Recovery recapitulates ontogeny

Steven C. Cramer and Michael Chopp

Several studies support the hypothesis that after stroke, specific features of brain function revert to those seen at an early stage of development, with the subsequent process of recovery recapitulating ontogeny in many ways. Many clinical characteristics of stroke recovery resemble normal development, particularly in the motor system. Consistent with this, brain-mapping studies after an ischemic insult suggest re-emergence of childhood organizational patterns; recovery being associated with a return to adult patterns. Experimental animal studies demonstrate increased levels of developmental proteins, particularly in the area surrounding an infarct, suggesting an active process of reconditioning in response to cerebral ischemia. Understanding the patterns of similarity between normal development and stroke recovery might be of value in its treatment.

STROKE remains the leading cause of adult disability in many Western countries, with survivors living with their deficits for an average of seven years. In the weeks that follow a stroke, a number of changes take place in the brain. In many cases, these are associated with neurological improvement. The underpinnings of these restorative events have become the focus of intense study. In this article, aspects of stroke recovery that resemble normal development are reviewed. A better understanding of the analogies between development and recovery might be of value in the design of future studies, including formulation of therapeutic interventions that improve clinical outcome after stroke.

Most patients show some degree of recovery after a stroke, but few return to normal. Stroke recovery generally proceeds through a series of clinical stages. In general, individuals with a larger extent of improvement proceed through a greater number of stages.

Motor performance

For several decades, researchers have described behavioral parallels between the successive stages of normal development and recovery from brain injury. For example, Hines showed that the normal development of locomotion and posture in rhesus monkeys passed through stages similar to those seen during stroke recovery. Teitelbaum et al. found that the four stages of feeding behavior in normal development re-emerged in rats recovering from a lateral hypthalamic lesion. Other studies from his laboratory determined that forelimb placing in the cat passed through the same stages during normal development and during recovery from a focal lesion. More recent studies in humans lend further support to such a link, especially with regard to motor function. In other cases, such as language, the case for a parallel between development and recovery might be less compelling.

A major theme common to both childhood development and successful recovery from hemiparetic stroke is the refinement in motor performance, from a gross movement to a fine, fractionated one. The sequence of events after stroke was well described by Twitchell. Initially, activity depends on reflex responses. Primitive reflexes are disinhibited. The first volitional movements consist of whole-arm synergistic events, then proximal movements predominate. Movement of individual fingers appears later, as synkinesias resolve, and only when recovery is substantial. Slowness of fine finger movements is a cardinal sign of corticospinal tract damage; faster movements and shorter reaction times are seen as stroke recovery proceeds. This general pattern is similar to motor changes during normal development. Newborn infants respond in a generalized fashion to stimulation, with early responses showing much more movement of the entire upper extremity rather than of individual fingers. Over time, movements become more precise and fractionated, with loss of synkinesias and inhibition of primitive reflexes. For example, the widely used Denver Developmental Screening Test cites the median age for emergence of isolated thumb movements as three years. Children also show substantial improvement in motor speed during development.

What are the changes in brain function that underlie these improvements in motor function during stroke recovery, and how similar are they to the events of normal development? Brain-mapping studies have provided some insights, and a number of similarities have emerged, including those related to bilateral motor control and those related to plasticity of cortical representation maps.

Bilateral motor control

Childhood is associated with bilateral motor control, in association with immaturity of the corticospinal connections that are essential for fractionated unilateral movements. In contrast, adulthood is associated primarily with contralateral motor control, together with well-developed corticospinal tract size and function. Muller et al. found that transcranial magnetic stimulation of motor cortex induced bilateral responses in hand and arm muscles of most children, but only contralateral responses from the age of ten. The frequency with which ipsilateral responses were seen steadily decreased during the first decade of life. Another indication of bilateral control is the movement of both hands during intended use of only one, a phenomenon known as mirror movements. Mirror movements during hand motor tasks are normal in children, but decrease in their prevalence and magnitude, then disappear in the early teenage years. There are very limited data that
describe functional brain activation in children. Studies using near-infrared spectroscopy in normal infants have identified bilateral sensorimotor cortex activation during uni- laterial passive arm movements 13, in contrast to con- tralateral activation in response to the same movements in adults 14. Gaillard et al. 15, using functional magnetic resonance imaging (fMRI) during a silent word-gene- ration task, found that children activated a significantly larger volume of brain in the right hemisphere and in the right inferior frontal gyrus, when compared with adults.

