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Summary 

How does the brain link visual stimuli across space and time? Visual illusions provide an experimental 

paradigm to study these processes. When two stationary dots are flashed in close spatial and temporal 

succession, human observers experience a percept of motion. ​Large spatio-temporal separation 

challenges the visual system to keep track of object identity along the apparent motion path. ​Here, we 

utilize voltage-sensitive dye imaging in primary visual cortex (V1) of the awake monkey to investigate 

whether intra-cortical connections within V1 can shape cortical dynamics to represent the illusory 

motion. We find that the arrival of the second stimulus in V1 creates a suppressive wave traveling 

toward the retinotopic representation of the first. Computational approaches show that this suppressive 

wave can be explained by recurrent gain control fed by the intra-cortical network and  contributes to 

precisely encode the expected motion velocity. We suggest that non-linear intra-cortical dynamics 

preformat population responses in V1 for optimal read-out by downstream areas. 
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Introduction 

When two stationary stimuli are successively flashed in spatially separated positions, it generates the 

so-called “apparent motion” illusion ​(Wertheimer 1912) ​. This illusion, well characterized in 

psychophysics ​(Burr and Thompson 2011) ​, depends on the spatio-temporal characteristics of the 

stimulus, being called “short-range” vs “long-range” apparent motion (lrAM) for spatial separation 

below or above 0.25° and temporal separation below or above 80 ms respectively ​(Braddick 1980) ​. In 
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psychophysics, intrinsic differences were reported between these two types of apparent motion, 

however, there is some debate whether it is underlined by same or different process ​(Cavanagh and 

Mather 1989) ​. In physiology, while we have a clear idea on the neuronal processing generating 

direction-selective neuronal response to short-range apparent motion stimuli ​(Mikami, Newsome, and 

Wurtz 1986b) ​, we still have a poor understanding of how the visual system process lrAM. This is 

probably because the spatial separation between individual strokes of the lrAM extend beyond the 

typical extent of receptive fields in the early visual system, at least in primates. In the case of the lrAM, 

psychophysicists have long highlighted the necessity to have a process, such as the “reviewing process” 

(Kahneman, Treisman, and Gibbs 1992) ​, that will link the transient apparitions of stimuli in different 

spatial and temporal positions in order to generate a coherent motion percept of a single object, hereby 

solving the problem of “phenomenal identity” ​(Ternus 1926) ​ or “correspondence” ​(Ullman 1978) ​. 

Downstream areas with large receptive fields are a natural expected integration unit for such extended 

spatiotemporal input. Indeed, it has been recently shown in human that the feedback from MT to V1 

plays an important role in the processing of lrAM ​(Wibral et al. 2009; Muckli et al. 2002; Vetter, 

Grosbras, and Muckli 2015) ​, as well as evidences of downstream activation along  the ventral stream 

(Zhuo et al. 2003) ​. However, it is still unclear whether and how the “reviewing” process, needed to keep 

track of the object identity along the motion trajectory, can be achieved within these receptive fields. 

As suggested from fMRI experiments in human, the population activity within V1 could 

participate in formatting the representation of lrAM ​(Muckli et al. 2005) ​. The extended precise 

retinotopic map in V1 makes it indeed an ideal platform for representing and creating, at the level of the 

neuronal population, the trajectory of the apparent motion illusion, a representation that could be 

read-out by downstream areas ​(Mumford 1991; Lee et al. 1998) ​. In particular, V1 has the highest 

resolution ​(Lee et al. 1998) ​  to achieve the interactions in space and time needed to link the individual 

strokes of the apparent motion ​(Lee et al. 1998; Adelson and Bergen 1985) ​. In such context, 
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intra-cortical and inter-cortical connectivity would be the natural substrate to underlie the necessary 

spatio-temporal interactions ​(Deco and Roland 2010; Muller et al. 2018) ​. Importantly, these two 

networks have intrinsically different spatio-temporal properties, the inter-cortical network operating 

over very large extent but with poor spatial and temporal resolution ​(Angelucci et al. 2002; Stetter 

2002) ​, and the intra-cortical network has a more limited extent but with high spatial and temporal 

resolution ​(Muller et al. 2014; Bringuier et al. 1999; Bullier 2001) ​. Furthermore, they constitute the vast 

majority of synaptic contacts in the cortex, the feedback accounting for less than 20% and the 

intra-cortical connectivity contributing to 80% of the number of neuronal contacts, while the 

feedforward less than 1% ​(Markov et al. 2011) ​. Such connectivity seems therefore like a good candidate 

to link transient spatio-temporal events ​(Muller et al. 2018) ​. It was indeed shown, in the anesthetized 

cat,  to shape visual information for a dynamic representations of sequences of static stimuli ​(Jancke et 

al. 2004; Gerard-Mercier et al. 2016) ​ likely implicating  non-linear gain control on the feedforward input 

(Reynaud, Masson, and Chavane 2012) ​. However, it is still unclear whether and how the cortico-cortical 

interactions could participate to shape the representation of lrAM within V1 retinotopic map in the 

awake monkey.  

