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effective delivery of a miRNA-targeted
agent to tumor cells in vivo. Moreover,
it would most likely be necessary to
identify, prior to treatment with such an
agent, those tumors demonstrating
a strict dependency onmiR-21. Despite
the relatively broad overexpression of
miR-21 in various cancers [11], it seems
unlikely that all, or even most, tumors
that overexpress miR-21 would
demonstrate significant regression
following miR-21 inactivation.
Therefore, a more extensive analysis of
miR-21 addiction in a large panel of
cancer cell lines and mouse tumor
models would be of considerable value
in initially assessing the scope of
miR-21 dependency across the cancer
landscape. Such an analysis should
also provide some perspective on the
therapeutic index one would anticipate
in the context of therapeutic targeting
of miR-21. In this regard, it will also be
of interest to determine the potential
consequences of miR-21 disruption
in normal tissues, which has not been
reported thus far.

In light of the technical challenges
associated with the direct targeting of
miR-21, it may also be useful to identify
the critical gene target(s) of miR-21 that
mediate its oncogenic function, as one
or more of these may constitute more
pharmacologically tractable targets.
Given that miR-21 has been shown
to have multiple putative gene targets
[10,15,16], functional validation studies
will be required to address this
potentially complex issue. However,
since miRNAs generally promote the
repression of gene expression, and it
is therefore not surprising to find that
many of the established targets of
oncomiRs are in fact tumor suppressor
genes [15,19,20], it may prove difficult
to identify ‘druggable’ oncomiR-
regulated targets.

In sum, these new findings by
Medina et al. [7] add yet another
dimension to the oncogene addiction
phenomenon. The possibility of
targeting specific miRNAs required to
maintain tumor cell survival as
a therapeutic strategy is provocative,
but is certainly a challenging prospect
from a drug development and
delivery standpoint. Future efforts will
undoubtedly be required to establish
the broader significance of oncomiR
addiction, to identify the most relevant
miRNAs in specific tumor indications,
to establish the mechanisms by which
miRNA overepression contributes to
the maintenance of tumor cell viability,
and to develop therapeutic strategies
to inactivate specific miRNAs. And
these are just the little things.
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Visual Perception: Ambiguity
Involving Parietal Cortex

Our brain is constantly interpreting ambiguous sensory input to deliver a stable
perceptual representation of the environment. Two new studies suggest that
superior parietal cortex plays a causal role in resolving perceptual ambiguity.
Ironically, their results are somewhat ambiguous as to what that role might be.
Colin W.G. Clifford

It is easy to underestimate the
complexity of the visual processing
required to make sense of the world
around us. It was arguably only when
the pioneers of artificial intelligence
started trying to program computers
to see that the true magnitude of
the task of vision became widely
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Figure 1. Effects of TMS on the perception of bistable stimuli.

Theta-burst stimulation for 40 seconds over either the left or right superior parietal lobe slowed
the rate of alternation between perceived directions of ambiguous structure-from-motion [3].
In contrast, 30 minutes of rTMS over the right superior parietal lobe speeded switching in
binocular rivalry [4].
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appreciated [1]. Rather than passively
processing the retinal image, our
brain actively generates and tests
predictions about the source of
its sensory input [2]. Two studies
published in this issue of Current
Biology [3,4] implicate a particular part
of the brain’s parietal lobe as playing
a causal role in resolving ambiguous
visual information.

To study how our brain goes about
organizing our visual input it would be
useful to keep the stimulus constant
and monitor the effects of the
organizational processes in isolation.
Fortunately, there are certain bistable
visual stimuli that allow us to do just
that. For example, we perceive only
one of two dissimilar images
presented one to each eye; the other
is initially suppressed from awareness
but, as we continue viewing, our
perception alternates between the
images. This phenomenon is termed
binocular rivalry [5,6]. A second
example is ambiguous structure-from-
motion, whereby a set of dots each
oscillating in position about
a common axis gives rise to the
perception of a three-dimensional
shape rotating in depth [7]: the
ambiguity is in the direction of
rotation, which is perceived to
alternate over time. The dynamics
of perceptual alternations are
qualitatively similar between
individuals and across different
types of stimulus [8], apparently
characteristic of endogenous neural
processes continually trying to
resolve conflicting sensory input.
Quantitatively, however, the rate of
perceptual switching varies markedly
from person to person [9].

Kanai and colleagues [3] exploited
this inter-individual variability to
localize the neural mechanisms
underlying perceptual alternation
in ambiguous structure-from-motion.
The researchers measured the
perceptual alternation rate in
a cohort of 52 subjects for whom
they had detailed neuroanatomical
data. In this way they were able to
identify parts of the brain whose
structural variation correlated with
the behavioural data. Three structural
measures — grey matter thickness,
grey matter density and white matter
integrity — consistently implicated the
superior parietal lobe (SPL) as
a region involved in perceptual
switching. Specifically, the rate of
a subject’s perceptual switching
correlated positively with the
thickness and density of the grey
matter and the integrity of the white
matter in the SPL of his or her brain.
To validate these findings, the
researchers then conducted an
experiment in which they used
transcranial magnetic stimulation
(TMS) to disrupt the function of the
SPL in eight new subjects. They found
that 40 seconds of theta-burst
stimulation over the SPL of either
hemisphere was sufficient to induce
significant slowing in the rate of
perceptual alternation.
The other new study also reports an

effect of TMS to the SPL on the rate of
switching between bistable percepts:
Carmel and colleagues [4] found that
30 minutes of repetitive TMS (rTMS)
over the right SPL significantly
increased the rate of subsequent
perceptual alternation. No significant
effect of stimulating left SPL was
observed. Although both papers report
significant effects of TMS to right
SPL on the subsequent perception
of bistable stimuli, the effects are in
opposite directions: Kanai et al. [3]
found that TMS slows perceptual
switching, whereas Carmel et al. [4]
report that the alternations are more
frequent (Figure 1).
It is possible that the key difference

between the studies lies in the brain
stimulation protocols. Theta-burst TMS
and rTMS have both been shown to
depress cortical function [10,11], but
further research is required to
understand their effects more fully.
The procedures for localising the
SPL also differed somewhat, but
there is no clear evidence that they
were stimulating anatomically
distinct sites. And it seems unlikely
that the difference could be due to
the use of ambiguous structure-
from-motion versus binocular rivalry.
Previous studies have suggested
that patterns of neural activation in
the early visual areas may be more
reliable in predicting perceptual
state during binocular rivalry than
for ambiguous structure-from-motion
[12,13]. However, both are
susceptible to effects of attention
and voluntary control [14] — functions
commonly associated with parietal
cortex [15].
The results of the two studies [3,4]

might thus appear hard to reconcile.
However, dynamical models of bistable
perception are invariably non-linear,
involving a balance of excitatory and
inhibitory interactions between
competing neural representations [16],
so perhaps we should not be surprised
if even subtle differences in the way
that neural interactions are perturbed
can produce qualitatively distinct
perceptual outcomes. That
stimulation of the SPL can affect
the rate of subsequent perceptual
alternations — albeit in either
direction — marks it as a promising
site to target in future investigations.
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