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Expectations play a strong role in
determining the way we perceive the
world.

Prior expectations can originate from
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correspondingly have different neural
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Recent findings from both human neu-
Perception and perceptual decision-making are strongly facilitated by prior
knowledge about the probabilistic structure of the world. While the computa-
tional benefits of using prior expectation in perception are clear, there are
myriad ways in which this computation can be realized. We review here recent
advances in our understanding of the neural sources and targets of expecta-
tions in perception. Furthermore, we discuss Bayesian theories of perception
that prescribe how an agent should integrate prior knowledge and sensory
information, and investigate how current and future empirical data can inform
and constrain computational frameworks that implement such probabilistic
integration in perception.
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of neural sensory processing aim to
explain how the probabilistic integra-
tion of prior expectations and sensory
inputs results in perception.
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Expectation in Perception
Humans, like many other species, are ‘anticipatory systems’ [1]. They construct predictive
models of themselves and their environment, allowing them to quickly and robustly make sense
of incoming data. In line with this notion, the brain has been described as a ‘prediction machine’
[2] that attempts to match incoming sensory inputs with top-down expectations. Although the
concept of the predictive brain is not new, dating back at least to Helmholtz [3], the neural
implementation of such a predictive architecture has remained somewhat elusive. The past
decade has witnessed renewed interest in how neural circuits may capitalize on prior expec-
tations to facilitate neural computations [4] in various domains, ranging from perception and
action to high-level reasoning and language. In this article we review the general principles that
emerge from recent empirical work on how expectations modify the neural computations that
underlie sensory processing and perception. We discuss how expectations change percep-
tion, the neural sources and targets of expectation, and we examine how these empirical data
inform and constrain theoretical computational models of perception, such as predictive coding
[5]. Finally, we highlight recent advances from computational psychiatry [6,7] that show how
neurodevelopmental disorders such as schizophrenia and autism may be understood as
resulting from aberrant weighting of expectations [8,9]. We hope that this Review will stimulate
more research into what we believe is a central computation of the brain: the prediction of
incoming input.

Perceptual Consequences of Expectation
We live in a highly predictable world, in which most objects remain stable and things change
only slowly over time. This allows us to build internal models that can predict upcoming input on
the basis of past and present input. Such expectations may prepare sensory cortex for
processing, thereby increasing perceptual sensitivity for expected stimulus features. However,
what are the consequences of expectation for perception?

There are several ways in which expectation can influence perception, as demonstrated by
various concrete examples of such influences (Box 1). When sensory input is weak, noisy, or
ambiguous, expectation can bias perception: changing not only how well but even what is
perceived. For instance, the direction in which a cloud of dots is seen to be moving can be
764 Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 https://doi.org/10.1016/j.tics.2018.06.002

© 2018 Elsevier Ltd. All rights reserved.

mailto:floris.delange@donders.ru.nl
https://doi.org/10.1016/j.tics.2018.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2018.06.002&domain=pdf


Box 1. Prior Knowledge Influences Perception

Our prior knowledge has a profound impact on the way we perceive the world. This knowledge may be acquired over a
lifetime of experience, such as the fact that light usually comes from above, leading us to perceive shapes with shaping
at the top (bottom) as concave (convex) (Figure IA).

Knowledge of the current (high-level) context can also impact on perception [30,31]. For instance, we clearly perceive a
street scene containing a car and a pedestrian in Figure IB. However, in this example, the ‘car’ and the ‘pedestrian’ are
two identical blurry shapes, differing only in their orientation and location at which they are placed in the scene context
[31]. In other words, the shapes themselves contain no information defining them as a car or a person, but it is the
context of the street scene that leads us to perceive them as we do.

Prior experience can also modulate perception on very short timescales. Consider Figure IC; if you are unfamiliar with it, the
top image likely appears to be a meaningless arrangement of black and white blocks. However, after being exposed to the
greyscale version of the image once, your experience of the black and white image is immediately and profoundly changed.

Demonstrations of the perceptual effects of expectations are not restricted to vision. In the sensorimotor domain,
predictions of the sensory consequences of our motor commands help us to distinguish external sensations from the
mere consequences of our own movements, leading to the well-known fact that we cannot tickle ourselves [149]. In
hearing, our brains can ‘fill in’ corrupted syllables in speech with those that are most likely given the context of the
surrounding words and sentences [150]. In addition, imagine expecting raisin bread but getting a mouthful of olive bread
instead – you probably will not be able to identify what it is you are eating initially.

