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Abstract: Estimating cortical current distributions from electroencephalographic (EEG) or magnetoen-
cephalographic data is a difficult inverse problem whose solution can be improved by the addition of
priors on the associated neural responses. In the context of visual activation studies, we propose a new
approach that uses a functional area constrained estimator (FACE) to increase the accuracy of the
reconstructions. It derives the source correlation matrix from a segmentation of the cortex into areas
defined by retinotopic maps of the visual field or by functional localizers obtained independently by
fMRI. These areas are computed once for each individual subject and the associated estimators can
therefore be reused for any new study on the same participant. The resulting FACE reconstructions
emphasize the activity of sources within these areas or enforce their intercorrelations. We used realistic
Monte-Carlo simulations to demonstrate that this approach improved our estimates of a diverse set of
source configurations. Reconstructions obtained from a real EEG dataset demonstrate that our priors
improve the localization of the cortical areas involved in horizontal disparity processing. Hum Brain
Mapp 00:000–000, 2011. VC 2011 Wiley-Liss, Inc.
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INTRODUCTION

The reconstruction of cortical current distributions from
electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) data can be approached as an imaging
problem where the unknown sources are distributed on an

individual’s cortex with their orientations fixed and nor-
mal to the local surface [Dale and Sereno, 1993]. Several
thousand sources are necessary to model the convolutions
of the cortical manifold precisely, but only a hundred or
so measurements are available. The associated inverse pro-
cedure is thus severely ill-posed and has no unique solu-
tion [Hämäläinen et al., 1993]. Conventional approaches to
this issue introduce priors on the source distribution to
constrain the estimation problem. While there are many
sorts of priors invoked in EEG/MEG source imaging, a
typical requirement for a straightforward inverse proce-
dure is that the current distribution be spatially smooth
and follow a Gaussian distribution with zero mean and a
covariance matrix R. If this covariance matrix is propor-
tional to the identity matrix, several different approaches
exist to define it [Baillet et al., 2001]. Some estimators have
a bias towards superficial currents, associated with the
attenuation of the MEG and EEG lead fields with increas-
ing source depth. To circumvent this superficial bias, some
studies have proposed a modification of the diagonal ele-
ments of the source-covariance matrix R using for each
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source a scaling parameter determined by a function of
the distance to the sensors [Jeffs et al., 1987; Lin et al.,
2006]. Using a reweighting algorithm that iteratively rede-
fined the matrix R, Gorodnitsky et al. provided another so-
lution to this bias [Gorodnitsky et al., 1995; see also Moran
et al., 2005 for a multiresolution implementation of the
algorithm]. Their method also limited the over-estimation
of the spatial extent of the activity inherent to L2-norm
techniques by enforcing the spatial focality of the recon-
structions [Ou et al., 2009; Schmidt et al., 1999]. In addition
to a modification of the diagonal elements of R (i.e., a
modification of its autocovariance), the introduction of off-
diagonal elements also results in sparser estimates and can
circumvent the tendency of the pseudoinverse to posit ad-
jacent or interleaved current elements of opposite polarity
to precisely match the observed field or potential distribu-
tion [Grave de Peralta et al., 2004; Pascual-Marqui et al.,
1994]. In the general framework of Bayesian models, these
parameters can be inferred from the data [Friston et al.,
2008; Mattout et al., 2006; Trujillo-Barreto et al., 2004; Wipf
and Nagarajan, 2009].

In this context, the development of high spatial resolution
functional imaging of the blood oxygenation level-depend-
ent (BOLD) signal opens new opportunities to introduce
functional priors into the inverse procedure. In particular,
several authors have used the activations obtained from
functional magnetic resonance imaging (fMRI) to improve
EEG/MEG reconstructions. George et al. [1995] for exam-
ple, used the BOLD responses obtained from the same stim-
uli to set the diagonal elements of R to non-zero values at
source locations where the BOLD activations were above a
given threshold. However, although both the BOLD [Logo-
thetis, 2008] and the EEG/MEG [Hämäläinen et al., 1993]
signals have good correlations with synaptic activity, the
underlying processes have different origins [Nunez and Sil-
berstein, 2000] and the presence of errors in the fMRI recon-
structions (false-positive as well as false-negative) can
introduce bias in the model [Vanni et al., 2004]. Several
studies have proposed to weaken these effects by imposing
a partial fMRI constraint [Ahlfors and Simpson, 2004; Dale
et al., 2000; Liu et al., 1998, 2002]. More recently, Liu and
He [2008] estimated the cortical activity using an adaptive
Wiener filter in which the covariance matrix R was estimated
by assuming that the time integral of each source variance
was related to its BOLD-fMRI response [see also Liu et al.,
2009 for application to visual data]. In Yoshioka et al., [2008],
the prior on the source covariance was considered as a ran-
dom variable whose parameters depended on the fMRI activ-
ity but could be updated according to the observed EEG/
MEG data using hierarchical Bayesian estimation [see also
Sato et al., 2004]. Finally, Ou et al. [2010] applied a reweighted
minimum-norm algorithm where the source weights were
estimated from both the EEG/MEG and fMRI data. While
these different techniques have proven to be accurate on both
synthetic and real data, their use is however complicated at
the scale of group studies as they require a new fMRI acquisi-
tion every time a change is introduced in the stimulus.

FMRI data can be used in a different way to serve as a
source constraint. Hagler et al. [2009] used retinotopic maps
obtained from fMRI to prelocalize the portions of visual areas
V1, V2, and V3 associated to specific locations in the visual
field. These areas allowed the definition of a constrained
EEG/MEG forward model that is theoretically usable to esti-
mate current density in the three predefined visual areas for
any stimulation in the prespecified parts of the visual field.

Here, we take a similar but more general approach. We
present a new technique based on a functional area con-
strained estimator (FACE) that defines the source distribu-
tion correlation matrix using cortical regions that are
determined once for any individual participant. These
regions consist either of the topographic maps of the sensory
surfaces onto cortex or functional localizers that can be used
to define cortical areas on the basis of stimulus selectivity.
The associated constraints are independent of any given ex-
perimental protocol and thus can be reused. We illustrate the
FACE approach in the specific context of the visual system
which contains several retinotopic maps of the visual field as
well as several areas with distinct functional properties, all
of which can be obtained with good precision using fMRI.

In the following, we first describe the different source
models derived from the correlation properties of the pre-
defined visual areas and explain how to introduce them in
a minimum-norm inverse procedure. We then evaluate
model performance using multiple EEG Monte-Carlo sim-
ulations. We use a real EEG data set to demonstrate the
ability of our approach to localize the cortical generators
responding to horizontal disparity. We show that our
approach can be successfully introduced into other inver-
sion frameworks, including a depth-weighted minimum-
norm [Lin et al., 2006], a LORETA [Pascual-Marqui et al.,
1994], and a MSP [Friston et al., 2008] inverses. Finally, we
discuss the utility of inter-area correlations and potential
errors associated with the use of distributed approaches.

METHODS

In this section, we first provide the notation and defini-
tions classically used in the distributed source estimation
problem and describe some of the priors presented previ-
ously in the literature. We then propose models that use
the functional properties of the visual system to define the
spatial correlations in the source current distribution.

Background

If we assume that the n cortical sources are localized on
the cortical manifold with orientations normal to the local
surface, the EEG/MEG forward model of m instantaneous
data at time t can be written [Baillet et al., 2001]:

M tð Þ ¼ GJ tð Þ þ e tð Þ (1)

where M is a column vector containing the m measure-
ments on the EEG or MEG sensor array at instant t; J is a
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column vector of the n unknown source amplitudes of all
elementary sources in the model with zero mean and a co-
variance matrix R (size n 3 n); G (size m 3 n) is the for-
ward gain matrix sampled at the sensor array [Hallez
et al., 2007; Mosher et al., 1999]; e (size m 3 1) is an addi-
tive nuisance term with zero mean and a covariance ma-
trix C (size m 3 m). The under-determination associated
with this linear system (i.e., n [[ m) leads to an infinite
number of solutions [Hämäläinen et al., 1993]. This issue
can be addressed by adding a prior on the source distribu-
tion to constrain the problem. A classical approach consid-
ers the currents to be spatially smooth. The solution can
then be estimated using the well-known class of mini-
mum-norm inverse operators [Wang et al., 1992]:

Ĵ ¼ RG0 GRG0 þ k2C
� ��1

M (2)

where k is a regularization parameter. The value of the
regularization parameter can be fixed a priori or can be
estimated using the L-curve or the generalized cross-vali-
dation approach [Babiloni et al., 2004].

