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One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney 
and Landy’s [(1989) froceedirrgs of the SPIE: Visaal eo~~nicatjo~ and image prwessing, Part 2 
(pp. 11~1163)] “human depth combination rule”. They advocate that the combination of depth cues 
by the visual system is best described by a weighted linear model. The present experiments tested 
whether the linear combination rule applies to the integration of texture and shading. As would be 
predicted by a linear combination rule, the weight assigned to the shading cue did not vary as a function 
of its curvature value. However, the weight assigned to the texture cue varied systematically as a 
function of the curvature values of both cues. Here we describe a non-linear model which provides a 
better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the 
goodness of fit for all models tested. These results support the Hyannis that the locus of cue 
integration is a curvature map, rather than a depth map. We conclude that the linear combination 
rule does not generalize to the integration of shading and texture, and that for these cues it is likely 
that integration occurs after the recovery of surface curvature. 

Depth Curvature Shape from shading 

INTRODUCTION 

The past few years have witnessed a growing interest in 
the problem of how the visual system integrates infor- 
mation from individual depth processing modules to 
produce a single percept of depth. Initial work in this 
area has indicated that the integration of depth cues by 
the human visual system may be best described by a 
weighted linear model in which the contributions of 
depth cues sum algebraically (Bruno & Cutting, 1988; 
Dosher, Sperling & Wurst, 1986; Johnston, Cumming & 
Parker, 1993; Landy, Maloney & Young, 1990; Maloney 
& Landy, 1989; Rogers & Collett, 1989; Young, Landy 
& Maloney, 1993). 

Dosher et al. (1986) investigated the integration of 
stereo rotation disparity and proximity luminance co- 
variance (PLC), PLC being a technique first adopted by 
Schwartz and Sperling (1983) in which line intensity 
co-varies with depth. They reported that a simple linear 
model accounted for the results of their experiment. It 
was found that more weighting was given to the stereo 
cue than to the PLC cue when subjects were presented 
with a still preview of the stimulus. However, in the 
absence of a still preview, more weighting was given to 
the PLC cue, thus emphasizing the role of context in the 
assignment of weights to depth cues. 

Bruno and Cutting (1988) obtained statistical support 
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for a linear combination rule encompassing four depth 
cues-relative size, height in the projection plane, occlu- 
sion and motion parallax. A magnitude estimation pro- 
cedure, in which subjects judged the relative distance 
between three square panels, was employed to assess 
subjects’ perceived exocentric distances. Each depth cue 
was either present or absent in a given stimulus, resulting 
in 16 different combinations. They found effects of 
relative size, height in plane and motion parallax. More 
importantly, the absence of significant interactions be- 
tween the depth cues provided support for the argument 
that a linear combination strategy was adopted by the 
visual system in the processing of these depth cues. 

Johnston er al. (1993) report that, when a texture 
depth cue is added to stereograms portraying a range of 
surfaces (ellipsoids, cylinders and “roofs”), subjects’ 
perception of depth is increased (although not necess- 
arily made more veridical). When both cues portrayed 
incongruent depth information, the data were well ac- 
counted for by a weighted linear rule, with stereo being 
more heavily weighted than texture. As in the exper- 
iments of Dosher et al. (1986) Johnston et al. reported 
that the weight assigned to the depth cues employed 
appeared to be somewhat dependent on context; as 
viewing distance was increased beyond 1 m, the weight 
assigned to texture increased and the weight assigned to 
stereo decreased. 

Maloney and Landy (1989) propose a formal statisti- 
cal framework as a model of how the human visual 
system may integrate depth estimates derived from 
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independent depth modules. The model is characterized 
by several assumptions, including the assumptions that 
depth cues are integrated in a linear fashion, and that 
this integration or “depth fusion” is carried out at each 
point in the visual scene. They suggest that the output 
following depth fusion is represented in a depth map of 
surface points in the scene. Maloney and Landy demon- 

strate that the weights assigned to depth cues can be 
assessed psychophysically using perturbation analysis. If 
a subject is presented with a stimulus composed of 
inconsistent depth cues, then the weight assigned to a 

given cue may be obtained by varying the cue in question 
while allocating a fixed depth value to the other cues. 
The weight assigned to the cue is simply the ratio 
between the change in the subject’s estimate of overall 
depth and the change in the cue. 