Bilateral motor control has also been described in adults who have suffered a stroke. Neurophysiological features, however, suggest two different patterns. One is found in individuals with poor motor status, either soon after stroke or late after stroke in individuals with poor recovery. Neurophysiological evaluation of these individuals discloses features in common with children. A second pattern of bilateral motor control has been described in individuals with good recovery after stroke and has more similarities with the normal adult motor physiology.

Soon after stroke, and in individuals with poor re- covery long after stroke, studies have demonstrated an increased degree of bilateral motor control that has similarities with normal childhood motor function. A PET study of six hemiplegic individuals early after stroke found bilaterally increased sensorimotor cortex acti- vation during passive movement of the paretic arm, when compared with the same stimulus in controls 16; this is the same stimulus that produced bilateral sensori- motor cortex activation in infants 17 and contralateral activation in healthy adults 18. In the stroke hemisphere, soon after stroke and in individuals with poor recovery from stroke, there is often slowed central motor con-duction time 19, a finding also seen in early childhood 20. In the non-stroke hemisphere, transcranial magnetic stimulation (TMS) elicits motor responses in the ipsi- lateral (stroke-affected) hand, primarily in individuals with poor motor status 21,22; such ipsilateral responses to TMS are seen in children but not in adults 23. Further- more, these ipsilateral responses to TMS among indi- viduals who have not recovered from a stroke are delayed by several milliseconds compared with contra-
lateral responses, similar to results in children 24. As with motor behavior, neurophysiological charac- terization of individuals with poor motor status after stroke has a number of similarities with early stages of development.

Individuals with good recovery from a hemiparesis stroke also show increased bilateral motor control, however neurophysiological fea- tures are more consistent with find- ings in normal adults rather than a return to an early developmental pattern. PET and fMRI studies of individuals with good recovery after stroke have described bilateral acti- vation in motor cortex regions dur- ing performance of a hand motor task 25,26. In contrast to individuals with poor recovery, however, those who are well recovered have normal central motor conduction times 27 and fail to demonstrate ipsilateral motor responses during TMS of the non-stroke hemi- sphere (as do control subjects 12,13). Numerous studies have found that control subjects performing a unilateral motor task recruit ipsilateral motor cortex, though to a smaller extent than stroke subjects moving a recovered hand 28,29. The site of ipsilateral motor cortex recruited by stroke and control subjects is similar. In controls, the sites activated in a given hemisphere during ipsi- lateral and during contralateral hand movements are spatially distinct. In the non-stroke hemisphere of stroke subjects, the site activated during ipsilateral (recovered) hand movement is separated from the site activated during contralateral (unaffected) movement. The pat- tern of separation in stroke is very similar to that seen in controls 27, suggesting that in stroke, a cortical region normally used for movement is being recruited, but in an exaggerated way.

The role played by motor cortex in its influence on ipsilateral hand movements can vary according to the pattern of bilateral control. In the first pattern, seen in children and in adults who have suffered a stroke without good recovery, ipsilateral control of hand movements has been considered a reflection of activity in undecussated corticospinal pathways 16,17. The second pattern is seen in adults who have good recovery, suggesting that stroke recovery reflects rein- statement of motor control features that were acquired during development. In this group, ipsilateral control might reflect task complexity, as increasing the complex- ity of unilateral hand movements by normal adult subjects has been associated with greater activation of the ipsilateral motor cortex 27. Alternatively, ipsilateral control might also be a function of motor suppression, as previous studies in primates (reviewed by Garol and Bucy 30) and humans 31 have suggested the presence of a motor strip region related to suppressing contralateral movements of the distal upper extremity.