Introduction of Priors for Source Distribution

Estimation

In this article, we propose different approaches to intro-
duce priors within the matrix R. Historically, this matrix
has been referred to as the ‘‘source covariance’’ matrix.
However, as our priors will be equally applicable to both
MEG and EEG signals, we prefer to use the term ‘‘correla-
tion matrix’’ in the following, which implies a unitless ma-
trix that is proportional to the covariance. Focussing on
the visual system, we use predefined visual areas V1, V2,
V3, V3A, V4, as well as the lateral occipital cortex (LOC)
and the middle temporal area (MT) as source constraints.
These regions are now routinely derived from specific
stimulation of the visual field [Huk et al. 2002; Kourtzi
and Kanwisher, 2000; Sereno et al., 1995; Wandell et al.,
2007]; see the section ‘‘Definition of the visual regions of
interest’’ for more information on their determination.

In the following, we will denote ua (for visual areas) as
the set of regions-of-interest (ROIs) and nua as the number
of areas it contains (here, nua ¼ 7). ua is uniquely defined
for a given participant and is activated in part or in total
in any visual stimulation experiment. As our correlation
models aim to characterise the current density relationship
within each of the visual areas, we also use the term Ruak
� k [ [1;nua]� to refer to the submatrix obtained from R
and that gives the correlation between every pair of sour-
ces within the kth ROI. Ruak is therefore a square matrix
whose number of columns is equal to the number of ele-
ments embedded in area k.

The visual areas ua can constrain the source correlation
matrix in two different ways: the first only considers the
autocorrelation of the current distribution, while the sec-

ond reinforces mutual activity in neighboring sources
belonging to the same functional regions.

Estimator based on the

autocorrelation (autocorrelated FACE)

In vision studies, the neuronal populations embedded in
our predefined areas are more likely to be activated than
are sources in non-visual areas. Mathematically, the pen-
alty for sources in the associated cortical areas can be
decreased by changing the diagonal elements in the Ruak
submatrices. This operation strengthens the values of their
autocorrelation Rua(i,i) relative to the ones of the other
sources in nonvisual areas:

Rtakði; iÞ ¼ a; (3)

where a is a scalar. A value of one restores the estimate to
the classical minimum-norm uninformed solution, whereas
an increasing value biases the source space to lie within
the visual areas. In practice, we find that a should not be
larger than 2 or 3 when sources may be present outside
the predefined ROIs.

Estimator based on the correlation (FACE)

The off-diagonal elements of R can be used to introduce
a correlation between sources. Well-known methods such
as LORETA consider that neighboring sources are more
likely to have simultaneous activations [Pascual-Marqui
et al., 1994]. In the visual system, the horizontal connectiv-
ity of the neuronal populations embedded within each
ROI and the existence of retinotopic maps implies that the
activity within a given functional area is likely to be more
correlated with itself (although some stimulus structures
may lead to activity that does not obey this rule). As the
EEG/MEG signals are related to the neuron spiking rate
[Hämäläinen et al., 1993; Logothetis, 2008] and the spiking
rates of neurons within the same cortical area are corre-
lated [Cohen and Maunsell, 2009; Kenet et al., 2003; Lampl
et al., 1999], the voltages coming from close sources
belonging to the same area should be highly similar.

In practice, this increase in correlation can be modeled
by changing the off-diagonal elements of the submatrices
Ruak. For each pair (i;j) of sources belonging to area uak,
the value Ruak(i;j) of their correlation can be modeled by a
function f(dij) of the distance dij that separates them. If the
values of the function are equal to zero for every distance
dij, the model is uncorrelated. If they are always set to one,
the model assumes a perfect correlation within the entirety
of the ROI, which is comparable to fitting a single dipole
to the area. In this context, a plausible choice for f is to use
a neighborhood of order N on the cortical tessellation
instead of the distance and to affiliate decreasing values to
Ruak(i; j) as the order of the distance between i and j goes
up to a predefined value. We propose here to use the first
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and second order neighborhoods of each individual source
within the visual ROIs.

Rtakði; jÞi6¼j ¼
a1 if j 2 Ni 1ð Þ;
a2 if j 2 Ni 2ð Þ
0 otherwise;

;

8<
: (4)

with a2 � a1 � 1. Ni(1) and Ni(2) are the two first order
neighborhoods of source i respectively. The first order
neighborhood of source i is defined by all the sources con-
nected to it in the cortical mesh (see the ‘‘Simulation envi-
ronment’’ section). Higher order neighborhoods are
obtained by applying this rule recursively (Ni(n 1 1) con-
tains the source directly connected to Ni(i)) that are not
already affiliated to a lower rank neighborhood).

Different estimators can be derived from the pair (a1;a2),
depending on the strength of the correlation one wants to
embed in the prior:

• Focal FACE: (�1;�2) takes small values and defines a
weak Markovian relation within each of the visual
ROIs, which is equivalent to a small extent of the corti-
cal current distributions of these regions. This assump-
tion makes more sense in the case of a focal
stimulation of the visual field.

• Extended FACE: (�1;�2) takes higher values and is
associated with extended stimulation where the main

part of the visual field is activated, as the stimulus
itself will enforce correlated activity across a large
area.

Estimator based on both the correlation

and autocorrelation (combined FACE)

From these two types of priors, it is easy to derive a
third one where the autocorrelation is increased for the
visual areas and correlations are enforced between sources
belonging to the same area and neighborhood. This is real-
ized by combining (3) and (4).

Figure 1 illustrates the creation of the matrices Ruak using
this last type of prior with a model where the diagonal ele-
ments were set to 2 in the visual areas (leading to an auto-
correlation two times larger) and the correlation parameters
were chosen equal to 0.5 and 0.25 within the first and sec-
ond order neighborhood of each visual source. From these
submatrices, we define a new version of R that will be used
to compute the current estimates (see panel f).

In practice, the full correlation matrix R that contains all
the submatrices Ruak can be very large when considering a
realistic representation of the cortical surface (typically,
about 20,000 sources are necessary). However, as our
model does not consider the inter-area correlations, R is
sparse and can thus be stored easily. Solving (2) involves a
Cholesky decomposition of R and consequently of the

Figure 1.

Definition of the source distribution correlation matrix R using

a prior on the neighborhood relationships within the ROIs. (a)

Anatomical locations of the different visual ROIs defined using

fMRI. (b) Illustration of the computation of the correlation sub-

matrix corresponding to V1 and noted Ru1. From the distances

within the regions (one example is provided for the distance to

a seed that is displayed in cyan), we derive the neighborhood

matrices and obtain Ru1 (panel c). Panels (d) and (e) illustrate

the same process for area V3A. (f) At the end, these submatri-

ces are incorporated in the matrix R that describes correlations

within the complete source space. Id stands for the identity

matrix.
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Ruak. As several choices may lead to non semi-definite mat-
rices for certain visual areas, we possibly rewrite the con-
cerned Ruak from their eigenvalue decompositions by
setting all their negative eigenvalues to 10�5. This leads to
a decomposable matrix whose global correlation properties
remain unchanged.

RESULTS

In this section, we first present the performance of the
different estimators using realistic EEG Monte-Carlo simu-
lations and reconstructions from a classical L2-minimum-
norm algorithm [see Eq. (2) in the ‘‘Methods’’ section]. Our
main objective is to demonstrate that, under a given and
fixed framework, our priors on the source covariance ma-
trix R can improve the source estimates. We discuss their
performance in different situations and evaluate the influ-
ence of both the number of active sources and their sizes.
We then discuss the robustness of the models to misspeci-
fications in the localization prior and their ability to recon-
struct sources with different time courses. We also present
real EEG measurement reconstructions obtained from a
steady-state stereoscopic stimulation of the neuronal popu-
lations that respond to horizontal disparity modulation.
We then demonstrate that the enhancements provided by
our approach are not specific to the classical uninformed
minimum-norm solution and are obtained for other inver-
sion frameworks. Finally, we discuss the utility of intro-
ducing inter-area correlations and demonstrate that
realistic levels of coregistration errors between the MRI
and EEG coordinate systems do not affect the results.