To test the validity of their model, Landy et al. (1990) 
estimated the weights given to two depth cues, texture 
and motion. The stimuli used were computer-generated, 

vertically orientated, textured cylinders rotating back 
and forth about a centrally placed horizontal axis. With 
the motion depth cue being assigned a constant value 

and the texture cue varying in depth, Landy et al. 

estimated the weight of the texture cue by measuring the 
slope of a line fitted to the plotted data of perceived 
depth as a function of the value of the texture cue. They 
estimated the weight of the motion cue by subtracting 
the weight of the texture cue from 1. rather than 
independently determining the weight of the motion cue 

by reversing the roles of the cues in a second experiment 
and determining whether the weights of the two cues did 
in fact sum to l-a strategy recommended by Maloney 
and Landy (1989) as a rigorous test of the model. 
Although, we note that for a linear model this should be 

considered a redundant test. 
Although Maloney and Landy’s depth integration 

model has found support in several independent studies, 
the results are not unequivocal. Stevens, Lees and 
Brookes (199 1) report that the integration of binocular 
disparity and surface contour (mono) cues does not 
appear to be a straightforward additive process. They 
point out that, if these cues were to be combined in a 
quantitatively additive manner, it should be possible to 
trade off the stereo amplitude of a surface feature, such 

as curvature, against that surface feature’s mono ampli- 
tude while maintaining the same overall perceived ampli- 
tude. They report that, although a trade off between 
mono and stereo information can be made within limits, 
their additivity is not robust. 

Several studies lend support to Maloney and Landy’s 
depth integration model (Dosher et al., 1986; Bruno & 
Cutting, 1988; Johnston et cd., 1993). However, none of 
these studies provide evidence to support the hypothesis 
that, prior to integration, depth information is rep- 
resented in a range map. It is possible that the locus, or 
source, of integration may be found in an alternative 
representation to that proposed by Maloney and Landy; 
such as a representation based on local orientation, or 
a representation based on curvature. 

Evidence has emerged in recent years undermining the 

notion that the locus of integration is at the level of a 
depth and/or orientation representation. Todd and 
Akerstrom (1987) reported that. when tnaking depth 
judgements about textured elliptical surfaces, there was 
no impairment of subjects’ performance when a regu- 
larly textured surface was replaced with an irregularly 

textured surface in which the texture elements varied 
randomly in both size and shape. This was despite the 
fact that manipulating the texture in this way resulted in 

a significant reduction in the correlations between the 
lengths of the individual optic elements and the depths 
of their corresponding surface elements. and between 
optic element compression and surface element orien- 
tation. This led Todd and Akerstrom (1987) to conclude 
that, rather than perceiving surfaces by assigning local 
depth or orientation values, observers’ judgements were 
based on a more global level of image structure. In other 
words, they reject the idea that the locus of integration 
is at the level of point-by-point depth or orientation 
representations. Similarly, the recent work of Cumming, 
Johnston and Parker (1993) suggests that curvature is 

not calculated by first extracting local surface orien- 
tation from the compression of single texture elements. 
Stevens et al. (1991) suggest that surface curvature 
features are detected separately by stereo and mono 
processes. They also argue that it is these surface curva- 
ture features, rather than local, pointwise values such as 
depth or surface orientation, which constitute a “com- 
mon language” or representation, and that the inte- 

gration of cues occurs at this level. Johnston and 
Passmore (1992, 1994) reported low curvature discrimi- 
nation thresholds in a surface alignment task (Weber 
fractions of around 0.1 were reported), demonstrating 
considerable precision in the task. At threshold. the 
changes in the surface normals were around a factor of 
10 less than the threshold for detecting a change in slant 
for shaded spherical patches. This is taken as evidence 
that curvature information may be represented by the 
visual system in the form of an explicit description. 
rather than being represented implicitly as changes in 
surface orientation. The fact that the Weber fraction 
reported for the curvature discrimination task was stable 
across the range of surface curvatures tested further 
suggests that curvature is a primary representation 
(Foster, Simmons & Cook. 1993). Thus there is a 
growing body of evidence which questions the notion 
that the locus of integration is either a depth or orien- 
tation representation. Furthermore. for shading and 
texture, recent research suggests a curvature represen- 
tation as an alternative locus of integration. 