Cortical-map plasticity

Brain-mapping studies have supported the idea that in humans, a mapping of cortical regions contain orderly but overlapping representation of body regions 30,31. In animal studies, these maps show a degree of redundancy
and overlap[1], a finding also described in human brain-mapping studies[2]. The capacity to reorganize cortical representational maps might be maximal at early time points in development. For example, hemispherectomy during early childhood can be associated with remapping of motor, language and other functions to regions within the remaining hemisphere[3].

Reorganization of cortical representational maps might also be a mechanism by which some individuals achieve return of function after stroke. Cortical-map plasticity is a normal event in adulthood and might be amplified after stroke. Studies in primates have demonstrated such plasticity along the rim of a focal infarct[4,5]. Brain-mapping studies suggest the same could be true in humans. For example, finger movements by individuals with good recovery from stroke have been associated with activation of motor-cortex regions traditionally associated with the face[6]. Functional imaging studies during finger movements[7,8] or exploratory hand movements[9] in individuals who have recovered from stroke have identified foci of activation along the edge of a cortical stroke (Fig. 1). These foci were not in motor-cortex regions generally associated with hand representation, suggesting that surviving regions along the infarct rim might be recruited in cortical-map reorganization. Multiple rearrangements can occur after a single stroke, and an improved understanding of cortical reorganization in this setting might come from studying patterns of change in multiple systems. For example, compared with controls, an individual recovered from a small precentral gyrus stroke showed a posterior shift in the activation site during both finger-motor and finger-sensory paradigms[10]. The total behavioral impact of these reorganizational events is difficult to know. Gains in one aspect of function might arise at the cost of another; for example, this might explain why stroke subjects often have mild motor deficits in the non-stroke hand in association with improvement in the stroke-affected hand[11].

There are a number of reasons to suspect that peri-infarct regions are a site of clinically relevant cortical remodeling. These regions have high levels of growth-related proteins (Table 1), and the volume of threatened but surviving peri-infarct tissue is linearly related to the degree of clinical recovery[12]. Animal studies are needed to determine the extent to which map reorganization corresponds to sites of increased growth-related protein levels. Studies in humans with a wide range in degree of recovery from stroke are needed in order to establish the specificity of map reorganization for the well-recovered state. Such studies might be useful in generating a non-invasive method for assessing restorative events as they occur during stroke recovery.

The cellular basis for brain recovery and reorganization has been studied in animal models of brain infarct. In many cases, changes are similar to events of normal development. Certainly, not all brain events that occur after stroke have a direct link with development, such as the inflammatory and excitotoxic events that follow an infarct. However, some processes that are seemingly unrelated to recovery, such as the inflammatory response, might serve in part as a trigger for restorative events[13]. Other processes in common are not specific for recovery and development. For example, the area surrounding an infarct shows a rapid increase in excitability and decrease in inhibition, findings that might contribute to LTP in the infarct surround[14].

TABLE 1. Proteins increased in brain during development and after ischemic insult

<table>
<thead>
<tr>
<th>Type of protein</th>
<th>Name</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentiation factor</td>
<td>NeuroD</td>
<td>81</td>
</tr>
<tr>
<td>Structural</td>
<td>Nealin</td>
<td>82,83</td>
</tr>
<tr>
<td>MAP-2</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Growth associated</td>
<td>GAP43</td>
<td>84,85</td>
</tr>
<tr>
<td></td>
<td>Synaptophysin</td>
<td>53,85</td>
</tr>
<tr>
<td>Growth factors</td>
<td>Basic fibroblast growth factor</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Vascular endothelial growth factor</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Brain-derived neurotrophic factor</td>
<td>76</td>
</tr>
<tr>
<td>Cell cycle related</td>
<td>p53</td>
<td>88,90</td>
</tr>
<tr>
<td></td>
<td>p53 response proteins</td>
<td>84,91</td>
</tr>
</tbody>
</table>