(A) (B) (C)

Figure I. Examples of Prior Knowledge Influencing Perception. (A) The light-from-above prior. (B) Spatial
contextual prior knowledge. Image reproduced, with permission, from [31]. (C) Prior experience. Images reproduced,
with permission, from [160].
biased by an implicit expectation of the most likely direction when the contrast of the dots [10] or
the coherence of motion direction in the cloud is low [11]. Similarly, when input is ambiguous,
expectation can strongly modulate what people perceive. For instance, after learning to
associate a particular set of colored spectacles with either leftward or rightward moving dots,
participants were more likely to perceive fully ambiguously moving dots as moving in the
direction that was associated with the glasses they wore [12]. Biasing effects of expectation can
also occur more indirectly. Moving-line segments behind an aperture are consistent with either
slow movement perpendicular to the lines or fast movement oblique to the lines [13]. A recent
study showed that changing the expectations of participants by exposing them extensively to
slow- or fast-moving lines made them more likely to perceive the perpendicular or oblique
movement, respectively [14].

However, when stimuli are unambiguous, or when expectations are highly inaccurate (seeing a
face when expecting a house), expectations are less likely to bias the contents of perception.
Under such circumstances, the effects of expectations are more subtle and are often restricted
to the efficiency of perception, resulting in stimuli being detected more rapidly [15–17] and
accurately [18] when validly predicted, compared to when not.
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In general, then, it can be said that the relative impact of expectations versus sensory input on
perception depends on their relative reliability (i.e., ‘precision’) [19]. Observers rely most
strongly on prior knowledge when expectations are reliable and stimuli are ambiguous, but
rely most strongly on the input when expectations are weak and stimuli are reliable. This form of
uncertainty weighting fits naturally with computational models that cast perception as Bayesian
inference (see ‘Expectation in Computational Models of Perception’).

Where Do Expectations Come From?
The brain can predict future input by learning about and exploiting statistical regularities in its
inputs [20] – but how does it achieve this? Because such regularities come in different shapes
and forms (Box 2), the neural mechanisms likely depend on the type of regularity.

Arguably the simplest regularity in our sensory input is that particular features appear more
often, and are thus generally more likely than others. For instance, cardinally oriented (i.e.,
horizontal and vertical) lines are more prevalent than oblique ones [21] (Figure 1A), shadows are
more likely to appear underneath objects than above them because light usually comes from
above [22,23], and objects in the periphery of our visual field often move away from the center of
our gaze (centrifugally) owing to the optic flow resulting from forward locomotion [24]. Such
regularities, which are the result of stable physical features of the world we live in – and thus are
relatively constant throughout the lifetime of an individual – allow the organism to form prior
expectations. Owing to their static nature, these prior expectations (or priors) are likely to be
learnt over relatively long timescales, leading them to become encoded in the tuning properties
of our sensory cortices [25]. The over-representation of cardinal orientations, for instance, is
mirrored by an overrepresentation of early visual neurons that are tuned for cardinal relative to
oblique orientations, as well as narrower tuning curves for these orientations, resulting in more
precise representations [21,26] (Figure 1A). Similarly, the bias towards centrifugal motion in our
visual periphery has a neural counterpart in terms of an overrepresentation of neurons in the
motion-sensitive area MT (middle temporal visual area) tuned to centrifugal motion [24].
Box 2. What’s in a Prediction?

In cognitive neuroscience, the words ‘expectation’ and ‘prediction’ are used for various seemingly disparate phenom-
ena ranging from low-level biases in orientation judgments [21] to the effects of conscious expectation on speech
perception [88]. Such flexible use of terms might seem needlessly inflationary, but becomes sensible when we consider
the statistical, rather than mentalistic, definition of these words. Statistically, a prediction is an extrapolation from a
model to potential observations. Whereas a model is specified via parameters over latent variables (such as weights in a
linear regression), a prediction is specified in terms of observable data. Given our model, a prediction thus tells us what
observations to expect. The mathematical expectation is then simply the predicted long-term average over those
observations – or the mean.

Using this statistical definition is useful because it allows us to see the myriad ways in which the brain can incorporate
knowledge of what to expect that do not necessarily involve any ‘expecting’ or ‘predicting’ in the colloquial sense. A
clear example is found in Bayesian models of low-level perceptual biases such as those in orientation judgment [21]
(Figure 1A). Arguably, these biases reflect how our perceptual system is organized and do not involve neurons
‘predicting’ anything. However, casting them as resulting from an inference process in which the brain incorporates
predictions of what to expect allows us to formulate an explanation for why these biases arise in the first place – namely,
that perception is optimized for the processing of particular (more likely) inputs at the expense of systematic errors for
other (less likely) inputs [13,151].