Simulation Environment

Definition of the forward problem

Our simulation environment was derived from a real
EEG acquisition set-up consisting of 128-sensor recordings
performed on normal adult participants (HydroCell Sensor
Nets, Electrical Geodesics, Eugene OR). As part of the
source estimation procedure, Boundary Element Method
(BEM) head-tissue conductivity models were derived from
T1 and T2 weighted MRI scans of the individual partici-
pant (Siemens Trio 3T, 1 mm isotropic resolution). The
FSL toolbox (http://www.fmrib.ox.ac.uk/fsl/index.html)
was used to segment contiguous volume regions for the
scalp, outer skull, inner skull, and the cortex and to con-
vert these MRI volumes into inner skull, outer skull, and
scalp surfaces [Smith, 2002]. The boundary element equa-
tions were computed from these surfaces using the MNE
Suite [Hämäläinen and Sarvas, 1989]. The FreeSurfer soft-
ware package (http://surfer.nmr.mgh.harvard.edu) was
used to perform gray and white matter segmentation and
a mid-gray cortical surface extraction for use with the
cortically constrained minimum norm inverse. The Free-
Surfer package extracts both gray/white and gray/cere-

brospinal fluid (CSF) boundaries, but these surfaces can
have different surface orientations. In particular, the gray/
white boundary has sharp gyri (the curvature changes rap-
idly) and smooth sulci (slowly changing surface curva-
ture), while the gray/CSF boundary is the inverse, with
smooth gyri and sharp sulci. To avoid these discontinu-
ities, we generated a surface tessellation partway between
these two boundaries that has gyri and sulci with approxi-
mately equal curvature. Sources were constrained to lie on
this surface with their orientation constrained to the local
surface normal. A Polhemus FASTRAK system is used to
record the 128 electrode positions (128 channels), fiducial
landmarks (nasion, left, and right tragus), and several hun-
dred points distributed around the scalp and face surface.
Coregistration of the electrode positions to the MRI head
surface was performed using a least squares fitting routine
in Matlab. The algorithm starts by first, using the three
digitized fiducial points (nasion, left, and right ears) along
with their visible locations on the anatomical MRI to gen-
erate an initial alignment to the MRI coordinate frame.
From this initial estimate, we find a rigid body transform
that minimizes a cost function that combines the distance
from digitized scalp points and the digitized electrode
positions. For the digitized scalp points, we minimize the
sum square distance to the MR defined scalp. However,
our electrodes are digitized at locations off the scalp due
to the height of the electrode holders. For this reason, we
do not want to strictly minimize their distance to the scalp,
but want to find a fit that ensures all electrodes are equi-
distant from the scalp. Therefore, for the electrodes we use
an error term that minimizes the variance of the electrode
distance to the scalp. This approach provides an accurate
coregistration whose mislocalization error typically ranges
below 3 mm.

Definition of the visual areas

fMRI scans were collected on a 3T Siemens TIM Trio
scanner. Data were acquired with a custom whole-head 2-
channel coil or a 2-channel posterior head surface coil and
a spiral K-space sampling pulse sequence. The general
procedures for these scans (head stabilization, visual dis-
play system, etc) are standard and have been described in
detail elsewhere [Brewer et al., 2005]. Retinotopic field
mapping produced ROIs by manual definition of visual
cortical areas V1, V2v, V2d, V3v, V3d, V3A, and V4 in
each hemisphere [Tootell and Hadjikhani, 2001; Wade
et al., 2002]. ROIs corresponding to hMTþ were identified
using low contrast motion stimuli similar to those
described by Huk [2002].

The lateral occipital complex (LOC) was defined using a
block-design fMRI localizer scan. During this scan, the
observers viewed blocks of images depicting common
objects (18s/block) alternating with blocks containing
scrambled versions of the same objects. The stimuli were
those used in a previous study [Kourtzi and Kanwisher,
2000]. The regions activated by these scans included an
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area lying between the V1/V2/V3 foveal confluence and
hMTþ that we identified as LOC. This definition covers
almost all regions (e.g., V4d, LOC, and LOp) that have
previously been identified as lying within object-respon-
sive LOC [Kourtzi and Kanwisher, 2000; Tootell and Had-
jikhani, 2001].

Monte-Carlo Experiments

Different numerical Monte-Carlo simulations were per-
formed with the anatomy and functional areas from one
subject to evaluate the effects of the number and sizes of
active regions and misspecification of the prior on localiza-
tion accuracy:

1. We were first interested in the ability of FACE to char-
acterize distributions of different complexities. We gen-
erated 600 simulated trials of simultaneous activation
of clusters of elementary sources contained in 1, 2, or 4
randomly chosen visual areas (200 trials for each class
of visual area number, one new set of areas for each
trial). The spatial extents of these clusters were scaled
to activate equal fractions of each area and this fraction
was randomly varied on each trial to be between 10
and 100% of the corresponding visual area.

2. We were then interested in the effects of the extent of
the activated clusters. We generated another 600 sim-
ulations in which their sizes varied between 10, 50,
and 100% of the full surface of the ROI they belonged
to (200 trials for each size). The number of simultane-
ous activations was randomly chosen between one
and four.

3. In a last set of simulations, we confronted our
approaches with errors in the localization prior by
adding activity outside the predefined visual areas.
We generated 1,000 trials that simulated 4 clusters of
elementary sources whose extents randomly varied
between 10 and 100%. Within this set, the 200 first
simulations were obtained by randomly defining four
clusters outside the visual areas (in this case, the ref-
erence area to control the extent of the cluster was the
average surface area of the visual ROIs). In the three
next sets, the ratio between clusters outside the visual
areas (which are not activated a priori) and clusters
within the visual areas (which thus respect the prior)
was increased and equal, respectively, to 1/3, 2/2,
and 3/1. The last 200 simulations corresponded to
four clusters within randomly chosen visual areas.

In all simulations, the sources localized within the acti-
vated clusters had a sine wave response with a zero phase
(four oscillations, 360 time samples). The amplitude within
each of these clusters was randomly chosen between 1 and
10 (important magnitude differences therefore existed
between the amplitudes of the different clusters). The sig-
nals at the electrode level were generated using the matrix

G obtained with the BEM model (see ‘‘Simulation environ-
ment’’ section). Independent and identically distributed
(IID) Gaussian noise was added to all the EEG measure-
ments corresponding to these datasets. The amplitude of
the noise was chosen to obtain a signal-to-noise ratio
(SNR) of 10. In this case, the SNR was defined as the ratio
between the variance of the signal and the variance of the
noise across the time.

Finally, we estimated the source distribution corre-
sponding to the first maximum of the sine wave (i.e., if
different time samples were used to define a SNR based
on the noise variance across time, the reconstructed activ-
ity was only associated with one single time element). For
each single simulation, this source distribution therefore
consisted in one single vector with varying magnitudes in
the different activated visual areas.

Evaluated Approaches

We reconstructed the source distributions for each simu-
lation using different FACEs:

a. The first estimator was associated to an uninformed
correlation matrix and was thus equivalent to the
classical minimum-norm approach where R ¼ Id.

b. The second estimator (focal FACE) used a prior on
the correlation within the visual ROIs with a small
neighborhood of influence: 0.2 and 0.1 for the first
and second order neighborhood coefficients (see the
‘‘Estimator based on the correlation’’ section). Its
intrinsic definition assumes focal correlations of the
cortical activations within each ROI (such as would
occur with stimulation by small objects in the visual
field).

c. The third estimator (extended FACE) was also
based on the off-diagonal terms of the correlation
matrices Ruak but considered a wider Markovian
correlation (0.6 and 0.4 for the first and second
order, respectively). It was intended to model an
extended internal-area correlation corresponding to
a global stimulation of the visual field.

d. The fourth estimator (autocorrelated FACE) used
only a prior on the autocorrelation (see the ‘‘Estima-
tor based on the autocorrelation’’ section), assuming
that its value was 2 times greater in the visual areas
(Ruak ¼ 2 � Id). The associated model does not
embed off-diagonal terms and thus does not deal
with intra-area correlations.

e. The last estimator (combined FACE) combined both
the autocorrelations of the visual sources and their
inter correlations (see the ‘‘Estimator based on both
the variance and autocorrelation’’ section). The
intra-area correlation prior corresponded to the one
used for the autocorrelated FACE (i.e., a variance 2
times greater in the visual areas) and the correlation
coefficients were chosen to correspond to an extent
that was in between the ones described in the focal
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and extended FACE (0.5 and 0.25 for the first and
second orders correlation coefficients).

