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Image movement provides one of the most potent two-

dimensional cues for depth. From motion cues alone,

the brain is capable of deriving a three-dimensional rep-

resentation of distant objects. For many decades, theor-

etical and empirical investigations into this ability have

interpreted these percepts as faithful copies of the pro-

jected 3-D structures. Here we review empirical findings

showing that perceived 3-D shape from motion is not

veridical and cannot be accounted for by the current

models. We present a probabilistic model based on a

local analysis of optic flow. Although such a model

does not guarantee a correct reconstruction of 3-D

shape, it is shown to be consistent with human

performance.

To perceive the 3-D shape of objects from two-dimensional
(2-D) retinal images, our brain uses binocular as well as
monocular cues such as motion, occlusion, texture and
shading [1]. Although 3-D shape perception normally
depends on the simultaneous presence of many sources of
depth information, human observers show a remarkable
ability to extract the 3-D structure of an object from motion
cues alone. This ability is referred to as structure-from-
motion (SfM) perception. The importance of motion for 3-D
shape perception was demonstrated 50 years ago by
Wallach and O’Connell [2]: in their classic demonstration,
the shadow of a wire-frame figure appears flat when the
wire frame is stationary, but pops out in depth as soon as
the wire frame is rotated.

Currently, the generally accepted theory of SfM
perception is formulated in terms of the inverse-optics
problem: given a 2-D image, the observer needs to
determine the 3-D object from which the image is a
projection [3–5]. The inverse-optic problem does not have
a unique solution: the same 2-D image, in fact, is
consistent with infinite 3-D objects. Nevertheless, compu-
ter-vision algorithms have been devised that recover the
‘correct’ 3-D shape (if opportune assumptions are met),
either up to scale factor [6–9], or up to a stretching in
depth [10], and these algorithms have been proposed as
models of human performance [6,11].

Although it is widely believed that human SfM
perception is veridical (i.e. that observers’ perceptions
correspond to faithful copies of the projected objects), we
have recently shown that perceived 3-D shape from motion

is distorted by more than a scale factor or a stretching in
depth [12,13] and, therefore, cannot be accounted for by
the computational algorithms that have been developed
for machine vision. We propose a probabilistic model that,
in general, does not guarantee a correct solution to the
inverse-optic problem but, nevertheless, is consistent with
both veridical performance and perceptual biases in many
SfM tasks [14,15]. Before presenting its rationale, we will
briefly describe the two classes of SfM models that have
been proposed so far.

Euclidean and affine descriptions

The SfM models can be divided into two classes: Euclidean
and affine models. Euclidean SfM algorithms recover an
exact copy (up to a scale factor) of the projected objects
[3–5]. If the projected object is a wedge, for example, then
the recovered shape will also be a wedge with the same
angle between its two planar surfaces as the wedge that
generated the image. Euclidean SfM algorithms correctly
recover the metric properties of the projected 3-D
structures. For the simple example of Figure 1, these
properties correspond to the slants of the two surfaces
(i.e. the tangents of the angles a0 and a1 between the
surfaces of the wedge and the frontal-parallel plane) and to
the absolute distance between any pair of points (e.g. the
distance between the points P0 and P1 in Figure 1).

From the same image projections, an affine SfM
algorithm would only recover a copy of the projected
wedge that is stretched in depth by an arbitrary amount
[10]. In this case, the angle between the two planar
surfaces, in general, would not be preserved. Affine
geometry provides a more abstract representation of 3-D
shape than Euclidean geometry, and affine SfM algorithms
correctly recover only properties such as the depth order
between pairs of points, the parallelism between lines
defined by pairs of points on the surface, and the co-
planarity among points.

Optic flow

To understand human SfM we need also to know what
information observers use to derive 3-D shape from
motion. An answer to this question will be attempted in
the present and the next section.

The image transformations produced by the relative
motion between an observer and an object like that of
Figure 1 can be described in terms of the 2-D motions of
discrete texture elements belonging to the 3-D object. TheCorresponding author: Fulvio Domini (Fulvio_Domini@Brown.edu).
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Figure 1. (a) A 3-D rotating wedge produces an optic flow on the image plane. Such optic flow is represented by the blue and yellow vectors that correspond to the 2-D vel-

ocities of the projected features in two successive instants of time. In a coordinate system in which the z-axis corresponds to the line of sight, the z-depth distance between