Finally, taking a statistical perspective also helps clarify why predictions are not necessarily the same as forecasts. From
a statistical point of view, the essence of prediction is the absence of (sufficient) data. Whether this is because the
prediction is about the future – or because it is about current but not yet (fully) observed events – is irrelevant. Essential is
the extrapolation from a model to new, unobserved data – data not used when estimating the model. In neuroscience,
most predictive coding models (see ‘Expectation in Computational Models of Perception’) use the word ‘prediction’ only
in this statistical sense and do not involve predictions about the future.
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Intriguingly, recent research has shown that such long-term expectations can nevertheless be
modulated by recent experiences [14,20,27], suggesting interactions between long-term and
dynamic, context-dependent priors that may be encoded in higher-order brain regions. It
should be noted that such modulations do not occur in all circumstances [28], and sometimes
require extensive and specific cross-modal training [27].

In addition to the simple frequency distribution of sensory inputs, expectations can also arise
from conditional probabilities. For instance, the spatial context can constrain which objects are
more or less likely to appear: driving down a street makes it more likely that other moving
objects are cars rather than sharks, and vice versa if one is scuba diving. In this example, a
higher-level representation of the scene constrains the lower-level elements making up that
scene. More generally, it can be said that there is a hierarchical structure to the visual world –

with oriented lines and curves making up simple shapes, shapes making up objects, and
objects being arranged into scenes – and this visual hierarchy is mirrored by the hierarchical
organization of visual cortex [29]. Alongside bottom-up (i.e., low-to-high or simple-to-complex)
signal flow in the visual cortical hierarchy, there is also a wealth of top-down connectivity, which
may allow higher-level representations (e.g., a street) to communicate which lower-level
features (e.g., a car) to expect [30,31]. Such top-down expectations can occur at all levels
of the cortical hierarchy. For example, neural representations of objects are enhanced by the
presence of scene context, and this enhancement is correlated with the engagement of scene-
selective cortical regions [32] (Figure 1B). Similarly, simple feature representations in early visual
cortex (V1/V2) are modulated by object context from lateral occipital cortex (LOC) [33–35] and
motion context from V5/MT [36,37].

Most of the expectations discussed above occur within one sensory modality (i.e., vision).
However, statistical regularities can also exist between sensory inputs from different modalities,
such as when we hear the barking of our dog and have a very specific expectation of what we
will see next. Learning and exploiting such cross-modal associations necessarily requires the
involvement of higher-order brain regions that receive inputs from – and send feedback to –

multiple sensory modalities. When multimodal associations are largely stable over our lifetime,
such as the relationship between lip movements and speech sounds, predictive associations
can be encoded in multisensory regions such as in the superior temporal sulcus [38,39]. Other
proposals of long-term cross-modal predictions include a common prior for different forms of
physical magnitude (e.g., distance, rotation angle, time) [40,41], that is potentially located in
posterior parietal cortex [42], and integration of predicted and actual interoceptive signals in
insular cortex [43,44]. In short, given that predictions play such a fundamental role in sensory
processing, expectations likely exist at all levels of the cortical hierarchy.
Figure 1. Examples of Prior Expectations and Their Neural Implementation. (A) Cardinal expectations: cardinal (horizontal and vertical) orientations are more
prevalent in natural images than in oblique ones (left panel). Perception of human observers is biased towards these cardinal orientations, exactly as would be expected
from the statistics of natural images (middle panel). This bias could be implemented by a relative over-representation of neurons in early visual cortex tuned for cardinal
orientations, as well as by sharper tuning of these neurons (right panel). Reproduced, with permission, from [21]. (B) Objects are more easily recognized when presented
in their usual context than in isolation (left panel). In the brain, this is reflected by neural representations in object-selective cortex containing more object information for
objects that are presented in the context of a scene (middle panel). This contextual facilitation in object-selective cortex is correlated with the amplitude of neural signals
in scene-selective cortex, in line with the proposal that the latter may provide predictive feedback signals to object-selective cortex (right panel). Reproduced, with
permission, from [32]. (C) Expectations can stem from arbitrary regularities between stimuli. For instance, here image A was followed by B when participants pressed the
left button, and by C when they pressed the right button (left panel). In the CA and DG subfields of the hippocampus, presentation of a partial sequence (e.g., A-left) leads
to the retrieval of the full sequence (A-left-B; middle panel). On trials when the hippocampus correctly retrieves the full sequence, the expected image (e.g., B) is activated
in early visual cortex (right panel). Reproduced, with permission, from [53]. Abbreviations: DG, dentate gyrus; deg, degrees; LOC, lateral occipital cortex; PPA,
parahippocampal place area.
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However, cortical connections are known to modulate slowly, requiring many exposures and a
relatively long time to learn new associations, whereas some expectations need to be learnt very
rapidly (see Figure IC in Box 1) or are highly context-dependent, requiring high flexibility (see
Figure IB in Box 1). For instance, imagine the task of learning the sound associated with the ice
cream van. How does the brain learn to quickly exploit such complex associations? In such
instances, brain regions outside of sensory cortex are likely required toquickly learnand store such
cross-modal associations. One brain region that possesses all the necessary connectivity and
computational machinery for this feat is the hippocampus. In fact, given its bidirectional connec-
tivity with all sensory modalities [45], the hippocampus has been considered the apex of the
cortical sensory hierarchy [46]. Furthermore, the hippocampus is known to be involved in rapidly
learning associations between arbitrary stimuli [47–49], and, once learned, to retrieve associated
items from memory upon presentation of a partial cue, and reinstate these items in sensory cortex
[50,51]. Traditionally, these functions have mostly been considered in the context of episodic
memory, but these same functions make the hippocampus ideally suited to subserve sensory
prediction. In fact, recent studies in humans have shown that the hippocampus can encode
predictive relationships between arbitrary stimuli [49,52], and the retrieval of such associations in
hippocampus has been linked to the facilitations of predicted stimuli in visual cortex [53]
(Figure 1C). In addition to the hippocampus, there may be a role for other higher-order brain
regions specialized in acquiring complex associations, such as in the prefrontal cortex [54–57],
particularly when complex, semantic associations are involved.