The present experiments were designed to test whether 
the visual system integrates shading and texture in a 
linear manner, or whether some other, as yet unspecified, 
combination rule better describes their integration. The 
experiments were designed to measure the weight of the 
two cues independently, rather than inferring the weight 
of one cue from that of the other. These experiments also 
provide the opportunity to investigate the locus of 
integration, for example by showing that a simple model, 
like the linear model, holds for one kind of three- 
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dimensional shape representation but does not hold for 
another. Thus by simply comparing the ease with which 
a simple model is fitted to data described in terms of 
depth and curvature descriptors, we can infer which of 
the two representations was more likely to have been 
employed by the visual system. 

METHOD 

Subjects 

The author, WC, and two other subjects, PP and CF, 
participated in the experiment. PP had extensive experi- 
ence in curvature discrimination tasks, and CF was a 
naive subject with no prior experience of psychophysical 
experiments. All subjects had normal or corrected vision. 

Stimulus generation and display 

An image of a pair of spherical surface patches was 
constructed by ray casting (Foley, van Dam, Feiner & 
Hughes, 1990). The stimulus generation software al- 
lowed control over the curvature of the patches, their 
location in the modelling space, the viewpoint and the 
location of a single point light source for each patch. The 
surfaces were rendered using a Phong illumination 
model, 

p =sZ,+sZp(N.L)+gZ,(H.N)“, 

where P is the computed brightness, s is the albedo, Z, 
is the intensity of ambient illumination, Zp is the intensity 
of direct illumination, and g is the proportion of light 
reflected specularly. N and L are the surface normal and 
light source direction unit vectors and H is the unit 
vector which bisects L and the line of sight. The spread 
of specular reflection is controlled by the parameter n. 

Texture was added to the spherical patches using a 
texture mapping technique. The pIane cannot be mapped 
onto a doubly curved surface without distortion. The 
nature of the distortion depends upon the mapping 
function. An equidistant azimuthal mapping, which 
preserves radial distances, was chosen. We can think of 
the equidistant azimuthal mapping as the result of 
positioning the north pole of the sphere from which the 
surface patch is derived on the origin of the texture map 
and then transfer~ng the texture onto the sphere by 
rolling along lines passing through the origin. In this 
projection there is no distortion of the texture along 
meridians of longitude, although there is some shrinkage 
of the texture along parallels of latitude. Shrinkage is 
minimal near the central point of the display and 
maximal at the occluding boundary. For the majority of 
curvature values used, texture distortion at stimuli edges 
was < 10%. The texture is scaled in accordance with the 
following expression 

sin(n /2 - d, )/(A /2 - 4 ), 

where 4 is the elevation, in radians, and the texture 
shrinkage, expressed as a percentage, is given by 

(1 - sin(7r/2 - ~)/(~/2 - ~))*lOO. 

The texture map provides the albedo value for any 
point on the visible hemisphere. For a given ray through 
a pixel on the screen the surface normal at the intersec- 
tion point of the ray and the sphere was computed and 
specified in terms of elevation and azimuth. Those 
parameters were used to index the texture map. Since in 
general the specified location in the texture map would 
lie between grid points, the albedo vaiues were calculated 
using bilinear grey-level interpolation. The advantage of 
the texture mapping technique is that for radial direc- 
tions there are equal amounts of texture for equal 
amounts of distance along the surface. In the alternative 
technique in which the texture is carved from a solid 
block the size of each texture element depends upon the 
angle of cut and position relative to the voxels in the 
solid. 

The texture map chosen for the experiment was a 
grey-level checkerboard pattern. The surface patches 
were displayed against a background pattern composed 
of random grey-level noise. Thus the generated display 
gave the impression of an opaque screen with two 
apertures, each measu~ng 2cm in diameter, through 
which two spherical surface patches appeared to pro- 
trude. Pairs of spheres of various diameters were gener- 
ated and viewed through the apertures. The diameter of 
a generated sphere was never less than the diameter of 
the aperture through which it was viewed. 