To answer this question, we used optical imaging of voltage-sensitive dyes (VSDI) in the awake 

fixating monkey, to measure how V1 neuronal population integrates a two-stroke lrAM that 

overreached individual neuronal receptive field size. In response to a single stroke, activity in V1 

propagates in space and time ​(Grinvald et al. 1994; Slovin et al. 2002; Sato, Nauhaus, and Carandini 

2012; Bringuier et al. 1999; Muller et al. 2014) ​, with spatial and temporal constants that cover about 3 

mm and 80 ms. In response to the lrAM of various spatio-temporal separations, we observed the 

emergence of a direction-selective representation of the lrAM in V1. This representation is the result of 

a systematic wave of suppression propagating in the opposite direction of the lrAM: initiated at the 

second stimulus onset and propagating to suppress the residual response to the first stimulus. A 
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computational model was developed to understand the origin of such suppressive waves. It shows that 

intra-cortical interactions can lead to the observed suppressive waves when two very plausible 

conditions are met : (i) the inhibitory cells have a higher gain than excitatory cells, and (ii) there is a 

shunting effect of the associated synaptic conductances. Using a spatio-temporal decoding approach, 

we demonstrate that such suppression waves explain away ambiguous representation of stimulus 

position along the apparent motion trajectory. These waves thus preformat V1 population response for 

an unambiguous representation of the lrAM. Using an opponent motion energy approach, we 

demonstrate that the observed spatio-temporal pattern optimally encodes the stimulus velocity.  

 

Results 

Characterizing the mesoscopic  spatio-temporal impulse response function 

Two-step apparent motion sequences of various spatio-temporal characteristics (Fig 1, A and B) were 

presented to two behaving monkeys involved in a fixation task. The primary visual cortical response was 

measured at the level of the population using voltage-sensitive dye imaging ​(Amiram Grinvald and 

Hildesheim 2004; Chemla and Chavane 2010a) ​. In response to a local stimulus (0.25° in diameter) 

presented for 100 ms in two different visual positions (separated vertically by 1° or 2°), activity arises at 

the retinotopic representation of these two positions and then spreads laterally over millimeters of 

cortical surface (Fig.1C: lower position, Fig. 1D: upper position) ​(A. Grinvald et al. 1994; Reynaud, 

Masson, and Chavane 2012; Muller et al. 2014) ​. V1 activity is hereby reaching positions in space and 

time well beyond 1° and 50ms. As a consequence, the evoked spread covers a large cortical extent that 

can reach the representation of the other stimulus in space and beyond the inter-stimulus interval in 

time. The space- and time- constants of our responses were systematically quantified on the two 

monkeys and for the three stimulus durations we used (10, 50 and 100ms) on a 2D spatio-temporal (ST) 
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map (Fig. 2A). To produce these ST maps, cortical activity was averaged within the apparent-motion 

trajectory ( ​dotted rectangle ​ ​at frame 216 ms ​ in Fig. 1, C-G) to provide a unique spatial cortical dimension 

(ordinate in Fig. 2A).  First, we extracted the space-constant of a gaussian spatial fit for all time points 

(see Fig. 2A, right-side of the maps). In both monkeys and across 19 sessions overall, the space-constant 

increased from 1.6 +/- 0.5 mm at response onset to reach a maximum of 3.3 +/- 0.2 mm, independent of 

the stimulus duration and monkeys (Fig. 2B, no significant difference observed between all stimuli 

durations, t-test with p>0.01). The time-constants of the response time-course at the central 

representation of the stimulus were measured using two halve gaussian functions fits (see Fig. 2A, below 

the maps). In both monkeys, the time-constant at response onset was on average  23.6+/- 17.2 ms for all 

stimuli durations (except for monkey BR with a mean value of 44.5 +/- 14.5 ms for 100 ms stimuli, see 

blue histogram in Fig. 2E), and 80 +/- 43.6 ms for response offset (Fig. 2F, no significant difference 

observed between all stimuli durations, t-test with p>0.01). Lastly, we also extracted the speed at which 

the response spreads across the cortical surface (see Fig. 2A, slanting lines) and obtained a distribution 

with peak values of about 0.26 +/- 0.14 m/s, similar across monkeys and stimulus durations (t-test with 

p>0.01), and similar to what has been observed in different species and states ​(Slovin et al. 2002; Sato, 

Nauhaus, and Carandini 2012; Bringuier et al. 1999; Reynaud, Masson, and Chavane 2012; Muller et al. 