The results obtained from these different estimators
allowed us to characterize the performance improvement
obtained by adding information on the autocorrelation
(when comparing the autocorrelated FACE to the mini-
mum-norm), on the correlation (when comparing focal
and extended FACEs to the minimum-norm or the com-
bined FACE to the autocorrelated) or both (when compar-
ing the combined FACE to the minimum-norm).

Evaluation Procedure

In this section, we describe the validation metrics used
to estimate the detection accuracy of the different estima-
tors in the Monte-Carlo simulations. As we aim to charac-
terize the relative distribution of the currents and are less
interested in their absolute value (i.e., we mainly want to
be able to localize the cortical areas which are the more
activated and to estimate their relative differences of am-
plitude), we used the normalized value of the current dis-
tributions. For a given vector J, this normalization Jnor was
defined for each element i by dividing J(i) by the maxi-
mum of the distribution in absolute intensity:

Jnor ið Þ ¼ J ið Þ
Jmax

; Jmax ¼ max
k2 1;n½ �

J kð Þj jð Þ; (5)

where n is the number of elements in J.
For each simulation set, we note Jref the normalization

of the current distribution used to generate the EEG
recordings and Jest the normalization of the corresponding
estimation at the peak of the time course using one of the
estimators. Eref and Eest are the energies of the correspond-
ing sources in the cortical tessellation. They are obtained
by computing the absolute values of the elements of Jref
and Jest.

Relative energy

This value is given by the ratio between the normalized
energies contained in the estimation of the active sources
and the global distribution:

RE ¼

P
i2Ha

Eest ið Þ
P

i2 1;n½ �
Eest ið Þ ; (6)

where Ha denotes the set of all the active sources in Jref. n
is here equal to the number of sources in the cortical tes-
sellation. The relative energy specifies the amount of
energy that is recovered by our reconstructions. A perfect
estimation should lead to a value of one.

Area under the ROC curve (AUC)

The receiver-operating curve (ROC) is an estimator of
the detection accuracy [Cottereau et al., 2007; Metz, 1986].
It evaluates the ability of a reconstruction to present
strongest activities only for sources that were activated in
the simulation. The AUC quantifies how well the esti-
mated current detects true sources and rejects false
positives.

For a given simulation, let us note H the set of inactive
sources in Jref. Given a threshold b varying between 0 and
1, a source Si is:

• A true positive (TP) if Si is active (i.e., i [ �a) and
Eest(i) �.

• A false positive (FP) if Si is not active (i [ �) and
Eest(i) �.

• A true negative (TN) if Si is not active and Eest(i) �.
• A false negative (FN) if Si is active and Eest(i) �.

From these values, we can define the threshold-depend-
ent values of the specificity Sp and the sensitivity Se:

Se bð Þ ¼ TP bð Þ
TP bð ÞþFN bð Þ

Sp bð Þ ¼ TN bð Þ
TN bð ÞþFP bð Þ :

(7)

ROC curves are then obtained by plotting Se(b) against 1
2 Sp(b), which is a monotonically increasing function. The
AUC is an index of the specificity-sensitivity compromise
of the corresponding model. An AUC close to 1 means
that the model separates the active and nonactive sets of
sources well. However, in our simulations, the number of
inactive sources is very much larger than the number of
active sources (even in the largest sets where four full vis-
ual areas were used, the number of sources was only sev-
eral hundred out of the 20,000 contained in the cortex
tessellation). Because only a few percent of the sources are
true positives, a trivial solution that estimates zero every-
where would have a high correct reject rate that leads to a
biased estimation of the false positive rate. To circumvent
this problem, Grova et al., [2006] defined reduced sets of
sources that diminished the number of inactive sources
taken under consideration. Using a similar approach, we
define even stricter subsets where the number of inactive
sources is strictly equal to the number of active ones:

• A set that includes the active sources in Jref �a and
their card (�a) closest neighbors (where card is an
abbreviation for cardinality and characterizes the num-
ber of sources in a set). The associated ROC curve and
AUC (AUCclose) quantify the focalization ability of the
models by estimating their ability to separate between
active and nonactive sources in the closest neighbor-
hood of the activity.

• A set that includes the active sources �a and the
card(�a) sources outside the neighborhood of �a (i.e.,
outside the set used to define AUCclose) whose
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activities are the highest. The associated AUC (AUCfar)
quantify the ability of an estimator to discriminate
between the real activated sources and the local max-
ima localized far from the simulated set.

The corresponding index of detection accuracy is then
defined by:

AUC ¼ 1

2
AUCclose þAUCfarð Þ (8)

Focalization error

The focalization error of a reconstruction is given by the
ratio between the estimated and theoretical energies of the
current within the simulated sources [Im et al., 2003]. Sim-
ilarly, we can assess the ability of focalization by estimat-
ing the normalized mean-square error on the simulated
sources used in our simulations:

FE ¼

P
i2Ha

Jest ið Þ � Jref ið Þ½ �2
P
i2Ha

Jref ið Þ½ �2 : (9)

This parameter indexes the quality of the estimation of the
relative energies within the set Ha of activated sources.

Example

As an illustrative example, let us consider the case
where two different clusters corresponding to area V4 in
both the left and right hemispheres are active. Figure 2
presents the simulated activity and the associated recon-
structions for different models.

The reconstruction obtained without any prior (unin-
formed) is classically smooth and spreads over the cortical
surface, completely. It nevertheless coarsely identifies the
simulated activity [see Hauk, 2004]. Note, however, that in
this case, the estimator is at the chance level when dis-
criminating between close sources as the red ROC curve
(i.e., the one used to define the AUCclose value) is similar
to the axis y ¼ x, which gives the chance level (this axe is
emphasized in white). By adding information on the corre-
lation within each visual areas (focal and extended
FACEs), we greatly reduce the number of false alarms and
improve the reconstructions according to the relative
energy, the AUC and the error of focalization. Interest-
ingly, the estimator based on an extended correlation
(extended FACE) is better in this case where the full V4
areas have been simulated. The autocorrelated FACE
increases the relative energy compared to the minimum-
norm reconstruction but is similar in terms of the AUC
and the error of focalization. This issue disappears when a
correlation prior is added (combined FACE).

Influence of the Number of Sources

We are now interested in the influence of the number of
sources on the performance of the different estimators.
Figure 3 presents the relative energy; AUC and error of
focalization obtained from the Monte-Carlo simulations for
1, 2, and 4 activated visual areas, respectively (see the
‘‘Monte-Carlo experiments’’ section).

In the following, the differences between distributions
were verified using a nonparametric test (Kolmogorov-
Smirnov). For purposes of clarity in the figures, the statis-
tical differences are not displayed but are described below.

The performance obtained with the uninformed mini-
mum-norm is consistent with what is expected for a L2 so-
lution of focal activations. The relative energy is low and
the error of focalization and the AUC are good even when
four different clusters of sources are simultaneously acti-
vated. The results show that the two estimators using the
correlation (focal and extended FACEs) outperform the
uninformed approach for each of the criteria computed.