The ray casting was computed from a 75 cm distant 
viewpoint. The stimuli were displayed under poIar 
projection on a 19 in. Sony Trinitron monitor screen 
under the control of a SUN Sparcstation 330. The 
grey-level display provided 8-bit resolution per pixel. In 
order to linearize the display a lookup table of luminance 
values was determined with a micro-photometer and 
used to control stimulus brightness. The subject viewed 
the screen monocularly from a distance of 75 cm. The 
position and direction of the light source are specified 
with reference to a coordinate frame centred on the 
patch. The z-axis extends out from the centre of the 
patch. The light source slant describes the angle between 
the light source vector and the z-axis and the light source 
tilt specifies the direction of slant, with 0 deg of tilt 
referring to the upper quadrant of the yz-plane. A given 
sphere was lit by a single light source positioned above 
it at a slant of 45 deg. 

Procedure 

Pairs of stimuli were presented side by side (see Fig. 1). 
One stimulus had texture and shading cues with identical 
curvature values and the second stimulus was comprised 
of texture and shading cues with different curvature 
values, with curvature being defined as the inverse of the 
radius. These stimuli were labelled the consistent-cue 
and inconsistent-cue stimuli, respectively. The inconsist- 
ent-cue stimuli were generated as follows. The shading 
was calculated on the basis of each surface normal for 
the shading cue surface. As stated earlier, the texture 
map provides the albedo value for each point on the 
surface. For discrepant surfaces, those stimuli for which 
the shading and texture curvatures differed, the texture 
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map was indexed by the azimuth and elevation of the shading cue of the inconsistent-cues stimulus was an- 
intersection of each ray and the texture cue surface. This chored and the curvature value of the texture cue was 
procedure is equivalent to painting the texture for one allowed to vary. In Expt 2 the roles of the two curvature 
curved surface onto another, appropriately shaded, cues in the inconsistent-cues stimulus were reversed. 
curved surface. The texture was scaled with curvature to Note that although the curvature values sampled are 
ensure that the texture element size, as defined on the uniformly spaced, they become less uniformly spaced 
texture cue surface, remained constant. when expressed in terms of depth. 

One cue in the inconsistent-cues stimulus (the “anchor 
cue”) remained fixed. The perceived curvature of the 
inconsistent-cues stimulus was measured as a function of 
the curvature of the second cue, which was assigned one 
of eight curvature values in each block of trials; these 
values were 0.25, 0.33, 0.50, 0.58, 0.67, 0.75, 0.83, and 
1 .O cm-‘. In each experiment the curvature value of the 
anchor cue of the inconsistent-cues stimulus was fixed at 
one of three settings: 0.4, 0.7, or 0.9 cm -‘~ In Expt 1 the 

Subjects’ curvature discrimination thresholds and 
points of subjective equality were measured using an 
adaptive method of constant stimuli, APE (Watt & 
Andrews, 1981). Discrimination threshold is defined as 
the standard deviation of the error distribution and 
corresponds to the 84% point on the psychometric 
function. The point of subjective equality (PSE) is 
defined as the 50% point on the psychometric function. 
The subjects’ task was to indicate, with the press of a 

FIGURE 1, An example pair of stimuli employed. Subjects were told to treat each display as though viewing two spheres 

protruding through two apertures. The diameters of the spheres were never smaller than the diameters of the apertures. For 

the pair of stimuli shown the inconsistent-cues stimulus (left) has a shading curvature value of 0.83 cm ’ and a texture curvature 

of 0.7 cm-‘; the consistent cues stimulus has a curvature value of 0.7 cm ‘. 
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button, which of the two surfaces appeared more curved. 
The inconsistent-cues stimulus appeared equally often 
on each side of the display across trials. Pairs of stimuli 
were displayed until a response was given. Following a 
subject’s response the display was replaced by a random 
grey-level noise pattern. The time lapse between termi- 
nating one display and presenting the next pair of stimuli 
was approx. 3 sec. Each psychometric function was 
calculated on the basis of the subjects’ response to 64 
pairs of stimuli. Each data point is the average of at least 
three separate measurements. 