2014) ​. This analysis showed that the spatio-temporal integrative properties of the primary visual cortex 

are mostly independent of stimulus duration and are able to cover a large spatial (3mm) and temporal 

(100ms) extent, bridging the cortical representation between our individual stimuli in space and time.  
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Figure 1: ​​  ​Experimental protocol and time-sequence of the cortical response to the long-range apparent motion 

(lrAM). ​​  ​A: ​​ Two-step lrAM stimuli are presented to two awake fixating monkeys in their bottom left visual field, 

while recording in their right visual cortex using VSDI.  ​B: ​​ Spatio-temporal characteristics of lrAM stimuli, i.e. 

duration (DUR) , interstimulus interval (ISI) and spatial interval (SI), were varied to cover a [5-66.6]°/s range of 

speed. ​C-E: ​​ Cortical representation of evoked VSDI activity as a function of time, in response to respectively, a 100 

ms local stimulus in the down position, another one in the up position, and the sequence of these two stimuli (ISI  = 

50 ms and SI = 1°). The cortical area imaged is shown at upper left. The edge of the image color codes the 

retinotopic borders as represented in A such as the vertical meridian (magenta), eccentricities (green and blue). 

Scale bar: 2 mm; A: anterior, P: posterior, M: medial, L: lateral. Time in milliseconds after stimulus onset is shown at 

the top, while stimulation time is drawn at the bottom of each row (black lines).  ​F:​​ Activity pattern predicted by the 

linear combination in space and time of the response to stimulus 1 (row C) and the response to stimulus 2 (row D). 

G: ​​Suppression pattern obtained by subtracting the observed apparent motion response (row E) and the linear 

prediction (row F). Red contours delimit amplitude activity above a certain threshold: 1 ⁡‰ in panels C-F and  -0.5‰ 

in panel G. 

The evoked response to the lrAM is shaped by a suppressive wave 

We next asked whether such lateral interactions contribute to shape the evoked population response to 

the temporal succession of these two stimuli.  For that purpose we measured the cortical population 

response to a two-stroke upward apparent motion sequence (Fig. 1E). Such temporal sequence 
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generates a propagation of activity starting at the cortical representation of the first stimulus (S1) and 

moving to the cortical representation of the second stimulus (S2), a cortical correlate of the illusory 

motion ​(Jancke et al. 2004) ​. The observed pattern of activity departs from the pattern predicted by a 

simple linear summation of the lower and upper stimuli (Fig. 1F). If we subtract the observed (Fig. 1E) 

and the linear predicted responses (Fig. 1F), two deviations from non-linearities are observed. First, a 

suppression emerges at response onset and at the cortical representation of S2 (compare 1D and 1G at 

frame 216ms). The suppression then gradually propagates over the cortical surface towards the 

representation of S1 (Fig. 1G). We can hypothesize that the evoked activities by the two stimuli 

composing the lrAM sequence interact together to generate this dynamic pattern of suppression. Since 

the suppression is observed at the onset time of the response to S2, it has to be due to the activity 

dynamics generated by S1 interacting with the integration of S2. However, the propagation of 

suppression from the representation of S2 towards the representation of S1 is probably due to the 

activity dynamics evoked by S2 interacting with the residual activity evoked by S1. Therefore, the 

suppression wave could likely be the result of multiple interactions (e.g bidirectional) between the 

activities evoked by the stimulus sequence. 
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Figure 2: Spatio-temporal characteristics of cortical responses to a local stimuli. A-C: ​​Spatio-temporal 

representations (ST) of the evoked cortical response to, respectively, 10 ms (A, red) , 50 ms (B, purple) and 100 ms 

(C, blue) local stimuli. To produce the ST representation, we averaged spatial data along the stimulus trajectory 

(rectangle in frame 216ms, Fig1C-G). For each spatial point, the temporal data were fitted to a combination of two 

half Gaussians, as illustrated for one specific point in space (horizontal white line on the ST diagram) below the ST 

maps. Similarly, for each time frame, the spatial data were fitted to a Gaussian function as shown on the right side 

of each ST map for one specific point in time (vertical white line). ​D:​​  Space-constant of the Gaussian spatial fit 