These observations were statistically different and the
highest of the corresponding P-values was lower than 0.001
(P < 0.001). We can also note that the performance of these
estimators is less affected by the increase in the number of
sources. The estimator using only the autocorrelation of the
sources (autocorrelated FACE) increases the relative energy
and the area under the curve in comparison to the unin-
formed minimum-norm (P < 0.05) but does not change the
error of focalization. The ability of the associated inverse
procedure to discriminate between the different ROI activa-
tions is not enhanced by a hypothesis on only the autocorre-
lation. However, when associated with correlation
information (combined FACE), the error of focalization
decreased to reach the performances obtained with focal
and extended FACEs. This last estimator outperforms the
minimum-norm and the autocorrelated FACE on the AUC
and error of focalization (P < 0.005) and the minimum-
norm in terms of relative energy (P < 0.001).

Influence of Source Size

This section presents the performance of the estimator
using different size of activations in the Monte-Carlo simu-
lations (see the ‘‘Monte-Carlo experiments’’ section). Figure
4 displays the boxplots we obtained. Once again, we
observe that the two estimators using the prior on the corre-
lation (i.e., focal and extended FACEs) perform better than
the classical uninformed minimum-norm (P < 0.01, Kolmo-
gorov-Smirnov test). The autocorrelated FACE also leads to
better relative energy, AUC (P < 0.01) and equivalent error
of focalization. When the correlation coefficients are added
(combined FACE), the estimation is improved for all criteria
(P < 0.01) in comparison to both the uninformed minimum-
norm and autocorrelated FACE and provides a better rela-
tive energy than focal and extended FACEs for extent equal
to 100% (P < 0.05). Not surprisingly, focal FACE has a bet-
ter error of focalization than extended FACE for small
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Figure 2.

Performance of the different estimators when area V4 is fully

activated in both the left and right hemispheres. (a) Spatial local-

ization of the activated sources (top, back, and bottom views of

the corresponding cortex are displayed) and corresponding EEG

time courses (in normalized units). The reconstructions are the

corresponding normalized amplitude (in absolute value) is

emphasized by the topographical display on the right, performed

at the first maximum of the signal. (b) The matrices Ruak associ-

ated to the visual areas inner-correlations for the different mod-

els. (c) Amplitudes (in absolute value) of the associated

reconstructions (dorsal, back, and ventral views). The activities

were normalized and thresholded at 20% of the maximum. The

contours of the simulated areas are displayed in cyan to allow a

better visualization of the reconstruction characteristics.

(d) Evaluation parameters corresponding to this simulation and

associated ROC curves. The curves obtained from the close set

leading to the AUCclose values (see the ‘‘Evaluation procedure’’

section) are displayed in red. Those corresponding to AUCfar

are displayed in green. We also display in blue the curve

obtained from the full set of reconstructed sources. The white

lines (y ¼ x) are representative of what would be a ROC curve

at the chance level.
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patches (P < 0.01) whereas extended FACE outperforms it
in terms of AUC and relative energy when 100% of the
simulated clusters are activated (P < 0.005 and P < 0.001,
respectively). It follows that the more veridical the prior is
on the spatial correlation within the predefined areas, the
more accurate the source distribution estimation.

Robustness of the Models to Misspecifications in

the Prior

In this section, we evaluate the robustness of different
estimators to misspecifications in the prior compared to

the classical uninformed minimum-norm reconstruction.
For clarity in the display of the results, instead of using
both the focal and extended FACEs, we defined a model
with a medium intra-area correlation (0.5 and 0.25 for the
first and second order neighborhood coefficients respec-
tively) that is denoted as ‘‘medium FACE.’’

We simulated four regions of varying sizes within and/
or outside the visual ROIs in five separate sets of data that
differed in the fit of the prior: a fit of 25% corresponds to
one cluster in the visual areas and three in the other part
of the cortical surface (see the ‘‘Monte-Carlo experiments’’
section for a full description of the simulated data) while a
fit of 0% corresponds to four clusters outside the visual
areas (a fit of 100% is therefore associated with four clus-
ters within four different visual areas).

Figure 5 presents the results we obtained in terms of the
increase of performance from the corresponding

Figure 4.

Performance of the estimators for different sizes of activation.

See Figure 3 for the definition of the boxes and estimators. (a)

Relative energy. (B) Area under the curve (AUC). (c) Focaliza-

tion error.

Figure 3.

Performance of the different estimators according to the num-

ber of activated visual areas. The boxplots show the different

values for the first quartile, median, last quartile, and the

extreme datum points from the Monte-Carlo samples. The

arrows indicate the direction of the increase in performance. (a)

Relative energy. (b) Area under the curve. (c) Focalization error.
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uninformed minimum-norm estimates (an increase of per-
formance is here characterized by an improvement of the
relative energy and AUC and a diminution of the error of
focalization). The zones associated with decreases of per-
formance in the reconstruction have been emphasized by a
barred box. The reference levels (associated to an increase

of 0%), which correspond here to the average performance
of the minimum-norm estimates, were 0.027, 72.6, and 0.78
for the relative energy, the AUC and the focalization error
respectively. As the minimum-norm is uninformed by def-
inition, these values were equivalent across the subsets of
simulation corresponding to the different fit of the prior.

We observe that our different estimators show weaker
or equal performance when the prior is totally inappropri-
ate (0%). However, as soon as the fit of the prior reaches
25%, the two models including an intra-area correlation
prior (medium and combined FACEs) outperform the
uninformed approach (P < 0.005, Kolmogorov-Smirnov
test) for both the relative energy and the error of focaliza-
tion. Their AUC values become statistically greater at 50%
(P < 0.05). The estimator based only on the autocorrelation
(autocorrelated FACE) also produces better relative energy
when 25% or more of the activated sources are localized
within the visual areas. The AUC was better when 75 or
100% of the sources respected the prior. However, its error
of focalization suffers from the misspecifications in the
prior and is always weaker or equal than the classical min-
imum-norm performances. In addition to this figure, Table
I provides the proportion of AUC values that were inform-
ative (i.e., that were greater than 0.5 and thus superior to
the chance level).

We can observe that, as far as the fit to our hypothesis
is mainly respected, the reconstructions are above the
chance level even for the restricted subsets of the data that
we define to compute the AUC values (see the ‘‘Evaluation
procedure’’ section).

Estimation Across Time

Time-course reconstructions from different cortical
regions may be a difficult problem when their phase val-
ues or wave-shapes are different. Indeed, cross talk
between the activated sources can lead to inappropriate
estimates of the variance and therefore inaccurate recon-
structions. As all the simulations described above only
dealt with one single time-element (see the ‘‘Monte-Carlo
experiments’’ section), we demonstrate in this section that
our approach also outperforms uninformed inverses when
estimating time-courses over a full time-window. We ran
200 new simulations where each activated cluster followed
a sine wave (with four oscillations and 360 time samples
as described in the ‘‘Monte-Carlo experiments’’ section).
Each cluster had a randomly chosen phase (picked
between 0 and 360�). The number of activated clusters

Figure 5.

Robustness of the different estimators to misspecifications in

the prior on the activity localizations. The performance of three

estimators is compared to the corresponding uninformed mini-

mum-norm estimations when four regions were activated in the

simulations. The fit of the prior gives the per cent of the four

regions that were localized within the visual areas. The zones

where the different priors penalize the reconstruction (i.e.,

where the increase is negative) have been emphasized. (a)

Increase of the relative energy. (b) Increase of the AUC. (c)

Increase of the focalization error.
TABLE I. Proportion of AUC values above the chance

level for the different values of the fit to the prior

FACE/Fit 0% 25% 50% 75% 100%

Medium 63% 68% 72% 84% 92%
Auto-cor 64% 63% 65.5% 72% 91%
Combined 70.5% 70% 72.5% 82.5% 94.5%
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varied between 1 and 4. Their sizes were randomly picked
between 10 and 100% of their own functional ROI and
their amplitudes varied between 1 and 10. The noise level
was defined as before to obtain an SNR of 10. We eval-
uated the accuracy of the reconstructions over all the time
points using the metrics described in the ‘‘Evaluation pro-
cedure’’ section (i.e., the relative energy, the AUC and the
focalization error). These metrics require knowledge of the
active and inactive sets of sources in order for them to be
computed. As a cluster with a varying time course may
sometimes be inactive, for each time point, we considered
as active the set of sources whose simulated absolute
amplitudes were above 10% of the maximum value over
the full time-window. In the following, we present the
averaged values of the metrics across all the time points.
In addition, we also computed the average correlation
over the full time-window between each simulated source
and its associated estimate.