If the integration of texture and shading is best 
accounted for by a simple weighted linear model, as 
proposed by Maloney and Landy (1989), then the data 
obtained from the above experimental conditions should 
fall on a plane defined by the formula: 

Cp=WtCt+(l -w+, 

where cp is perceived curvature, w, and 1 - w, are the 
texture and shading weights, and c, and c, are the 
portrayed texture and shading curvature values. (Note 
that the above model has only one parameter. This is 
because there are only two cues and the linear model, as 
proposed by Maloney and Landy, is constrained by the 
assumption that the weights of the available depth cues 
in a given scene must add to 1; thus, the appropriate 
linear model under the conditions of this experiment has 
only one free parameter.) The weight of the given cue, 
say texture, can then be estimated by calculating the 
slope of the line fitted to the data obtained from the 
experimental conditions in which a given shading curva- 
ture is combined with a range of texture curvatures. 

RESULTS 

Figure Z(a-f) plots subjects’ results for both exper- 
iments. Figure 2(a, b, c) plots subjects’ perceived curva- 
ture as a function of the value of the texture curvature 
cue, with the shading cue remaining fixed at one of three 
curvature values-0.4,0.7, and 0.9. Figure 2(d, e, f) plots 
subjects’ perceived curvature as a function of the value 
of the shading curvature cue, with the texture cue 
remaining fixed at one of the above three curvatures. The 
data were similar across subjects; thus the data from 
each experiment were summed and averaged to produce 
one set of results per experiment [see Fig. 3(a, b)]. 

The data in Fig. 2(a-f) demonstrates that the texture 
cue had practically no effect on curvature judgements for 
images with low curvature values, whereas the shading 
cue had a large effect. This is well illustrated by the 0.4 
condition, in which shading curvature remained con- 
stant at 0.4 and texture curvature was varied. When the 
texture cue was assigned a curvature value of between 
0.25 and 0.58, subjects’ curvature judgements are equiv- 
alent to a surface curvature value of 0.4. Thus, varying 
the texture cue in the range 0.25-0.58 had no noticeable 
effect on subject’s perceived curvature. However, when 
the texture curvature value remained constant and shad- 
ing was varied across the above range (Expt 2), there was 
a clear effect on curvature perception; changes in per- 

ceived curvature were in the same direction as the 
changes in shading curvature. In contrast, as the curva- 
ture value of either cue increased beyond 0.58 in the 0.4 
condition, the perceived curvature of the inconsistent- 
cues stimulus also increased. Furthermore, as the texture 
anchor cue curvature value is increased perceived curva- 
ture appears gradually to become more influenced by the 
texture cue than by the shading. This is demonstrated in 
Fig. 2(d-f) with the data suggesting that varying the 
shading curvature value has little or no effect on 
curvature judgements but for a texture curvature 
of 0.9. 

Figure 2(a-f) can be thought of as representing cross- 
sectional views of the three-dimensional surface gener- 
ated for each subject by the data combined from all the 
experimental conditions [see Fig. 3(b)]. Because a con- 
sistent-cues stimulus with c, = c, = cp must match an 
“inconsistent-cues” stimulus with c, = c, = cp, the sur- 
faces generated by each subject’s data are constrained to 
rest on the axis describing this relationship. Landy and 
Young (personal communication) point out that such 
surfaces are well described by a general quadratic model 
incorporating the above constraint, 

c,=ac:+b+(a +b)c,c,+dc,+(l -d)c,. 

This reduces the number of free parameters to three. 
To test how much variance was accounted for by a 

linear model the following procedure was applied to each 
subject’s set of data. The six sets of data generated by 
each subject (three sets each from the texture and 
shading experiments) were treated as estimates of 
points on a continuous surface. If the integration of the 
texture and shading conforms to a simple linear rule, 
we should expect that the slope of each of the three 
sections of the surface generated by the texture con- 
ditions will be both constant and equal. Similarly, 
the slopes of the three surface sections generated by 
the three shading conditions should also be both con- 
stant and equal. If this is the case, then the resulting 
surface will be best described by a planar function of the 
form 

c,=dc,+(l -d)c, 

where c, and c, are texture and shading curvature values, 
and d is a parameter. Note that this model meets the 
theoretical constraint discussed earlier, and is a subset of 
the above three-parameter quadratic model. It is clear 
from Fig. 2(a-f) that, for most of the experimental 
conditions, the obtained data do not fall on a straight 
line, suggesting that the shading and texture cues were 
not combined in a linear fashion. 