(sigma parameter) plotted as a function of time for the three considered durations (10 ms in red, 50 ms in magenta 

and 100 ms in blue) and for the two monkeys (top: monkey WA, bottom: monkey BR). ​E: ​​ Histograms of 

time-constant at response onset (𝛕on) estimated from  the temporal fit of the response for the three considered 
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durations and the two monkeys. ​F:​​ Histograms of time-constant at response offset (𝛕off) estimated from the 

temporal fit of the response for the three considered durations and the two monkeys. ​G:​​ Histograms of cortical 

speed of propagation estimated by linear regression on response latency (stairs-step contours,  slanting lines and 

slope of the linear regression) for the three considered durations and the two monkeys. 

 

The suppressive wave is systematically observed 

To better investigate how spreads of evoked activity and suppression shape the representation of lrAM, 

we first show ST representations of examples taken for both monkeys and three stimuli speeds. The 

example of Figure 1 is shown in Figure 3A (6.6°/s). In these ST representations, we can observe a clear 

propagation of activity in response to a local stimulus (slanting lines in Fig. 3, A and B) that is remarkably 

similar across both monkeys (Fig. 3, A and B, ​ first rows​) and speeds (three columns respectively for 

6.6°/s, 10°/s and 33.3°/s, as shown in Fig. 2F). The ST representation of non-linearities (lower rows) 

recentered on S2 onset, shows that suppression first appears at the cortical representation of S2 and at 

S2 response onset, and then propagates towards the representation of S1, at a similar speed than the 

one observed for the evoked activity to the first stimulus (Fig. 3, A and B, ​second rows, slanting lines​). In 

both monkeys and the three examples shown, this suppression propagates in a direction opposite to the 

apparent motion sequence, from S2 to S1 representations. Functionally it results in silencing the residual 

activity generated by S1.  
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Figure 3:  The apparent motion stimulus induces a systematic suppression wave. ​​ Spatio-temporal representation 

of VSDI responses to two-stroke apparent motion stimuli for three different speed (6.6°/s, 10°/s and 33.3 °/s) and 

two animals (​A: ​​ monkey WA, ​B: ​​ monkey BR). The upper rows of A and B represent the observed response and the 

lower rows the non-linearities of the response (observed - linear prediction). Estimates of speed propagation are 

reported on each ST diagram (black stairs-step are contours at threshold level, slanting lines are the slope of the 

linear regression). Similar values are observed for both the observed activity and the non-linearities. 
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The suppressive wave propagates at the same speed and with same extent as the evoked spread 

This suppressive wave was systematically observed for all two-stroke lrAM conditions tested (see 

Fig.1B). This can be seen in the ST evoked response (centered on the onset of S1) and nonlinearities 

(centered on the onset of S2) averaged across all conditions and sessions for both monkeys (Fig. 4A). To 

better understand the origin of the suppression dynamics, and its dependence on stimulus conditions, 

we characterized its spatio-temporal properties. First, we measured the onset of the apparition of the 

suppression at S2 position. The latency of the observed suppression was the same as the latency of the 

activity evoked by S2 alone (Fig. 4B, respectively 39.5 +/- 2.0 ms vs. 38.6 +/- 1.6 ms for monkey WA and 

36.6 +/- 1.8 ms vs. 36.9 +/-2.1 ms for monkey BR, non-significantly different, t-test with p = 0.77 and p = 

0.35 respectively for WA and BR). However, the suppression resulted in significantly delaying the 

response onset evoked by S2 when presented within the apparent motion sequence (54.2 +/- 2.0 ms 

and 68.3 +/- 5.3 ms for WA and BR respectively, Fig. 4B). Then, we quantified the spatial extent of the 

suppression (𝛔 of a Gaussian fit, Fig. 4C). In all conditions, the spatial extent of the suppression was of 

about 2.8 mm (2.49 +/- 0.14 mm for WA and 3.08 +/- 0.18 mm for BR), similar and non significantly 

different than the spatial extent of the evoked response (2.99 +/- 0.11 mm and 2.41 +/- 0.17 mm for WA 

and BR respectively). Thus the suppressive wave starts at similar latency and covers similar spatial 

extent. We next characterized the speed of propagation of activity (Fig. 4D black) and suppression (Fig. 