Re-emergence of molecular and cellular developmental events

Developmental proteins normally absent or present at very low levels in adult brain re-emerge after an ischemic brain insult, often at a time of limited cellular metabolic resources. A wide range of proteins have been described, many focused in the penumbral area surrounding an infarct and some appearing in bilateral hemispheres (Fig. 2). Increased proteins levels after stroke are related to changes in the extracellular matrix, glial structure, neuronal growth, apoptosis, angiogenesis and cellular differentiation (Table 1). The production of many of these proteins also increases under other conditions, such as those related to memory and experience[15,16]. Re-emergence in adulthood of proteins normally associated with development is a pattern seen in many organ systems and indicates a conservation of plasticity mechanisms throughout the lifetime of an organism. For example, a similar pattern of reversion has also been described in the production of Ca2+ channels after myocardial infarction[17], growth factors in diabetes mellitus[18], developmental proteins after muscle fiber injury[19], and hemoglobin in myelodysplasia[20].

Cellular changes that are reminiscent of development arise in the setting of these molecular events. During brain development, the number of dendritic spines and synapses increases until several years after birth, with the numbers being reduced thereafter. In humans, for example, the number of synapses reaches a peak at age five[21]. In macaques, synaptic density peaks two months post-natally, being halved to reach adult levels at age three[22]. After a unilateral cortical lesion, increased dendritic branching[23] and an increased number of synapses[24] have been reported in both the stroke-affected and the non-stroke hemispheres. After an infarct some of these changes show an overshoot followed by pruning, as they do during development. There is also evidence, albeit incomplete, for quantitative changes in neurons after stroke. Recent data strongly support the presence of neurogenesis in healthy adult rodents[25] and primate brains[26].

A post-ischemic increase in production of cell-cycle proteins, including the neuronal determination protein neuroD (Table 1), suggests activation of neuronal stem and progenitor cells from a quiescent state. A recent study of mice showed that both endogenous subventricular cells and exogenously implanted bone-marrow cells proliferated, migrated, differentiated and were recruited to ischemic regions after embolic stroke[27].
Many events after stroke resemble development, but what is the evidence that links patterns of cellular response with patterns of behavioral recovery? The answer to this question is central to the goal of using developmental events as a template for therapeutic approaches.

Three pieces of evidence support this link.

There is a correlation between extent of behavioral recovery and magnitude of cellular response. This has been examined in studies that varied infarct site, level of motor activity and chemical milieu. For example, Kozlowski et al. described dendritic growth in the non-stroke hemisphere in association with behavioral recovery. Immobilizing the unaffected forelimb prevented this dendritic growth and blocked behavioral recovery. Introduction of basic fibroblast growth factor (bFGF) in rats after stroke is associated with improved sensorimotor function and increased staining for growth-associated protein 43 (GAP43) in the non-stroke hemisphere. Staining for synaptophysin increased bilaterally when amphetamine improved behavioral outcome after stroke; improvement of behavior was linearly related to increased synaptophysin immunoreactivity.

The temporal course of clinical recovery after stroke parallels that of post-stroke cellular events. In untreated rats recovering from an infarct, the maximal increase in dendritic branch number occurs at day 18, in synapses per neuron, at day 30, and in synaptophysin levels, which reflects synaptogenesis, at days 14–28 after stroke. In the last study, best performances occurred at the same time-points that synaptophysin levels were at a maximum. Recovery in humans occurs over a more-protracted time-course. For example, Nakayama et al. found that 93% of individuals achieved their final level of arm function nine weeks after a stroke. Final function was reached by six weeks in individuals with milder deficit, whereas more severely affected patients required 11 weeks. Autopsy studies could provide insights into the temporal course of growth-related proteins in humans after stroke; peak levels in the first six to eleven weeks would be expected. Such information would be important for establishing the schedule of treatments targeting post-stroke recovery.

The spatial distribution of protein changes after an infarct supports a role for these molecules in behavioral recovery. After an infarct within forelimb sensorimotor cortex, neuronal dendrite numbers increase specifically within homotopic regions of cortex in the non-lesion hemisphere. Levels of GAP43, a marker of axonal outgrowth, increase exclusively in areas surrounding an acute stroke in untreated rats. Increased synaptophysin staining is most intense within the same region. Survival of the area surrounding an infarct has been closely linked with improved clinical outcome in humans, suggesting that cellular events in this area are important to the recovery process.