P0 and P1 is equal to the depth distance between P1 and P2. (b) View from above the wedge (left panel). Dz represents the depth distance between P0 and P1 and between P1

and P2; x01 is the size of the projection on the image plane of one of the two surfaces of the wedge; a0 and a1 are the angles between each planar surface of the wedge and

the frontal-parallel plane. Euclidean SfM models reconstruct a 3-D shape from the optic flow in which the angles a0 and a1 are derived in a veridical manner. In an affine

algorithm (right panel) the wedge is stretched along the z-axis by four different amounts. In terms of an affine description, all these structures are equivalent. Consequently,

in general, affine SfM algorithms do not derive the angles a0 and a1 in a veridical manner. (c) Motion of the projected texture elements can be described by the instan-

taneous velocities (blue arrows) and their change over time. This change over time can be measured by considering the values of each velocity vector in two successive

instants of time (blue and yellow arrows). If we consider a small patch of the projected surface, its shape undergoes a non-rigid image transformation in two successive

moments of time. For example, if this patch projects as a square in the first moment of time, successively the projected patch can take on the shape indicated in red. This 2-

D shape change can be decomposed in four elementary transformations: a rigid image rotation (curl), an isotropic expansion or contraction (div), and two components of

shear along vertical (def1) and oblique axes (def2). The two shear components quantify the amount of shape change and can be summarized by a unique value called def.
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Figure 2. (a) Image transformations produced by the vertical rotation of a planar surface. Initially, the 3-D surface projects a square on the image plane (pink). After rotation

of the planar surface, the projected square is compressed (red). The rate of this compression represents the amount of def. Note that a large rotation of a surface having a

small initial slant (top) could produce exactly the same amount of compression as a small rotation of a surface with an initial larger slant (bottom). (b) Family of slant and

angular rotation magnitudes that produce the same image compression (def). Four instances of these s, v pairs are represented by the view from above the rotating

surface.
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overall motion of these feature elements is called optic flow
[16]. For the present purposes, it is important to
distinguish between a description of optic flow in terms
of instantaneous velocities (the so-called first-order prop-
erties of the flow), and one in terms of velocities and
accelerations (second-order properties) [17].

If the object in Figure 1 moves rigidly relative to a
stationary observer, then a veridical description of its full
Euclidean structure can, in principle, be derived from
second-order optic flow [6,7]. The first-order properties of
optic flow are sufficient, conversely, to specify only the
affine structure of this object (i.e. its 3-D shape up to a
depth stretching) [10].

Many psychophysical findings have demonstrated that
the judgments of Euclidean properties from optic flow are
not veridical [11,18,19]. In particular, it has been shown,
first, that judgments of Euclidean properties are far less
accurate than judgments of affine properties [11], and
second, that human observers have a very limited
sensitivity for second-order temporal properties and thus
rely mainly on velocities to recover 3-D information from
optic flow [11,20].

Initially these two findings prompted researchers to
hypothesize that the perceptual analysis of optic flow is
restrictedtoaveridicalrecoveryoftheaffinepropertiesofthe
projected objects [11]. In a series of investigations, however,
we have also shown that the affine properties are not
recovered from optic flow in a veridical fashion [12,13,21].
These findings have thus led to the conclusion that the
perceptual analysis of optic flow cannot be accounted for by
either Euclidean or affine SfM algorithms [13]. To account
for these findings, we have developed a model that derives
the local orientation and motion of 3-D surface patches
from an ambiguous property of first-order optic flow called
deformation [14,15]. In the next section we will describe
this property and its relation to the parameters of the
projected 3-D shape.

The ambiguity of local optic flow

First-order optic flow can be described intuitively by
representing the retinal projections with a sequence of
frames, and by considering how a local patch of the
projected surface is distorted from one frame to the next.
Such distortions can be thought of as a sum of four
elementary changes (see Figure 1c). Two of them modify
only the orientation (‘curl’) and the size (‘div’) of the
projected patch; the other two modify the shape of the 2-D
projection and are therefore called shearing or defor-
mation. The two shearing components are the only
image transformations that are informative about 3-D
shape and they can be summarized by a single
quantity called def [17].

For the sake of simplicity, let us consider the optic flow
produced by the rotation about the vertical axis (v) of one
of the two planar surfaces of the wedge represented in
Figure 1. After the rotation, the initial projection of this
surface on the image plane will be compressed. In this
particular case, def coincides with the amount of com-
pression (Figure 2a).

How is def related to the metric properties of the
projected 3-D structures? It should be noted that the

compression produced by, say, a small slant and a large
angle of rotation produces the same deformation as a small
rotation of a more slanted surface (see Figure 2). There are
infinite combinations of slant and angular rotation,
therefore, which give rise to the same def (Figure 2) [14].
In the instantaneous and local case (i.e. for two frames
very close in time and for a very small patch), def
represents the rate of compression (or shearing, in the
general case), and it is related to the slant s and the
angular velocity v by:

def ¼ sv ð1Þ

Functional MRI studies have identified in the middle
temporal area (MT/V5) and in the fundus of the superior
temporal sulcus (FST), the human brain areas that have a
basic role in SfM processing [22–24]. Moreover, neural
activity inthedorsaldivisionof themedialsuperiortemporal

Fig. 3. (a) Probability density functions p(s, v l def) for three different def values.