The planar function accounted for 90.4%, 8 1.6% and 
90.9% of the variance in WC’s, PF’s and CF’s data, 
respectively. However, fitting a six-parameter general 
quadratic function to the subjects’ data and removing 
coefficients close to zero suggested the following one- 
parameter non-linear model may provide a better fit to 
the data 
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FIGURE 2. Perceived curvature as a function of the curvature represented by tire texture cue with the value of the shading 
cue fixed at one of three levels. Curvature is expressed as the inverse of the radius. (a) subject PP, (b) subject WC; (cc) subject 
CF. Perceived curvature as a function of the curvature represented by the shading cue with the texture cue held constant at 
one of three vabres. (d) Subject PP, (e) subject WC; (f) subject CF. Perceived curvatures are measured using an adaptive method 
of constants (Watt & Andrews, 1981). Each data point is the average of at least three separate PSE determinations and is 

therefore based on at least 192 trials. The bars show i: ISE of the measurement. 

Note that this model is a subset of the three-parameter model, accounting for 94.3%, 88.8% and 93.4% of 
quadratic model, and also incorporates the diagonal WC’s, PP’s and CF’s data, respectively. 
constraint discussed above. The non-linear model ac- Although the two models clearly accounted for differ- 
counted for more variance in the data than the linear ent amounts of variance, it is not possible to test directly 
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a 

FIGURE 3. Because of the similarity of performance between subjects, the data for all subjects were summed and averaged. 
These mean responses are represented in a thr~-dimensional bar plot (a), and surface plot (b), of perceived curvature as a 
function of shading and texture curvature. The dark bars in (a) indicate perceived curvature when the shading cue was anchored 
at curvature values of 0.4, 0.7 and 0.9cm-’ and the texture curvature was varied between 0.25 and 1 cm-‘. The light bars 
indicate perceived curvature when the texture cue was anchored at the above three curvature values and the shading cue’s 

curvature was varied between 0.25 and 1 cm-‘. 
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TABLE I. Model parameters 

LI h d 

Subject WC P <0.05 NS NS 
Subject CF P <O.OS NS P <0.05 
Subject PP P<O.O5 NS NS 

Results of testing whether the parameters 

dropped from the three-parameter model. 

to derive the one-parameter non-linear 

and linear models, are significantly differ- 

ent from zero. From the table we can see 

that the parameter CI, which was dropped 

to derive the linear model, is significantly 

different from zero for all subjects; this 

suggests the fit of the linear model could 

be improved upon. 

whether this difference is statistically significant. Instead, 
we compared both models against the three-parameter 
quadratic model 

c,=ac:+hc;-(a +h)c,c,+dc,+(l -d)c, 

of which both models are subsets. Thus for the linear 
model we set a = b = 0 with dbeing fit to the data, and for 
the non-linear model we set h = d = 0 with a being fit to 
the data. Our strategy was to attempt to show that the 
three-parameter model was not significantly different 
from the non-linear model, but was significantly different 
from the linear model. Preliminary exploration indicated 
that the proposed non-linear model was appropriate for 
these data, whereas the linear model was not. t-Test 
analysis (Table 1) demonstrates that b and d are not 
significantly different from zero, although d was just 
significantly different for CF, and that a is significantly 
different from zero for all subjects. This indicates that the 
linear model is inappropriate for these data. Furthermore, 
when the standardized residuals are plotted against tex- 
ture curvature for the linear model fit, there is evidence of 
systematic curvature for all subjects, as opposed to the 
random scatter that is typical of good model specification 
(see Fig. 4), indicating a quadratic term is needed. In the 
case of the non-linear model there is no apparent system- 
atic pattern when standardized residuals are plotted 
against the squared texture curvature. Regression analy- 
sis (Chatterjee &Price, 1977)* shows that, for all subjects, 
the non-linear model accounted for significantly less 
variance in the data than the three-parameter model [WC: 
P(2,43) = 5.4, P < 0.05; CF: F(2,44) = 19.48, P < 0.001; 

*Chatterjee and Price show that this test can be expressed directly in 

terms of the sample multiple correlation coefficient. Let R, denote 

the sample multiple correlation coefficient obtained by fitting the 

full model with all the p variables to a set of data, and let R, denote 

the sample multiple correlation coefficient obtained by fitting the 

reduced model with q number of variables to the data. The 

F-statistic for testing the null hypothesis that (p -4) specified 
variables have zero regression coefficient is 

p={WG)/iP-q) 

( ) 
1-R;; /(n-p-l, 

with d.f. =p -4, n --p - 1. 