Clinical approaches

The analogy between development and stroke recovery could suggest clinical approaches to maximize patient outcomes. NMDA-receptor blockade is a strategy employed in many current therapeutic trials of acute ischemic stroke. However, during development, such inhibition is associated with reduced dendritic and synaptic pruning. Similarly, during stroke recovery, NMDA-receptor antagonism is also associated with prevention of dendritic pruning and increased behavioral deficits. Levels of NMDA receptors increase bilaterally after a unilateral infarct, and might be an indicator to recovery-related cortical reorganization.

Fig. 2. Increased developmental proteins in the region surrounding an experimental infarct, seven days after a 2 h occlusion of the middle cerebral artery. (a)–(d) show immunostaining for nestin. In non-ischemic brain regions, nestin immunoreactivity is present in endothelial cells and in the ventricular zone (VZ), for example, right side of (a) and (b). In the ischemic boundary zone (IBZ; c) and in the ventricular zone/subventricular zone (VZ/SVZ; see (d)), nestin immunoreactivity is increased. (e) and (f) show immunostaining for NeuroD. In (e), NeuroD immunoreactivity is most intense in morphologically intact neurons in the IBZ. Note that (f) is enlarged from (e). Scale bar, 100 μm.
NMDA-receptor antagonists could have deleterious clini-
cal effects when administered beyond the acute stroke
period. Conversely, we speculate that NMDA-receptor
agonists administered during the quasi developmental
stage after stroke might enhance functional recovery.
Specific forms of cortical-map plasticity are operative
during a limited segment of development. Sensory or
motor experiences during these critical periods influence
adult neural status, but after this period, the same
experiences have minimal effect on subsequent neuro-
logical status. As with developmental critical periods,
there are time constraints after a stroke during which
a particular experience can modify final neuro-
logical status. In rats with a unilateral lesion of
forelimb somatosensory motor cortex, casting the intact fore-
limb reduces intact hemisphere dendrite expansion,
decreases peri-lesional levels of BDNF, increases lesion
tissue volume and is associated with a lesser degree of recov-
erary. However, casting has these effects only when
instituted during specific weeks after an infarct. In
perfusion-activated protein I administration improves
stroke recovery without changing stroke volume when
administered days, but not weeks, after an ischemic
infarct in animals. As a further example, promoting
angiosogenesis of penumbra tissue and introducing
exogenous stem cells within this embryonic micro-
environment facilitates differentiation of the exogenous
cells to parenchymal cells, and also promotes activation,
proliferation and integration of endogenous subven-
tricular zone stem cells. Understanding the identi-
ﬁcity and temporal course of the molecules supporting
developmental critical periods might be useful for
maximizing clinical beneﬁt derived from introduction of
exogenous stem cells.
Some of the molecules that support developmental
neuroplasticity during critical periods are also produced at increased levels after a focal infarct. For example, brain-derived neuro-
trophic factor (BDNF) might have a role in the activity-
dependent plasticity of developing visual cortex. Peri-lesional infarct volume and the degree of stroke volume when
administered days, but not weeks, after an ischemic
infarct in animals. As a further example, promoting
angiosogenesis of penumbra tissue and introducing
exogenous stem cells within this embryonic micro-
environment facilitates differentiation of the exogenous
cells to parenchymal cells, and also promotes activation,
proliferation and integration of endogenous subven-
tricular zone stem cells. Understanding the identi-
ﬁcity and temporal course of the molecules supporting
developmental critical periods might be useful for
maximizing clinical beneﬁt derived from introduction of
exogenous stem cells.
Concluding remarks
In 1866, Haeckel proposed that ontogeny recapitu-
lates phylogeny, some elements of his theories have been
of heuristic value. In recent decades, a number of researchers have recognized parallels that exist between
stroke recovery and ontogeny, with examples described at
the behavioral, brain mapping, cellular and molecular
levels. Animal studies have identiﬁed treatments that
improve long-term outcome by targeting the events
that underlie stroke recovery. Parallels with development might be of value in guiding treatment
of stroke recovery, for example, in terms of timing of
treatment, the order of molecular events to promote
and the optimal micro-environment. The parallels that
will be of greatest use for the treatment of individuals
during stroke recovery remain to be deﬁned.