These probability functions have been calculated by assuming Gaussian noise in

the measurement of def. The point s p v p represents the most likely s, v pair

given def. (b) The probability functions of (a) are coded by gray levels in which

white represents the highest value and corresponds to the most likely s, v pair

given def (red-blue dots).
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area(MSTd) inthemacaquehasbeenfoundtobespecifically
sensitive to the def component of optic flow [25,26].

Probabilistic interpretation of a moving retinal image

Having identified in first-order optic flow the information
that observers use to derive 3-D shape from motion, we
need now to describe how perceived 3-D shape can be
derived from def. Here we will summarize the model that
we have proposed, which tries to account for both correct
judgments and biases in human SfM [14]. This model is
based on a local analysis offirst-order optic flow and its aim
is to find the most likely s, v pair given def (Figure 3). Our
model analyzes the visual motion that is generated by an
object moving relative to a passive observer and, thus, it
does not take into consideration the specific contri-
butions of extra-retinal information to 3-D shape

perception [27–29]. The rationale of the model can be
exemplified in the following manner.

Let us suppose that s and v are normalized, so that
they can vary in the range 0–1 (Figure 3). If def is
measured without noise, then all the possible s, v

pairs whose product is equal to def lie on a hyperbola
(Figure 2b). If the measurement of def is perturbed by
Gaussian noise, then the 2-D probability density
function of s, v given def is not uniform and has a
center of mass corresponding to the point of the
hyperbola that is closest to the origin of the coordinate
system. The center of mass of this probability
density distribution, therefore, corresponds to the
point s ¼ v ¼

ffiffiffiffiffi
def

p
: In general, if s and v vary in the

ranges [0, smax] and [0, vmax] respectively, then
the posterior probability distribution of a s, v pair given

Box 1. Distortions of perceived depth and shape

Another important characteristic of our model is that it derives

perceived slant as a non-linear function of def (see Eqn 2 in main

text). What does this imply for the judgments of relative depth? Consider

the probe dots P0 and P1 in Figure Ia. From simple trigonometry, the

depth difference Dz ¼ P0 2 P1 is equal to Dz ¼ Dxs; where Dx is the size

of the planar patch projected onto the image plane and s (slant) is the

tangent of the angle a. Accordingly, the perceived depth separation Dz 0

is equal to Dz 0 ¼ Dxs0: The relation between the perceived and the

simulated depth difference, therefore, can be expressed in terms of the

ratio between the two previous equations:

Dz 0

Dz
¼

s 0

s
ð3Þ

If perceived slant is expressed in terms of Eqn 2, we obtain

s 0 ¼

ffiffiffiffiffiffiffiffi
smax

vmax

r ffiffiffiffi
sv

p
¼ k

ffiffi
s

p
ð4Þ

From Eqn 3 and Eqn 4, moreover:

Dz 0 ¼
kffiffi
s

p Dz ð5Þ

Eqn 5 reveals that, according to our model, the perceived depth

difference Dz 0 between P0 and P1 should be proportional to the

simulated depth separation between the two dots (Dz), and inversely

related to the slant (s) of the patch on which P0 and P1 are located. This

prediction was confirmed by Domini and Braunstein [13].

Implications for perceived 3-D shape
Our model predicts that local judgments of perceived 3-D shape also

violate another important property of real 3-D structures: internal

consistency. Let us consider a 3-D structure made up of a circular

arrangement of wedges, as shown in Figure Ib (this circular crown is

composed of elements similar in shape to the wedge represented in

Figure 1 in the main text). Suppose one moves along a closed path on

the image-plane projection of this surface: each 2-D step along this path

corresponds to a depth difference on the 3-D surface. In order for this 3-D

shape to be internally consistent, the sum of the depth differences

associated with the successive steps along this closed path, from point

P0 back to itself, must be equal to zero. According to our model,

however, the perceived depth difference between the dots P0 and P1

should be smaller than the perceived depth difference P2 2 P1, because

the slant (s0) of the patch on which (P0, P1) are located is larger than the

slant (s1) of the patch on which (P2, P1) are located. According to our

model, therefore, P2 should be perceived to be closer to the observer

than P0.