Finally, sensory expectations can also be formed on the basis of one’s own actions. It has long
been suspected that the motor system sends ‘corollary discharge’ to sensory regions to
compensate for the expected sensory consequences of motor commands, and there is now
extensive evidence for movement-related modulations of sensory neurons, part of which has
been traced back to motor and cerebellar cortex [58–60]. Some of these modulations seem to
reflect internal predictive models similar to those proposed to underlie other perceptual
expectations [58,61,62]. However, the goal of action-based expectations seems to be funda-
mentally different: namely to inhibit, rather than potentiate, the representation (and thereby
perception) of expected sensory inputs. This is for example apparent in the case of mormyrid
electric fish, where inhibition prevents the fish from sensing its own electric discharges [63]. This
example also shows that this type of expectation may be highly conserved and independent of
the mammalian neocortex that the earlier-discussed perceptual expectations arguably rely on.

How Do Expectations Modulate Sensory Processing?
Expectations, alongside other cognitive factors such as attention and reward, strongly modu-
late the responsiveness of even the earliest sensory regions [64]. Overall, stimuli that are
expected evoke a reduced neural response. This pattern has been observed when stimuli are
validly predicted by a preceding, arbitrarily paired, stimulus [65–69], when stimuli comply with a
higher-order pattern such as a shape or scene [33,34], or when stimuli are the predictable result
of an animal’s own actions [70]. This phenomenon, termed ‘expectation suppression’
[64,68,71], is present even when low-level adaptation is controlled for and has been consis-
tently found across modalities such as vision [65–67,72–74] and audition [68,69,75,76].
Moreover, expectation suppression is observed not only in non-invasive fMRI blood oxygen
level-dependent (BOLD) [65,72,73] and electroencephalography (EEG)/magnetoencephalog-
raphy (MEG) signals [68,69,77], but also in spike rates in non-human primates [66,67,74,76]
and rodents [70,75,78].