We discuss here the performance obtained from the
uninformed minimum-norm and three different versions
of FACE: an autocorrelated, a medium and a combined
FACEs (as in the ‘‘Robustness of the models to misspecifi-
cations in the prior’’ section).

The values obtained for the relative energy, the AUC
and the focalization error are displayed in Supporting In-
formation (see Fig. S1). The correlation values are given in
Figure 6.

For the correlation values, the inverses with an intra-
area prior (i.e., medium and combined FACEs) outper-
formed the minimum-norm (P < 0.001 for the two com-
parisons at the Kolmogorov-Smirnov test). Improved
performance was also observed for each of the other met-
rics (P < 0.001, see Supporting Information Fig. 1). The
autocorrelated approach outperforms the minimum-norm
for the relative energy (P < 0.001) and the AUC (P <
0.01). These results demonstrate that the improved esti-
mates obtained in our single time-point simulations also
occur when estimating time-courses from clusters with dif-
ferent phase lags.

Illustration on a Real Dataset

It has been known for almost two centuries that hori-
zontal binocular disparity produces the perception of
depth [Wheatstone, 1838]. The last 15 years have seen tre-
mendous growth in the number of articles exploring the
physiological basis of depth from disparity [see Parker,
2007 for a review]. However, these studies have mainly
focused on responses from individual neurons, rather than
on population-level neural activities related to disparity.
With the recent increases of spatial resolution in brain
imaging, fMRI, but also EEG or MEG, are now good can-
didates to localize the cortical origins of these global
activities.

In the following, we localized the neural sources encod-
ing horizontal disparities with our models to demonstrate

the improvements that can be obtained using functionally
defined priors. Using dense dynamic random dot patterns,
we modulated a disparity-defined central disk (5� diame-
ter) at 2 Hz across the plane specified by a static annulus
(12� diameter) presented at zero disparity. The disk was
first periodically presented at 4 minutes of arc back from
the surround (uncrossed disparity) for 250 ms and then at
4 minutes of arc in front of it (crossed disparity) for 250
ms. We recorded 25 trials of 10 seconds (leading to 25 � 2
� 10 ¼ 500 repetitions of the whole cycle) from six differ-
ent participants using the high-density EEG system
described in the ‘‘Simulation environment’’ section. The
participants all had normal or corrected to normal vision.
Their informed consent was obtained prior to experimen-
tation under a protocol that was approved by the institu-
tional review board of the Smith-Kettlewell Eye Research
Institute. Their cortical surfaces and associated visual ROIs
were defined using the procedure described in the see the
‘‘Simulation environment’’ section.

In the specific case of this experiment, which used
steady-state stimulation, the frequency properties of the
signals are known. It explains why here, rather than local-
izing the cortical source distributions associated with ev-
ery single time instant and then looking at the amplitude
distribution at one of its maximum (as in a event-related
potential experiment), we used our prior knowledge of the
stimulus frequency to perform the analysis in the fre-
quency-domain. This approach has high signal to noise ra-
tio [Cottereau et al., 2011a; Regan, 1989; Vialatte et al.,
2010] and has been used in recent EEG studies from our
group [Ales and Norcia, 2009; Appelbaum et al., 2006;

Figure 6.

Average correlation between the activated sources in the simu-

lation and their associated reconstructions over a full time-win-

dow (200 simulations). Phase values were randomly chosen for

each activated cluster. Four estimators are displayed: an unin-

formed minimum-norm, an autocorrelated, a medium, and a

combined FACEs.
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Cottereau et al., 2011b]. In this context, we were mainly
interested in the reconstruction of the complex-valued
Fourier coefficients corresponding to the second harmonic
of the stimulation (i.e., 4 Hz). Note that as our model is
linear, this is equivalent to reconstructing time-point after
time-point and then computing the Fourier coefficient on
each individual source. This amplitude in the source space
is associated with population responses that are similar for
crossed and uncrossed disparities and transitions between
them.

Figure 7 presents the activity obtained using the unin-
formed minimum-norm and a combined FACE. This
model assumed an autocorrelation twice as large within
the visual areas and a second-order neighborhood correla-
tion with 0.5 and 0.25 for the first and second parameters,
respectively. The reconstructions obtained from these two
different estimators are presented on the left and the right,
respectively, for three subjects (see Supporting Information
Fig. 2 for the three other subjects and Supporting Informa-
tion Fig. 3 for a display of the times courses in four differ-
ent visual areas averaged across subjects).

When looking at the reconstructions provided by the
minimum-norm approach, we can coarsely observe that
the main cortical responses are coming from both the ven-
tral and dorsal pathways in the visual system. However, it
is difficult to identify specific visual areas that would be
activated in all six participants. In addition to that, the
activations, which should be equivalent in the two hemi-
spheres as our stimulus was the same in the left and right
visual fields, show strong hemispheric asymmetry for par-
ticipants 1, 3, and 6. When adding the informed prior, one
can see that the reconstructions on every participant
become more symmetric according to the inter-hemi-
spheric map. Three regions are mainly activated for all the
six subjects: MT, V3A, and V4. Although MT is well
known for its strong response to motion, it is also strongly
involved in disparity processing [DeAngelis and Uka,
2003; DeAngelis et al., 1998]. V3A and V4 have also shown
tuned responses to disparity in recent studies [Backus
et al., 2001; Tsao et al., 2003; Umeda et al., 2007]. Alto-
gether, these results suggest that the use of a model based
on functionally defined prior may facilitate the analysis of
EEG/MEG data obtained when stimulating the visual
system.

Performance under different inversion frameworks

In all the sections above, the performance of our
approach was evaluated by adding our priors to a mini-
mum-norm inversion procedure. Here, we characterize the
improvements provided by our method on three other
inversion frameworks. In addition to the minimum-norm
inverse and its associated combined FACE estimator, we
defined:

• A weighted minimum-norm inverse with a depth-
weighting [see Lin et al., 2006 for the details of the

algorithm]. The associated FACE inverse was obtained
by decomposing the correlation matrix in two parts:
one with the depth weights and the other containing
the visual areas information (i.e., the Ruak).

• A LORETA inverse [Pascual-Marqui et al., 1994],
which was obtained from the SPM software (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/) and its
associated FACE inverse.

• A Multiple Sparse Prior Approach (MSP) where each
source had compact support and was locally coherent.
The parameters used were the default parameters of the
SPM software as previously described in [Friston et al.,
2008]. The corresponding FACE version was obtained by
changing the correlation support of all the sources within
the visual areas. For each of these sources, the new sup-
port was given by rrt where r is the row corresponding
to the source in the global correlation matrix R.

To characterize the improvements brought by the FACE
approach, we generated 200 new Monte-Carlo simulations.
In these simulations, the numbers of activated clusters
within the visual areas were randomly chosen between 1
and 4, the extensions of the activation were comprised
between 10 and 100% of the visual areas and each cluster
had a uniform amplitude randomly fixed between 1 and
10. The SNR was set to 10 (see the ‘‘Monte-Carlo experi-
ments’’ section for the details). We estimated the source
distributions with the different inverse procedures. Box-
plots of the relative energies, AUC and focalization errors
(see the ‘‘Evaluation procedure’’ section) obtained are dis-
played in Figure 8.

We can observe that on average, all the four approaches
without any intra-visual area priors (white boxes) perform
equivalently well: the MSP approach has slightly better
relative energy, but worse focalization error when com-
pared to the minimum-norm. The depth-weighted
approach also proposes decreased focalization errors.
However, when the prior is added (gray boxes with bars),
all the algorithms show increased performance (P < 0.0001
in the Kolmogorov-Smirnov tests for all the comparisons
except when comparing the focalization errors between
LORETA and its FACE version where P ¼ 0.0018). For
LORETA and the MSP approaches, the FACE versions
greatly enhance the AUC, with means growing from 0.56
to 0.77 and from 0.53 to 0.80, respectively. Altogether,
these results demonstrate the utility of our approach for
widely different reconstruction frameworks.