To test this prediction, we asked observers to make judgments of

depth order along a closed path for the probe dots P0 and P2 located at

the joints of the planar surfaces making up a circular-crown surface [12],

similar to that shown in Figure Ib. As predicted by Eqn 5, the point P2 was

judged to be closer than P0. The depth judgments along this closed path,

therefore, can be thought of as an ‘always ascending’ staircase, an

obvious violation of the property of internal consistency which would

result in the 3-D shape represented in Figure Id. This result, together

with other similar findings [13], indicate that neither Euclidean nor affine

geometries provide an adequate description of perceived 3-D shape

from motion.

Figure I. (a) Top view of a planar surface slanted away from the image plane by

an amount s ¼ tanðaÞ: Dx is the horizontal component of the image-plane

projection of the surface. Dz is the z-axis distance between the points P0 and P1.

(b) Side view of the circular crown surface used by Domini et al. [12] to

investigate internal consistency of depth judgments in structure-from-motion.

The z-axis represents the line of sight, and Dz is the z-depth distance P0 2 P1 ¼

P2 2 P1 : (c) Schematic representation of the plane defined by the points P0 and

P2 of each wedge element of the circular crown. In successive trials, the probe

dots P0 and P2 were located in different positions along the circular path

indicated by dashed white line. Even if the probe dots P0 and P2 were always

simulated at the same distance from the observer, because P0 was perceived to

be closer than P2 for each wedge element composing the circular crown, the

integration of the observers’ judgments produced the internal inconsistency

schematically represented in (d).
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def has a maximum value corresponding to:

s 0 ¼

ffiffiffiffiffiffiffiffi
smax

vmax

r ffiffiffiffiffi
def

p
v 0 ¼

ffiffiffiffiffiffiffiffi
vmax

smax

r ffiffiffiffiffi
def

p
ð2Þ

According to our proposal, then, observers interpret first-
order local optic flow by choosing the most likely 3-D
solution – that is, the slant and angular velocity
magnitudes that maximize the posterior probability of a
s, v pair given def.

To test our model, we simulated the optic flow produced
by the rotation of a planar random-dot surface and asked
observers to judge perceived surface slant and angular
rotation magnitudes [14]. Consistent with the predictions
of the model, we found that perceived slant and angular
rotation were an increasing function of def, whereas the
influence of simulated s and v was negligible.

The rigidity assumption is not biologically plausible

One of the fundamental assumptions of both Euclidean
and affine models is that 3-D objects undergo a rigid
rotation unless otherwise specified by the projected image
transformations [6,30,31]. We proved that this assumption
(one of the fundamental constraints embedded in the
algorithms deriving 3-D shape from motion) is not
biologically plausible [21].

Let us consider again the wedge in Figure 1. The two
planar surfaces of this wedge have different orientations
(i.e. slants). If this 3-D structure is rotated rigidly with
respect to the observer, then these two planar surfaces will
project different deformations (Eqn 1, above). If, according
to Eqn 2, the amount of perceived rotation for each surface
is derived from def, then, in general, a reliable discrimi-
nation between rigid and non-rigid motion would not be
possible.

This prediction was confirmed by one of our investi-
gations. We asked observers to discriminate rigid from
non-rigid motion in stimulus conditions in which two
surfaces were rotated rigidly or non-rigidly, and projected
either the same or different deformations [21]. The results
showed that perceived rigidity was determined by the
distribution of def and not by simulated rigidity. By means
of Eqn 2, moreover, we were also able to account for
misperceptions in the orientation of axis of rotation [32],
the discrimination between constant and non-constant 3-D
angular velocity [33], and the segmentation of two
overlapping velocity fields [34]. A further characteristic
of our model, which results on distortions of perceived
depth, and implications for perceived shape are discussed
in Box 1.

Concluding remarks

Even in the absence of other depth information, optic flow
is an effective depth cue from which 3-D information of the
observed scene can, in principle, be derived. This article
has reviewed two hypotheses regarding observers’
interpretation of optic flow. One hypothesis is that the
perceptual analysis of optic flow is global and veridical
according to the ‘inverse-optic’ approach, as suggested by
most of the models of perceived SfM that have been
proposed thus far. A second hypothesis is that observers
analyze optic flow in a heuristic and patch-way fashion.

According to this second hypothesis, the most likely 3-D
interpretation is assigned to local (ambiguous) first-order
properties of the flow and, consequently, the perceptual
interpretation is, in general, not veridical, nor internally
consistent. The empirical evidence indicates that both
veridical judgments and biases in the local judgments of
optic flow can be accounted for by this heuristic hypothesis.
Rather than solving the ‘inverse-optic’ problem, therefore,
the visual system seems to rely on probabilistic interpret-
ations, perhaps derived from learning. Because the
perceptual interpretation of optic flow is not veridical,
the goal for future research is to understand how local
information is integrated through space and time to
achieve a global and coherent perceived 3-D shape
[35–37].
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