Given the pervasiveness and robustness of this effect, several authors have suggested that
expectation suppression reflects a general principle of cortical processing [4,5,64,79].
Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 769
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Figure 2. Expectation Suppression via Sharpening or Dampening of Neural Responses. Stimulus-specific
suppression of responses by expectation can be explained by two different mechanisms that make distinct predictions at
the neuronal (single- or multiunit) and population levels. Under the dampening account, expectation suppression most
strongly affects neurons that are tuned to the expected stimulus. At the neuronal level (upper panel), this implies that
neurons with the highest selectivity for the expected stimulus are suppressed most strongly. At the population level (lower
panel), dampening predicts a decrease in the contrast of activity patterns evoked by stimuli because the relative
suppression of the most selective units of observation (e.g., voxels) reduces differences in activity between units (lower
panel, middle). Under the sharpening account, by contrast, expectation suppression most strongly affects neurons that
are not tuned to the expected stimulus. At the neural level (upper panel, right), this implies that neurons with the lowest
selectivity for the expected stimulus are suppressed most strongly, and that neurons with the highest selectivity may even
be enhanced. At the population level (lower panel), sharpening predicts an increase in the contrast of activity patterns
evoked by specific stimuli because the relative suppression of the least-selective units should increase differences in
activity between units, leading to a ‘sharpened’ representation (lower panel, right). While the above population-level
patterns are suggestive of sharpening and dampening at the neuronal level, one must be careful in interpreting population
responses with coarse methods such as fMRI that aggregate brain activity from large numbers of neurons that span the
entire tuning range because there is not always a direct correspondence between neural-level and voxel-level selectivity
patterns. When making inferences about selectivity-dependent suppression at the voxel level, one is ideally guided by a
quantitative linking model incorporating all relevant parameters such as tuning, suppression, and voxel properties.
However, its precise explanation remains debated. Under one account, expected stimuli
induce weaker responses because the brain filters out the expected components of sensory
inputs. Response strength should then be a function of surprise, and expectations hence
dampen responses in neurons tuned for the expected stimulus (Figure 2). Computationally, the
‘dampening’ account casts expectation suppression as a form of redundancy reduction, and
the suppression of sensory signals by high-level expectations as analogous to the ‘explaining
away’ of hypotheses in Bayesian networks [4,80]. Alternatively, the reduction of the overall
amplitude may reflect sharpening of the underlying representation. In this view, neurons
encoding not the expected but the unexpected features are suppressed, resulting in a sharper,
more selective population response with lower overall amplitude (Figure 2). Computationally,
the ‘sharpening’ account of expectation is similar to the notion of neuronal resonance
[79,81,82] in the sense that high-level feedback selectively enhances the representation of
expected sensory signals by inhibiting inputs that are inconsistent with feedback signals more
strongly than consistent input. A similar physiological mechanism has also been proposed to
underlie adaptation [71,83–85] and attention [86].
770 Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9



Several studies tried to arbitrate between these two accounts by investigating how expecta-
tions affect the pattern, rather than only the mean, of population activity. For example, it was
found that while gratings whose orientation was validly predicted by a cue evoked weaker
BOLD responses in V1, the stimulus orientation could be decoded with higher accuracy from
the pattern of activity [65]. The authors interpreted this as evidence for a sharpened represen-
tation. Further supporting this notion, they found a negative relation between the amount of
suppression and stimulus preference: expectation suppression was weakest in voxels that
‘preferred’ the expected (and presented) orientation. Similarly, a recent study found that
expectations weakened response amplitude in macaque inferior temporal cortex (IT) but
improved decoding performance [87]. However, other studies applying similar techniques
found evidence in line with dampening. Such studies showed for instance that expectation
suppression in macaque IT was associated with decreased decoding performance [66]; that
BOLD responses in posterior superior temporal sulcus (pSTS) to expected words were weaker
and contained less information, as quantified by representational similarity analysis (RSA) [88];
and that there was a positive relationship between expectation suppression and stimulus
preference in the macaque face patch system [74] and macaque IT [67].

Because these studies used different measuring techniques and targeted different cortical
regions, the discrepancies are difficult to interpret. Clearly, more work will be necessary to
establish whether sharpening or dampening can best account for expectation suppression.
Possibly both play a role: some theories accommodate both mechanisms, for instance by
proposing that dampening and sharpening take place in separate neural populations encoding
respectively the errors and predictions [4]. Sometimes expectations even increase the sensory
response [89,90]. One explanation for this effect is that in these experiments expectation (‘what
is likely?’) and attention (‘what is relevant?’) covaried [64]. Indeed, studies that independently
manipulated the two showed that attention can counteract [77,91] or even reverse [92] the
suppressive effects of expectation. However, it is unclear if this explanation can account for all
paradoxical effects of expectation [93–95], and more work will be necessary to further elucidate
its interplay with attention.

Aside from how expectations affect responses, another relevant question is when they do so.
One possibility is that expectations modulate responses after the initial ‘feedforward sweep’.
This is in line with some theoretical models [5] and with observations that putatively predictive
phenomena such as extra-classical receptive field effects [5] and expectation suppression
[68,96] often occur after the earliest components (>100 ms) of the response. Another possi-
bility is that expectations have an anticipatory effect and sensitize representations even before
stimulus onset. Empirical support for such forward-looking perceptual predictions comes from
electrophysiological reports of stimulus-specific baseline shifts before stimulus onset [67,97],
from time-locked responses to unexpectedly omitted stimuli [69,98], and from predictive
preactivation of stimulus-specific activity patterns [99]. We should note, however, that these
possibilities are not mutually exclusive and may well depend on the type of expectation at play.
For instance, the precise temporal predictions required for anticipatory effects could be more
readily available in the auditory domain, where regularities often manifest as patterns unfolding
over time, than in the visual domain, where regularities are often marked by their spatial
structure.