Beyond Local Interactions: Performance and

Limitations of Inter-Area Correlation

Because of the retinotopic properties of some of the
areas used in this study, one may be tempted to introduce
correlations between sources in different functional areas
that correspond to the same part of the visual field. This
prior would directly enforce the coactivations of these
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sources at each time point and therefore produce a better
estimation of the cortical activity. However, two possible
limitations may be present:

• Two sources responding to the same part of the visual
field may belong to functional areas whose properties
are different. Therefore, one of these sources can
respond to a stimulus displayed in its receptive field
while the other does not. This situation can for example
happen in the context of the disparity system (see the

‘‘Illustration on a real dataset’’ section) where responses
from the different retinotopic areas have distinct charac-
teristics [Cottereau et al., 2011b; Parker et al., 2007].

• Two sources responding to the same part of the visual
field may belong to functional areas whose dynamics are
different [see e.g., Ales et al., 2010; Bullier et al., 2001].

In these two cases, a correlation term between the two
sources may diminish the quality of the estimates, as the
assumed model is incorrect. To illustrate the costs and

Figure 7.

Illustration of the method in a horizontal disparity evoked

response study. (a) Data from three participants. The cortical

surfaces (back and ventral views) are displayed with the different

visual ROIs. The different plots in the sensor space present the

time-averaged evoked potentials averaged for each of the 128

electrodes from 250 single trials and the associated normalized

amplitudes at the second harmonic of stimulation. (b) Amplitude

of the Fourier coefficient reconstruction obtained from the mini-

mum-norm (left columns) and the combined FACE (right col-

umns) are presented (dorsal, back, and ventral views from the

top to the bottom). The estimations are normalized and thresh-

olded at 20% of the maximal value.
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benefits of inter-areal correlations, we characterize here the
performance of FACE approaches that include correlations
between visual areas using new Monte-Carlo simulations.
To compute the associated models, we extended the notion
of intra-area neighborhood used in the ‘‘Estimator based
on the correlation (FACE)’’ section to an inter-area neigh-
borhood. Each source within a retinotopic area has now,
in addition to its (intra-area) spatial neighborhood (which
is used to define its local correlation), an (inter-area) reti-
notopic neighborhood. At the first order, this inter-area
neighborhood is defined in each of the other retinotopic
areas by the source whose coordinates in the visual field
are the closer to the source. The second order neighbor-
hood is defined by all the sources that are spatially con-
nected to the first order sources and belong to the same
area [see the ‘‘Estimator based on the correlation (FACE)’’
section and Fig. 9 for an illustration].

For each pair (uak1/uak2) of retinotopic areas, the associ-
ated correlation matrix Ruak1/uak2 is then obtained using (4).
If the global covariance matrix G now also contains off-di-
agonal elements associated with sources in different areas,
it is still a sparse because the number of first and second
order (intra and inter-area) neighbors of each source in a
retinotopic area remains small.

We ran 200 simulations in which 2 to 4 clusters were
activated. These clusters had the same retinotopic coordi-
nates but were localized in different visual areas. Because
in our study, LOC and hMTþ were defined using func-
tional localizers and not from retinotopic mapping, only
V1, V2, V3, V4, and V3A were used in this set. The extents
of the clusters were set to 10% of their functional area (see
the ‘‘Monte-Carlo experiments’’ section for more details).
The noise level was defined as before to obtain an SNR of
10. The time courses were generated as in the ‘‘Estimation
across time’’ section. For each simulation, we generated
one version in which the different clusters had time
courses with the same phase and one other where they
had a random phase. A comparison between these two
versions allowed us to determinate if different dynamics
between regions may affect the performance in the specific
case of a prior with inter-area correlations. The metrics
used were those defined in the ‘‘Estimation across time’’
section.

Three FACE estimators were used; the first one was a
focal FACE, which provides the best estimation for focal
activations (see the ‘‘Influence of source size’’ section). The
second one used an inter-area model where the values of

Figure 9.

Illustration of the definition of an inter-area neighborhood for

one source in V1 and its first and second order retinotopic

neighborhood in V2 and V3.

Figure 8.

Performance of different source estimation techniques with

(gray boxes with bars) and without (white boxes) an intra-visual

areas correlation prior. See Figure 3 for the definition of the

boxes and estimators. (a) Relative energy. (b) Area under the

curve (AUC). (c) Focalization error.
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the first order neighborhood (inter as well as intra-areas)
were equal to 0.2 and those of the second order to 0.1.
This inter-area FACE can therefore be seen as a focal
FACE with additional off-diagonal elements for every cou-
ple of retinotopic areas. The last model, named inter-A-
areas FACE (for inter-Activated-areas FACE), also had
intra and inter-areas correlations with the same values (0.2
and 0.1) but for each simulated time-course, the inter-areas
coefficients were only added in the visual areas that were
activated (the plausibility of such a model is discussed in
the end of this section).

Figure 10 displays the values obtained for the average
correlation, the relative energy, the AUC and the focaliza-
tion error are presented in Supporting Information Figure
4. For the two versions of the simulations (i.e., clusters in-
phase and clusters with random phase), the correlations
obtained with the inter-area FACE are worse that those
with the combined FACE (P < 0.001, Kolmogorov-Smirnov
test, see Fig. 10). The same trend is observed for the rela-
tive energy, AUC and focalization error (see Supporting
Information Fig. 4). These weaker performances are not
due to the way the inter-area correlation model is created
as the inter-A-areas FACE, which is defined using the
same approach, provides better correlations than the com-
bined FACE when no phase lags are introduced (P < 0.01,
see Fig. 10). This result illustrates that forcing the coactiva-
tion between retinotopically corresponding areas leads to
degraded estimates when some of the areas are not
responding to the stimulus. The correlations obtained with
the inter-A-areas FACE are also diminished when a phase
lag exists between the activated clusters (P < 0.001 when
compared to the set without phase lag) and the results do
not outperform those from the focal FACE approach any-
more either (the mean values are 0.56 for the inter-A-areas

FACE and 0.59 for the focal FACE with a P-value of P ¼
0.08 for the comparison between the two sets). This trend
is also observed for the other metrics (i.e., the relative
energy, AUC and focalization error, see Supporting Infor-
mation Fig. 4). This set of simulations demonstrates that
phase lags between areas corrupt an estimate based on
inter-area-correlations, even if the correlations are only
introduced in the activated areas. In the end, the only case
where inter-areal correlations improve the reconstruction
is when the activated areas are known and their phases
are identical (i.e., the inter-A-areas FACE with no phase
lags). In the analysis of real data, the true sources, as well
as their dynamics are unknown and the employment of
such a model is therefore inadvisable. However, this
approach can be valid for correlations between spatially
separated sources from the same retinotopic area as in the
left and the right visual fields. Introducing some correla-
tion between sources associated with corresponding points
in the two hemi-fields will improve the results if the two
hemi-fields share similar dynamics.

Spatial Accuracy of Distributed Approaches

All the reconstruction techniques proposed here are
based on distributed models that constrain the sources to
be localized on the cortical manifold [Hämäläinen et al.,
1993]. Their spatial accuracy may therefore be corrupted
by the inherent errors in coregistering and reconciling the
coordinate systems of MRI and the EEG measurement sys-
tems. To test if such registration errors have consequences
for our estimates, we performed 200 Monte-Carlo simula-
tions using the same parameters described in the ‘‘Per-
formance under different inversion frameworks’’ section.
Two inversion techniques were considered: the minimum-
norm and a combined version of FACE. These inverses
were either based on:

• The exact forward matrix used to create the simula-
tions (as in the other sections of this study).

• A corrupted version of this forward matrix where the
position of each of both the fiducials (nasion and peri-
auricular points) and scalp surface points had Gaus-
sian distributed noise with a standard deviation of 8.7
mm added. This value was chosen to range above
others described in the literature as typical [see e.g.,
the 5 mm proposed in Schwartz et al., 1996]. The elec-
trodes were then registered to the MRI coordinate
using only the three fiducials. This procedure leads to
electrode mis-registration errors up to 10 mm.

