root
mean residual for the hypothesized model was .07, indicating a
good fit (for which .08 or lower residual variance is required;
Tabachnick & Fidell, 2013). The Akaike information criterion
(AIC) was 35.96, lower than both the independence and saturated
models (79.52 and 42.0, respectively), suggesting that the fit was

Table 14
Hierarchical Regression Predicting Change Detection Rate
From Working Memory Capacity, Estimation Accuracy, and
Subitizing (Step 1), Followed by MOT Capacity (Step 2)

Model Variable � t p

Step 1 Constant 2.641 .010
Adjusted R2 � .18, p � .003 OSPAN .028 .206 .837

RSPAN �.126 �.950 .346
SSPAN �.006 �.048 .962
Estimation .310 2.469 .016
Subitizing .390 3.270 .002

Step 2 Constant 2.779 .007
Adjusted R2 � .18, ns OSPAN .001 .007 .994

RSPAN �.130 �.980 .331
SSPAN �.017 �.138 .890
Estimation .289 2.275 .026
Subitizing .344 2.686 .009
MOT .127 .979 .332

Note. MOT � Multiple Object Tracking capacity; OSPAN � Operation
span; RSPAN � Reading span; SSPAN � Symmetry span; ns � not
statistically significant .

Table 15
Split-Half Correlations for Each Task

Measure
Spearman-Brown corrected

correlation coefficient

Change detection (Study 1) .69
Change detection (Study 3) .72
Load-induced blindness .67
Subitizing .70
Estimation .89
MOT .87
OSPAN .95
RSPAN .84
SSPAN .91

Note. All correlations were significant and positive (p � .001 for all).
MOT � Multiple Object Tracking capacity; OSPAN � Operation span;
RSPAN � Reading span; SSPAN � Symmetry span.

Table 16
Varimax Rotated Factor Loadings of Each Behavioral Variable on
Both Factors Produced by the Principle Components Analysis

Measure
Component 1

loading
Component 2

loading

OSPAN .83 �.09
RSPAN .70 .23
SSPAN .69 .05
Subitizing �.01 .81
Change detection (A) �.01 .69
MOT .42 .65

Note. OSPAN � Operation span; RSPAN � Reading span; SSPAN �
Symmetry span; MOT � Multiple Object Tracking capacity.

Figure 12. Factor loadings of each variable: subitizing capacity (Subi-
tizing), change detection sensitivity (CB_A) Tracking capacity (MOT),
Reading span (RSPAN), Symmetry span (SSPAN) and Operation span
(OSPAN) in varimax-rotated space. Note that dashed lines represent a
loading of zero on each component axis.
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superior to these alternative models, with either no relationships or
with unstructured relationships between every variable. The com-
parative fit index was .95, also indicating a good fit (Tabachnick &
Fidell, 2013). Figure 13 represents the standardized factor loadings
for the hypothesized model. All of the estimated factor loadings
were significant (p � .05 for all). As can be seen in Figure 13, the
loading of MOT on the perceptual variable was numerically larger
than that on the working memory variable; however, both loadings
were statistically significant.

Finally, we also tested a model representing the alternative
hypothesis that all of the variance observed in the data may be best
described by a single latent factor. The fit of this model was also
poor and was rejected on the basis of a significant minimum fit
function chi-square test, 	2(9) � 25.07, p � .003. The AIC was
49.06, also higher than our hypothesized model demonstrating
more unexplained variance.

General Discussion

The present findings establish a common perceptual capacity
limit for visual detection, as measured in four different tasks:
subitizing, MOT, load-induced blindness, and in a change detec-
tion task often referred to as change blindness. Specifically, the
findings show that an individual who is able to subitize a larger
number of items from a brief display will have better accuracy and
sensitivity for detection of changes in meaningful scenes (in the
change detection task) as well as for detection of peripheral stimuli
while attention is occupied in a central task (in the load-induced
blindness paradigm).

Moreover, although subitizing necessitates rapid encoding from
brief displays, the MOT task used in Study 3 involved continual
tracking for several seconds and appears to rely upon the same
underlying capacity. The results of Study 3 thus establish that the
observed individual differences in perceptual capacity are common
to continual deployment of attention to nontransient displays in the
MOT task. Importantly, the results showed that subitizing capacity
was consistently either a distinct factor alongside estimation abil-
ity, or the only unique factor after estimation ability was controlled
for in multiple regression analyses. These results provide evidence
against general factors explaining the effect (e.g., motivation),
because these would be reflected in the common variance in task
performance both within and beyond the subitizing
range.

In Study 3, in addition to the estimation accuracy, we also
explicitly controlled for working memory capacity using complex
span tasks involving a variety of cognitive modalities. These tasks
are specifically designed to measure working memory capacity in
the face of distracting dual-task goals that load cognitive control
resources. Complex span tasks have repeatedly been demonstrated
as powerful predictors of various aspects of cognitive perfor-
mance, including the control of attention (e.g., Redick & Engle,
2006) and general fluid intelligence (Foster et al., 2015; Redick et
al., 2012; Unsworth, Redick, Heitz, Broadway, & Engle, 2009).
Furthermore, the influence of any particular domain-specific mem-
ory function was reduced by measuring the common variance
between multiple tasks involving a variety of stimulus classes.
Perceptual capacity, as measured by subitizing (and object track-
ing) capacity, was still a strong predictor of change detection when