Expectation in Computational Models of Perception
While it is clear that neural responses are heavily influenced by prior expectations, the
computational role of these modulations is not yet fully understood. In general, expectations
figure prominently in computational theories that cast perception as a process of probabilistic
Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9 771



inference. Because the information conveyed by our senses is both noisy and ambiguous,
perception has often been conceptualized as a process of probabilistic inference in which the
system decides on the most probable causes of our sensory inputs, based on the sensory data
and prior expectations [3,100]. Bayesian probability theory provides a principled way of making
such inferences, dictating that agents should form and update their beliefs on the basis of not
only the evidence provided by the senses but also the prior probability of the various hypothe-
ses about what is currently present in the world (i.e., expectations) [101]. Importantly, Bayesian
inference is a normative theory, prescribing the best possible inference a system can make
given the data. Interestingly, human observers often approach such an ‘ideal observer’ ([102],
but see [103]), inspiring the idea that the human perceptual system may implement (approxi-
mate) Bayesian inference [104].

There are several ways in which Bayesian inference can be implemented in a neural architecture
[105]. Many frameworks posit that feedback from higher-order areas provides contextual priors
[4,79,106–108]. While it may seem natural to implement priors with a feedback process, it should
be noted that Bayesian inference can be performed in a purely feedforward manner [109,110]. An
advantage of recurrent architectures, however, is that they can perform hierarchical inference in
which theoutput (or ‘posterior’) from a higher level serves as an input (or ‘prior’) to a lower level. This
allows the system to dynamically ‘home in’ on a globally coherent interpretation: a faint edge for
instance could turn out to be a crucial boundary only after the whole object or the entire scene is
interpreted. Such hierarchical Bayesian inference can proceed concurrently across multiple areas
because successive areas in thecortical hierarchy constrain oneanother’s inference in small loops
rapidly and continuously as the interpretation evolves [79].

A computational theory that gained traction over the past decade is predictive coding.
Predictive coding posits that the brain constructs an internal model of the world, encoding
the possible causes of sensory inputs as parameters of a generative model [4,5]. Sensory
inputs are compared to ‘virtual’ inputs that would have been generated by the expected cause.
At each processing stage, only the difference between the input and the prediction (the
prediction error) is propagated to higher regions for further processing, and perception is
achieved by minimizing this error so as to match the predictions to the input. According to some
more recent formulations of predictive coding [111,112], the propagated error is weighted by
the sensory reliability or precision. When sensory precision is low, prediction errors are down-
weighted and observers will rely more on predictions. Conversely, when it is high, prediction
errors are up-weighted and observers will rely more strongly on their input. Using this gain
control of prediction errors, these models incorporate a specific version of a Bayesian formula-
tion of attention (as reviewed in [113]).

A common point of confusion when describing predictive coding as a model of cortical function
is the misconception that only prediction errors are encoded because the predictable part of
the input is subtracted out by the prediction. While there are example systems where the
predictable part of the signal is indeed removed (e.g., in the retina, to increase the dynamic
range [114]), predictive coding models of cortex always contain separate neural populations
representing both the current best guess (prediction) as well as the error associated with the
guess (prediction error). Another common misconception is that predictive coding is a compu-
tational model of the cognitive process of prediction (or ‘forecasting’). While it is certainly
possible to model such a process within a predictive coding architecture (e.g., by changing the
baseline activity of a specific prediction in anticipation of sensory input [115,116]), predictive
coding itself is a general theory of how the brain can efficiently encode information, and does
not have the specific aim of explaining the cognitive process of prediction. In fact, most seminal
772 Trends in Cognitive Sciences, September 2018, Vol. 22, No. 9



models of predictive coding in cortex [4,5] do not include forward predictions: in these models,
predictions are the result of an initial bottom-up analysis and are only formed after the first wave
of feedforward activity. Such ‘predictions’ are thus hypotheses about the current sensory input,
rather than forecasts of what is coming next (Box 2).