• A corrected version of this last version using all avail-
able points, as described in the ‘‘Definition of the for-
ward problem’’ section. This procedure decreases the
electrode mis-registration errors to below 2 mm.

The performance metrics computed were those used in
the ‘‘Performance under different inversion frameworks’’

Figure 10.

Correlation values for inter-area correlation approaches. Three

estimators are displayed: a combined, an inter-area correlated,

and an inter-A-area FACEs.
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section. The electrode and anatomical fiducial positions
corresponding to the three models are displayed in Sup-
porting Information Fig. 5a). The original values are in
black while the corrupted and corrected versions are in
red and green, respectively. The fiducials are given by the
larger dots. Supporting Information Figure 5b presents a
histogram of the errors in the electrode location (i.e., the
distances to the original positions) before (red) and after
(green) correction. With the correction algorithm, these
errors are at or below 2 mm. Supporting Information Fig-
ure 5c–e displays the reconstruction accuracy obtained for
the three different cases with the minimum-norm and a
combined FACE. For the uninformed minimum-norm, the
results are equivalent between the corrected version and
the original one (i.e., no significant difference, Kolmo-
gorov-Smirnov test). Interestingly, even the corrupted ver-
sion leads to similar results (with the exception of the
focalization error, which is significantly worse for the cor-
rupted model when compared with the original one, P <
0.047). This is consistent with observations made in other
studies [Beltrachini et al, 2011; Wang and Gotman, 2001].
In addition, the use of a prior does not change this trend
(no significant differences are observed between the differ-
ent models for the FACE approach). However, for all the
metrics used and all the models, the accuracy is again stat-
istically better with FACE than with the minimum-norm
(P < 0.001). We conclude that potential errors in the core-
gistration between the coordinate systems of MRI and the
EEG measurement system do not affect the results pre-
sented in this study.

Another issue with the distributed approaches is the use
of a source-orientation constraint based on anatomy. In
this study, we only considered a fixed-orientation con-
straint. Lin et al. [2006], showed that applying a loose-ori-
entation constraint to a coarser model of about 7,500-
dipolar sources improved by only a few millimetres the
localization performances of a variety of distributed source
imaging approaches with respect to image models with
strict or totally free orientations. These improvements
should be even smaller in our case where 20,000 sources
were used. Note however that the implementation of a
free-orientation version of our approach is straightforward.

DISCUSSION

In this study, we introduced a new method that uses
functionally defined ROIs to constrain the solution of the
EEG/MEG imaging problem in the context of stimulation
of the visual system. The definition of the different source
area is performed once for each participant and requires
roughly 2 hours of fMRI scanning. As with older
approaches, it allows the introduction of a prior on the
autocorrelation of the current source distributions in the
inverse procedure. However, as the ROIs are not defined
using the same stimulus set but are instead fundamental
aspects of the functional architecture of the visual system,

the inverse can be defined once for a given participant
and reused for a wide range of experiments and we can
also enforce the correlation between two neighbor sources
embedded in the same visual area, based on their shared
electrophysiological characteristics.

We proposed a general way of defining different models
that can be derived from the intrinsic parameters of the
stimulus, such as the size of the objects presented in the
visual field, by modifying the values of the correlation
coefficients. We used Monte-Carlo simulations to estimate
the performance of our approach in the context of EEG
recordings. However, this could also have been done with
MEG data by simply replacing the forward matrices. The
estimates presented in this study are all based on a distrib-
uted approach framework. As demonstrated and dis-
cussed in the ‘‘Spatial accuracy of distributed approaches’’
section, errors in the coregistration between the fMRI coor-
dinate and the EEG measurement systems, as well as the
use of a fixed orientation do not affect the results pre-
sented here.

Four different models were tested relative to the inverse
solutions provided by the uninformed minimum-norm
model. Importantly, the cortical distributions, which we
derived were rather complicated as both the number of
activated areas (from 1 to 4), their amplitudes (from 1 to
10 in n.u.) and their sizes (from 10 to 100%) were included
in the model. The evaluation parameters were also very
strict as only subsets of the cortical tessellation were taken
into account (see the AUC definition in the ‘‘Evaluation
procedure’’ section). We showed that every prior improve
the reconstructions if the simulated areas are effectively
localized in the visual areas and thus respect our hypothe-
sis. This is true for different sizes and for different num-
bers of activated regions. Interestingly, the model based
only on the autocorrelation of the predefined sources, even
if better than the classical minimum-norm, does not out-
perform it, because of the focalization error. This illustrates
that information on the true source localization does not
increase the estimation of the relative amplitude differen-
ces between these sources. In contrast, the three models
associated with a correlation prior show better results in
this case. To test the impact of misspecifications in the
model, we also evaluated the reconstructions when an
increasing percent of sources were localized outside the
visual areas. We showed that the three models using the
correlation produce informative results (i.e., with an AUC
mainly greater than 0.5), which are better than the unin-
formed minimum-norm reconstruction when at least 50%
of the current spatial distribution is consistent with the
localization hypothesis. In addition, we showed that the
design of the prior can be optimized according to the size
of the stimulus, small values of the coefficients being more
adequate to focal presentation in the visual field while big-
ger values can be associated to bigger objects. We also pro-
vided evidence that the FACE approaches led to more
accurate correlations with the true source time courses
when the simulated clusters had different phases over a
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full time-window (see the ‘‘Estimation across time’’
section).

We demonstrated the ability of our models to recon-
struct real activities using EEG recording from six different
subjects. We localized the neuronal populations respond-
ing to horizontal disparities using a steady-state analysis
and emphasized the role of areas V3A, MT, and V4 in this
context. These results are consistent across participants
and agree with the recent single unit and fMRI literature.
As we have noted previously [Appelbaum et al., 2006;
Cottereau et al., 2011b], the availability of individually
determined functional ROIs makes it possible to pool data
across participants in a way that respects individual differ-
ences in the location, size and shape of different functional
areas. While area V1 and V2 have a consistent relationship
to the anatomical landmark of the calcarine sulcus [Hinds
et al., 2009], higher-order areas, such as V3A show a large
error of variation in their location. Nonetheless, ROI-based
analysis can apportion activity appropriately based on the
labeling of the cortex with respect to the retinotopic or
functional maps.

The associated FACE procedure we presented for the
main set of simulations and the analysis of the real data
assumed a L2-minimum-norm uninformed procedure, this
choice was mainly motivated by the fact that this method
is widely used in the neuroscience community as empha-
sized by the increasing number of associated articles pub-
lished in the last years [Busse et al., 2009; Cottereau et al.
2011a,b; Jerbi et al., 2007; Lefevre and Baillet, 2009; Schupp
et al., 2007; Sergent et al., 2005]. However, our priors on
the matrix R can be easily introduced into other recon-
struction techniques if they include the correlation matrix
of the cortical current distributions in the inverse proce-
dure. By evaluating the performance of our approach on
three other standard source estimators (i.e., a depth-
weighted minimum-norm, a LORETA inverse and a Multi-
ple Priors Sparse inverse, see the ‘‘Performances under dif-
ferent inversion frameworks’’ section), we demonstrated
that our method provided enhanced estimations for all of
them. We anticipate that every new algorithm could bene-
fit from these types of prior.

We also discussed the possible use of inter-area correla-
tions and emphasize potential issues in their direct imple-
mentation (see the ‘‘Beyond local interactions: performance
and limitations of inter-area correlation’’ section). We
nonetheless proposed specific conditions (e.g., increasing
the correlation between sources belonging to the same
area but lying in different hemispheres when a stimulus is
symmetric across the two visual fields) under which such
an approach can provide significant improvements. The
integration of the corresponding priors in our estimation
technique is straightforward and the proposed model
always leads to a sparse representation of the correlation
matrix.

Beyond the domain of vision, a method based on intra-
area correlation may be successfully applied to other cog-
nitive studies where the system is comprised of cortical

fields that display systematic maps of sensory surfaces
such as those that occur in the somatosensory and motor
cortex [Penfield and Boldrey, 1937] or the auditory cortex
[Di Salle, 2001] or that show particular functional speciali-
zation that can be mapped with localizer scans.
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