Table 17
Correlation Matrix of Performance Measures for all Tasks in Study 3

Measure 1 2 3 4 5 6 7

1. Subitizing —
2. Estimation .12 [�.11, .35] —
3. Detection sensitivity (A) .27� [.07, .45] .19 [�.09, .42] —
4. Detection rate .39�� [.17, .57] .33� [.08, .53] .57�� [.40, .73] —
5. MOT (ENOT) .37�� [.18, .53] .32� [.13, .50] .30� [.07, .51] .30� [.09, .50] —
6. OSPAN �.11 [.40, .20] .33� [.12, .50] .06 [�.24, .33] .03 [�.18, .20] .27� [.07, .46] —
7. RSPAN .26� [.04, .48] .29� [.09, .47] .04 [�.23, .30] .08 [�.16, .29] .29� [.06, .49] .44�� [.20, .60] —
8. SSPAN .05 [�.20, .31] .40�� [.21, .57] .06 [�.15, .27] .11 [�.12, .32] .26� [.04, .45] .35�� [.11, .56] .28�� [.09, .47]

Note. Detection sensitivity and detection rate refer to performance on the change detection “flicker” task. Upper and lower 95% confidence intervals are
presented in brackets. MOT � Multiple Object Tracking capacity; ENOT � Effective Number of Objects Tracked; OSPAN � Operation span; RSPAN �
Reading span; SSPAN � Symmetry span.
� p � .05. �� p � .005.

Figure 13. Confirmatory factor analysis results. Residuals (shown on the
left of the variables) and factor loadings are based on the “completely
standardized solution” from LISREL 8.
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controlling for working memory capacity across these varied mea-
sures of working memory span.

Overall, then, the present results cannot be explained by a
specific capacity for stimulus detection under transient, very brief
presentations (because they extend to continuous tracking), nor can
they be explained by a general cognitive ability or working mem-
ory capacity. Instead, these findings support a construct of percep-
tual capacity underlying common variance between subitizing and
visual perception tasks. The confirmatory factor analyses in Study
3 further supported this conclusion, showing that the best-fitting
model was one that included two latent factors, which represented
distinct perceptual capacity and working memory capacity. An
alternative model that only included one “general” latent factor did
not fit the data well, supporting the hypothesis that subitizing and
the change detection and MOT tasks depend upon a distinct
underlying attentional capacity for perceptual processing. Interest-
ingly, in the best-fitting model, the capacity for tracking multiple
moving objects loaded not only on the perceptual factor but also,
to a smaller extent, on working memory. This is perhaps to be
expected given that only the MOT task involved extended dura-
tions (8-s trial) and required active maintenance of each target
object, despite the continuous change of each object positions
throughout the full trial duration.

Of course, each of the tasks used involved other specific sources
of variance—for example, the ability to divide spatial attention
between fixation and the periphery (in the load induced blindness
task), a search (for a change) component (in the change detection
task), and perceptual grouping factors across motion (in the MOT
task) or static stimuli (in the subitizing task), to name but a few. Such
factors should account for some of the variance not explained by
generalized perceptual capacity to perceive more items in parallel
(e.g., irrespective of whether these are grouped or ungrouped). De-
spite the possible contribution of various different cognitive resources
to task performance, the present results indicate that the perceptual
capacity of attention is consistently a factor in tasks involving per-
ceptual load. This therefore supports the importance of perceptual
capacity as a key component of attentional processing across various
task demands.

A common perceptual capacity limit of attention in tasks in-
volving high perceptual load is consistent with previous studies of
the load theory of attention. Previous research has provided sup-
port for a general capacity limit by demonstrating that various
manipulations of load (e.g., feature vs. conjunction discrimination
in nonspatial search, increased set size in spatial search, object
perception across rotation) converge upon the same result: reduced
perception of stimuli outside the focus of attention. Here, we find
novel support from an individual differences perspective by estab-
lishing that an individual’s capacity limits are correlated across
different visual perception tasks and are distinct from capacity for
higher level cognitive control.

The diversity of the tasks examined here further attests to the
generality of perceptual capacity limits. In the subitizing task,
numerical judgments were made based on a single, brief display of
simple, square stimuli, whereas in the change detection task, the
visual display flickered repeatedly for several seconds, requiring a
search among relatively complex real-world scenes; in the load-
induced blindness task, a line-length discrimination task was com-
bined with contrast increment detection in the periphery; and,
finally, the MOT task involved a continuous display with minimal

requirement for rapid encoding. Despite these differences, these
tasks all recruit a common perceptual capacity.

The present results are consistent with a growing body of
literature demonstrating that subitizing depends upon the alloca-
tion of attention, so that subitizing capacity is reduced when
subjects pay attention to another task, especially under conditions
of high perceptual load (e.g., Vetter et al., 2008, 2011, and others;
see the general introduction for review). Indeed, the findings of a
direct relation between subitizing capacity and the number of
objects tracked in a motion tracking task (Chesney & Haladjian,
2011, and the present work) is highly suggestive of common
perceptual capacity across tasks. Our findings complement this
previous work in demonstrating common intraindividual percep-
tual capacity across subitizing, MOT, and visual detection tasks,
while also controlling for nonperceptual variables. We also note a
recent finding that the subitizing phenomenon typically assessed
with simple shapes generalizes also to real-world stimuli (Railo,
Karhu, Mast, Pesonen, & Koivisto, 2016). This is consistent with
our demonstration that the capacity underlying subitizing general-
izes to visual detection for both meaningful real-world stimuli and
more elementary, simple shapes.

Our results establish the subitizing task as a simple quantifica-
tion of an individual’s general perceptual capacity limit that can
predict their performance in visual detection tasks, and object
tracking as a parallel measure of the same capacity for perception.
As such, they provide a potentially powerful indicator of individ-
ual abilities relevant to various tasks in industry, defense, and
security. Many roles depend on an individual’s visual detection
and object tracking capacity, for example, x-ray screening and
CCTV monitoring. The present research thus provides a scientific
basis for devising future personnel selection tests for security and
defense.
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