Different versions of predictive coding have been developed [117], differing primarily in how the
error is computed (by subtraction or division) and in how prediction and prediction error neurons
are connected [118]. At the same time, there are several other computational theories of
perceptual inference that share the computational goal of optimal inference under uncertainty,
such as pattern theory [119], adaptive resonance theory [106], particle filtering [79], free energy
and active inference [120], and sampling-based probabilistic inference [121,122]. The general
motif of these theories is the notion that perceptual inference involves a top-down generative
component that predicts and constrains the processing of bottom-up input over time [101].

To what extent are theoretical models such as predictive coding supported by empirical
evidence? While an exhaustive overview is beyond the scope of this Review (but see
[2,123,124]), we will highlight a few important observations. First, extra-classical receptive
field effects, both in space [5,125] and time [126], are readily explained by predictive coding as
originating from predictive feedback. In line with this, removal of feedback signals within the
visual system abolishes these extra-classical effects [127]. Second, the neural response to
identical sensory input is markedly reduced when the input is predicted [67,74], putatively
owing to a reduced response of the error units to predictable input, as well as to improved
selection of units encoding the relevant causes of the input. These two mechanisms, which
have been referred to as ‘shutting up’ and ‘stop gossiping’ [4,104] (see also previous paragraph
on dampening vs sharpening) are both accommodated within predictive coding, and operate
on distinct populations (error and prediction units, respectively).

Note that this also highlights a potential problem: although many findings are consistent with
frameworks such as predictive coding, this partly derives from the relatively unspecific nature of
some empirical findings. For instance, the fact that expectations tend to attenuate neural
responses has been interpreted as a reduction in prediction error [4,5], but it could instead
reflect a reinforcement of the expected interpretation at the expense of others [79], and
therefore fits both the predictive coding framework [4] and other frameworks (e.g., [79]).
Therefore, more direct tests of these computational frameworks will require experiments that
target the distinguishing assumptions and predictions of individual models. For instance, while
(most of) the aforementioned computational models posit the embodiment of a generative
model in feedback connections, the models differ on the role of feedforward activity, with
predictive coding proposing that it signals the mismatch between the model and the data, while
other theories [79,118] suggest that both feedforward and feedback signals contain (lower-
level vs higher-level) beliefs/hypotheses. One way to possibly arbitrate between these pro-
posals is by analysis of activity profiles at laminar resolution (Box 3), which allows distinguishing
between feedforward and feedback activity within the cortical column. In addition, temporally
resolved signals may help to identify specific signals related to prediction and prediction error:
for example, only prediction signals, but not prediction errors, can precede sensory input
[87,128]. Furthermore, prediction error signals should rapidly decay as inference is formed,
while confirmed prediction signals should remain stable [129]. As such, lamina-resolved data
with high temporal and spatial resolution could have the potential to constrain and validate
current computational theories of perceptual inference. Finally, apart from more precise
recording techniques, future empirical work can benefit from more precise analyses. While
much has been learned using simple approaches that manipulate variables of interest implicitly
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Box 3. Investigating Cortical Laminae To Dissociate Top-Down from Bottom-Up

When high-level (e.g., contextual) expectations modulate early sensory responses, it is often assumed that these expectations are encoded at higher cortical regions
and modulate earlier regions ‘from the top-down’. However, testing this assumption requires directional inference. The traditional way to achieve this is either by
perturbing top-down connections, for example by using cooling or optogenetic (de)activation [152] or by resorting to causal modeling techniques such as dynamic
causal modeling (DCM) [153] and Granger causality [154] which rely on various (contestable) assumptions.

However, cortical anatomy provides us with another method – laminar profiling. Because bottom-up connections originate from superficial layers and terminate in the
middle layer, while top-down connections originate from deep layers and avoid the middle layer (Figure IA), it is possible to use the laminar activity profile to infer whether an
activity modulation is likely top-down or bottom-up. Crucially, it has recently become possible to measure laminar activity profiles non-invasively in humans (Figure IB,C) by
using ultra-high field-strength fMRI [147,155]. For instance, in a recent study Kok et al. [156] found that an illusory figure induced by the spatial context (i.e., the Kanizsa
illusion) specifically activated the deep (but not the middle and superficial) layers of V1 (Figure ID), in line with this activity arising from top-down feedback.

In addition to establishing the directionality of signal flow, laminar profiling of expectation effects can also help to distinguish between computational theories of perception
[148]. For instance, classical predictive coding theory proposes that neurons in the deep layers represent our current hypotheses, or predictions, about the causes of our
sensory inputs, while neurons in superficial layers encode the mismatch between these predictions and actual sensory inputs (i.e., prediction error) [4,5].