Selected references
Health and Human Services. Public Health Service, Agency for Health Care Policy and Research
4. Hines, M. (1942) The development and regression of reﬂexes, posture, and progression in the young Macaque. Carnegie Institute of
Washington 54, 153–209
67, 450–441
Arbitrary associations between antecedents and actions

Steven P. Wise and Elisabeth A. Murray

The arbitrary linkage of sensory cues to actions and goals represents one of the most-flexible capabilities in the behavioral repertoire of mammals. This ability has been termed ‘conditional motor learning’, ‘conditional discrimination’ or, more recently, ‘arbitrary visuomotor mapping’. Unlike other forms of visuomotor guidance, in arbitrary mapping the location of the sensory cue lacks any systematic spatial relationship with the action or its goal. Recent work has identified much of the neural network that underlies this behavior. It consists of parts of the frontal cortex, hippocampal system and basal ganglia, each of which has neurons whose activity undergoes systematic evolution during learning.

Some of the psychological papers at the meeting were impressive... but there were other kinds of papers, too... - P.T. Zellerman's study on the difference in the length of time it took white rats to learn a maze when the corners were curved rather than angular, or World's paper on the effect of intelligence level on the reaction time of rhesus monkeys. Papers like these made me angry. Money, time, and energy squandered on the detailed analysis of the trivial.

Daniel Keynes1

This quotation comes from Charlie Gordon, who, together with a mouse named Algernon, had genius thrust upon him by an experimental brain lesion. We need not share Charlie's scepticism about spatial-memory and reaction-time studies; he is, after all, fictional. If, as Charlie implies, simply remembering places and reacting faster are relatively unimposing cognitive functions, what kind of behavior might be more impressive, yet amenable to laboratory study?

One potential answer involves conditional motor learning, the arbitrary association between stimuli and actions. This capability supercedes the simple storage of sensory information, such as remembering a place, and it epitomizes the behavioral flexibility that makes up an important aspect of intelligent behavior. Unfortunately, the phrase ‘conditional motor learning’ often generates misunderstanding. The ‘conditional’ term causes confusion with conditioned reflexes, which, unlike conditional motor learning, depend on unconditioned reflexes. The ‘motor learning’ part evokes images of skill acquisition, with which conditional motor learning has even less in common. An alternative terminology relies on propositional logic, ‘if antecedent, then consequent’. Using this vocabulary, we can say that an antecedent maps arbitrarily onto a consequent. When visual cues serve as antecedents and movements as consequents, the result can be called arbitrary visuomotor mapping.

Movements usually have spatial targets, and so visuomotor and visuospatial mapping will be discussed together, emphasizing their common feature: arbitrary use of nonspatial visual cues to produce a clearly observable action. These features have considerable practical value in the laboratory. However, arbitrary visuomotor mapping is no mere laboratory curiosity; it has fundamental importance in human behavior. Without this ability, drivers could not learn to stop at red traffic signals (or, failing that, at least slow down). More generally, signal-guided or symbolically guided actions would be impossible. Arbitrary visuomotor mapping is, we would submit to Charlie Gordon, a higher brain function worthy of ‘money, time, and energy’.

Ablations

One central issue concerns which neural structures compute these flexible mappings. Neuropsychological research has identified the basic components of a widely distributed neural network underlying this function. The study of arbitrary visuomotor mapping dates back at least to the early 1970s, but the most influential work was carried out more recently, predominantly in the laboratories of Richard Passingham, Michael Petrides and David Gafarian. The work of Passingham and Petrides showed that ablations of the dorsal premotor cortex, a part of the frontal lobe situated between the prefrontal and primary motor areas (PMd in Fig. 1), caused serious deficits in learning arbitrary visuomotor mappings. For example, monkeys with PMd lesions could not learn to twist a handle in response to a yellow placard, although they performed normally in both twisting the handle...