PP: F(2,44) = 8.048, P < O.OOl]; as did the linear model 

[WC: F(2,43) = 21.5, P < 0.001; CF: F(2.44) -= 30.68, 

P < 0.001; PP: 1;(2,44) = 22.98, P < O.OOl]. Although the 
results of the regression analysis are inconclusive. in each 
case the F-values are considerably higher for the linear 
model than the non-linear model. Furthermore. the pat-. 
tern of residuals and the results of the t-tests suggest that 
the non-linear model provides a more parsimonious rep- 
resentation of the data than the Maloney- Landy model. 

The data suggest that the weight of the texture cue 
varies as a function of that cue’s curvature value. 
Although the linear model does not provide the best fit to 
the data, we can consider the use of a local linear approxi- 
mation. Since, from elementary calculus. 

dc,+!dc,+%dL., 
i lV, 

we can see that the change in perceived curvature dc, is a 
linear function of increments in shading and texture cues 
weighted by the values of the partial derivatives of the 
surface. For the Maloney and Landy model the weight of 
a given cue, defined by the slope of the function relating 
perceived curvature and the value of the cue, is equal to 
the value of the parameter which scales that cue. 

However, this is not true of the non-linear model. In order 
to make explicit the changes in the perceived curvature for 
a change in a given cue, the local slope values were 
estimated by means of the partial derivatives of the 
perceived curvature with respect to shading curvature and 
texture curvature. Thus the weight of the texture cue, that 
is the influence that changing the texture cue has on 
perceived curvature, is given by the equation 

ac 
W, = 2 = 2ac, - ac, 

ac, 

and the weight of the shading cue was estimated from the 
equation 

H’, = CCI, = 1 - QC,, 

ac, 
In the Maloney and Landy model (1989) the weights scale 
the absolute values of the depth cues to derive a value for 
perceived depth. However, in the differential model 

dc, = M’, dc, + N, dc, 

the weights scale increments in three-dimensional cues 
to derive a value for the change in perceived three- 
dimensional shape. In other words, the weights describe 
how changes in shading or texture determine the change in 
perceived curvature. 

Figures 5(a, b) is a plot of the weights assigned 
to texture and shading, respectively, for the 0.4, 0.7 
and 0.9 conditions. We can see from Fig. 5(a) that as the 
curvature value of the texture cue increases there is a 
proportional increase in the influence of texture on sub- 
jects’ perception of surface curvature. However, in the 
case of the shading cue, Fig. 5(b) shows that, as the 
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value of the shading cue increases, the influence that 
shading has on subjects’ perception of surface curvature 
remains constant. 

To assess the likeliho~ of subjects using depth 
measurements rather than curvature measurements in 
making their judgements, the data were transformed into 
depth values and tested with both models described plus 
the three-parameter model. Scaling the axes in this way 
rather than in terms of curvature results in a reduced fit 
for all three models. The amount of variance accounted 
for by the linear model was reduced from 90.4%, 8 1.6% 
and 90.9% to 76.6%, 78.8% and 82.9% for subjects 
WC, PP and CF, respectively. The amount of variance 
accounted for by the three-parameter model was reduced 
from 95.4%, 91.8% and 96.5% to 89.4%, 82.3% and 
91.9% for subjects WC, PP and CF, respectively. Thus 
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the non-linear model in the curvature domain was a 
better fit than the three parameter model in the depth 
domain for all subjects (WC, PP and CF: 94.3%, 88.8% 
and 93.4% for the non-linear model in the curvature 
domain as compared to 89.4%, 82.3% and 91.9% for 
the three-parameter model in the depth domain). The 
better fit of the non-linear model in the curvature 
domain when contrasted with the three-parameter model 
in the depth domain suggests that it is likely subjects 
were deriving information about surface form from a 
curvature map rather than from a range map. 