Furthermore, there has been great debate on whether or not expectation differs mechanistically from other top-down processes such as attention, working memory,
and imagery [157,158]. One possibility is that these processes differ in which layers of visual cortex they target [159] – a hypothesis that laminar fMRI would allow
testing in humans.

In sum, laminar profiling, invasively in animals and non-invasively in human fMRI, provides exciting opportunities for studying the neural basis of expectation and of
other cognitive influences on perception such as attention and working memory.
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activity in V1 elicited by an illusory figure in V1. Image reproduced, with permission, from [156]. Abbreviations: CSF, cerebrospinal fluid; LGN, lateral geniculate
nucleus; Superf., superficial.
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Outstanding Questions
What is the computational role of
expectation: suppressing expected (i.
e., redundant) signals, improving sen-
sory representations, increasing proc-
essing efficiency, or a combination of
these? If the latter, how are the various
goals combined in the neural circuit?

How are expectations from different
sources combined to jointly modulate
sensory processing?

Does sensory cortex contain explicit
prediction-error neurons that signal
the mismatch between expectations
and sensory inputs?

What is the relationship between
expectation (‘what is likely?’) and
attention (‘what is relevant?’)? Are
these two cognitive processes sub-
served by the same or different neural
mechanisms? If the latter, how do
expectation and attention interact?

Can we extrapolate from the compu-
tational principles discovered in early
sensory cortex to the rest of the brain?
For instance, do similar neural expec-
tation effects underlie other inferential
processes, such as in social cognition,
language, and motor control?
on a condition basis (e.g., by contrasting ‘expected’ versus ‘unexpected’ stimuli), this approach
is less likely viable for subtler distinctions (such as between prediction error and precision-
weighted prediction error). One way to make more precise comparisons is to use model-based
analyses that use computational models of perceptual inference or learning (e.g., [130]) to
derive trial-by-trial quantitative estimates of variables of interest, and compare those to the data
[87,128,131].

Alterations of Expectation in Psychopathology
Expectations may not only be important to understand how the human brain implements
perceptual inference but also for understanding various psychopathological conditions. In
particular, neurodevelopmental disorders such as autism spectrum disorder [132,133] and
schizophrenia [134,135] have been linked to an atypical integration of prior and incoming
information, with autism even being cast as a ‘disorder of prediction’ [136]. While both
conditions are linked to aberrant expectations, they are proposed to fall at opposite ends
of a spectrum. On the one hand, the false percepts (hallucinations) and beliefs (delusions)
characteristic of schizophrenia are proposed to be caused by the misperception of inner states
as a result of overly strong expectations [9], something that can also occur in healthy individuals
[9,137]. Perceptual atypicalities in autism, on the other hand, are suggested to reflect impaired
top-down guidance by expectations, resulting in better processing of local details but impov-
erished global form perception [138], and possibly hypersensitivity to incoming (unexpected)
stimuli. In recent years these computational ideas are starting to be put to test in the burgeoning
field of computational psychiatry [6,7]. For example, using a model of hierarchical Bayesian
inference [139], researchers could link autism to a propensity to overestimate the volatility (i.e.,
changeability and thereby unpredictability) of the environment [8], and link schizophrenia to an
overly strong reliance on perceptual priors [9]. More generally, these results underscore the
integrative explanatory potential for computational models to reach a more complete under-
standing of brain function and its alterations [6].

Concluding Remarks and Future Perspectives
In this article we have discussed how the brain capitalizes on prior knowledge to facilitate the
neural computations underlying sensory processing. While there are many different forms of
prior knowledge, which can be neurally implemented in distinct ways, there appears to be a
common currency in terms of their modulatory effect on target regions involved in the
processing of sensory data. An interesting question for future research could be how all
the prediction signals from different sources are ultimately combined during perceptual infer-
ence (see Outstanding Questions). One possibility is that all regions send their predictions to a
shared ‘blackboard’ that resides in the primary visual cortex, facilitating the combining of
different priors [140,141]. Alternatively, the site of integration may depend on the level of detail
afforded by the prediction [29,142].

We furthermore expect that new insights in how the brain combines prior knowledge with input
will be obtained from the renewed interest in deep-learning algorithms, which have made
tremendous progress in successfully implementing object recognition [143] and share organi-
zational overlap with the ventral visual stream of the brain [144–146]. Finally, technological
advances in the measurement of multisite activity with laminar precision [147,148] may afford
the precision required to better understand the information flow within and between cortical
modules, thereby constraining neurocomputational theories of perceptual inference. It is our
hope that these advances will ultimately lead us to a more complete understanding of how our
brain combines the past and present to anticipate the future.
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