DISCUSSION 

In the Maloney and Landy (1989) model of depth 
cue integration the percept results from the process of 
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FIGURE 4. (a, b, c) The standardized residuals plotted against squared texture curvature values for the non-linear model for each 
subject. (d, e, f) The standardized residuals plotted against texture curvature values for the linear model for each subject. While 
there is random scatter of the points in (a)-fc), there is clearly systematic curvature in (d)-(f) suggesting that a quadratic term is 

needed. 
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b 

FIGURE 5. The weights of the texture and shading cues for each of the eight levels tested within each “anchor” condition. 
The weights scale increments in the texture and shading cues to derive a value for the change in perceived three-dimensional 
shape. The weights were calculated from the mean responses across subjects. (a) The weights assigned to the texture cue: (h) 

the weights assigned to the shading cue. 
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combining the outputs of independent depth modules 
in a specified proportion; a procedure which they 
refer to as weak fusion (Young et a!., 1993). The 
elegant technique of perturbation analysis allows 
one to estimate the relative weights of individual 
depth cues by varying one cue and measuring its 
influence on the combined percept. If the change in the 
combined percept is proportional to the change in the 
level of the cue for all increments in the cue then we can 
model the combined percept as a planar function of the 
values of the component cues. This is the situation we 
have referred to as conforming to a linear combination 
rule. However, Maloney and Landy accept that other 
influences might affect the combined percept, like the 
separation of the component cues. Under these con- 
ditions there will be a departure from linearity. Indeed 
one interpretation of the non-linear model presented 
here 

c,=c,+a(c,-c,)c, 

is that perceived curvature depends upon shading 
curvature plus some influence from texture which 
is weighted by a proportion of the difference 
between the cues. Other interpretations may also 
be possible and we would wish to note that we do 
not assume an explicit implementation of this rule. 
It does however provide a useful description of the 
data. 

Following Maloney and Landy, we have defined 
the weights as the values of the partial derivatives of 
the surface generated by the measured value of 
the combined percept, with the component cues 
taken as parameters, although the idea has been 
generalized to deal with more complex surfaces. 
This approach involves a local linear approximation 
and so we concur with Maloney and Landy that 
locally we can think of the cue combination rule 
as linear. However, it is clear that any curved surface 
will appear planar if investigated locally. So, in 
attempting to test Maloney and Landy’s (1989) 
proposed model of depth cue integration in the 
context of shading and texture, we investigated the 
shape of the function for a wide range of cue combi- 
nations. 

Our results show that the linear model does not 
generalize to the integration of these shading and 
texture cues, although for other pairs of cues the 
weights may not vary with component cue separation. 
If the integration of shading and texture was best 
described by a linear model then one would expect 
that the weight of a given cue would remain con- 
stant as the cue varied in its level of curvature. 
Although the weight assigned to shading was 
constant within experimental conditions, suggesting 
that the two cues may be integrated in a simple linear 
fashion, the weight assigned to texture was shown to 
vary systematically with texture curvature when the 
roles of the two cues were reversed. The value of the 
non-linear model described above is its role in high- 
lighting the way in which the shading and texture 
VR 34:14--D 

weights change as a function of the values of the 
component cues. 

The present experiments also provided the opportu- 
nity to test Maloney and Landy’s proposal that 
the combination of cues results in an integrated rep- 
resentation of surface distance or depth. Our data 
suggest that, in the above experimental conditions, 
three-dimensional surface information was more likely 
to have been derived from a curvature map. This is 
supported by the poorer fit of all three models (the 
linear, the non-linear and the three-parameter) to the 
transformed depth data, and the better fit of the pro- 
posed non-linear model in the curvature domain when 
contrasted with the three-parameter model in the depth 
domain. 

Thus, although several experimenters have reported 
empirical support for Maloney and Landy’s depth 
cue integration model for the combination of a 
wide range of depth cues, the results of the experiments 
reported in this paper suggest that such a strategy 
may not be used for the integration of shading and 
texture cues. Instead, the results lend support to the 
hypothesis that the visual system may combine 
such cues in a non-linear fashion. It is also suggested 
that the locus of texture and shading cue integration is 
a curvature map, rather than a depth or orientation 
map. 
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