4D blue), plotted as a function of stimulus speed. Remarkably, on both monkeys, the observed cortical 

speeds were identical for both the propagation of activity and the suppression and completely 

independent of the lrAM speed (0.28 +/- 0.26 m/s and 0.27 +/- 0.4 m/s respectively for WA and 0.21 +/- 

0.15 m/s and 0.27 +/- 0.2 m/s respectively for BR). However, from the ST plots in Figure 3, we noticed 

that the suppression does not seem to spread but rather propagates as a wave ​(Muller et al. 2014, 

2018) ​. To probe for this hypothesis we thus compared the dynamics of the response peak position (𝛍 of 

a Gaussian fit). In a spread, typically, the response peak will not move in space, as observed for evoked 
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response (Fig. 4E, the peak spatial position is not changing with time, slope of -1.3x10​-5​ +/- 1.1x10-4 m/s 

and 1.6x10​-4​ +/- 3.4x10​-4​ m/s for WA and BR respectively), whereas in a wave it will follow the onset 

spatial displacement, which is what we found for the suppression (Fig. 4E, the peak moves from position 

2 to position 1, negative slope of -0.05 +/- 0.007 m/s and -0.034 +/- 0.005 m/s for WA and BR 

respectively). Altogether, our results show that the suppression is initiated at response onset, have 

similar spatial extent and propagation speed as the activity evoked response. Furthermore, although 

evoked activity are waves hidden by spatial averaging ​(Muller et al. 2014) ​, the suppression is still seen as 

a wave in the averaged data. This strongly suggests that the suppression is likely to be mediated by the 

same general process generating the propagation of evoked activity, most probably the intra-cortical 

horizontal network ​(Muller et al. 2014) ​. If the suppression is generated along the propagation of activity, 

one prediction is that it should decrease in strength with spatial and temporal separation between the 

two stimuli composing the lrAM. This is indeed what was observed, the suppression strength decreases 

as a function of stimulus onset asynchrony and spatial separation (Fig. 4F, t-statistics on the slope of the 

linear regression gives t = -0.92 with p=0.18 and t = -6.3 with p = 3.6x10-6, respectively for a spatial 

interval of 1⁰ and 2⁰ (WA); t = -1.2 with p=0.12 and t = -1.6 with p = 0.05 (BR)). 
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Figure 4: The suppressive wave has the same properties as the evoked intra-cortical propagation. 

A: ​​Spatio-temporal VSDI activity (top row) and non-linearities (bottom row) averaged across all lrAM speed 

conditions and centered on stimulus 1 (S1, top row) or stimulus 2 (S2, bottom row) onset, for both monkeys 

(columns).​ B: ​​ Boxplot of latency estimates comparing the onset of activity evoked by S2 alone (“evoked” condition), 

the response onset evoked by S2 when embedded in the lrAM sequence (“lrAM” condition) and the onset of the 

suppression at S2 position (“suppr” condition). Boxplots illustrate median, 25 and 75% quartiles and minimum and 

maximum of the distributions across all lrAM speed conditions, for the two monkeys (black WA, gray BR). ​C: ​​ Boxplot 

of space-constants (parameter 𝛔 of a Gaussian spatial fit) comparing the evoked response and the suppression, for 

the two monkeys. ​D:​​ For each condition in both monkeys (columns), we estimated the speed of propagation of the 

VSDI (black) and the non-linearity (blue). The upper row shows frequency histograms and the lower row these 

speeds as a function of the speed of the lrAM stimulus. ​E: ​​ Boxplot of the response peak propagation speed (slope of 

the linear regression on the parameter 𝛍 of a Gaussian spatial fit) comparing the evoked response and the 

suppression, for both monkeys. ​F:​​ Suppression strength (normalized to the maximal response activity) as a function 

of stimulus onset asynchrony and spatial interval (open circle for SI = 1⁰, open square for SI = 2⁰), for both monkeys 
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(black WA, gray for BR). 

 

The suppressive wave can be the result of a dynamic gain control 

What can be the origin of such suppressive wave? Since inhibitory intra-cortical axons have more limited 

spatial extent ​(Buzás et al. 2001) ​, and that feedback from higher areas are excitatory ​(Salin and Bullier 

1995) ​, we can hypothesize that it does not result from a simple net inhibition, but rather as a byproduct 

of the excitatory/inhibitory balance ​(Tsodyks et al. 1997; Ozeki et al. 2009) ​. Indeed, as demonstrated 

using center-surround stimulations, the suppressive wave can be the result of a simple dynamic input 

normalization fed by propagation along the horizontal network ​(Reynaud, Masson, and Chavane 2012) ​. 

To determine the possible mechanisms generating the observed suppression, we used a mean-field 

model designed to reproduce accurately VSDI ​(Zerlaut et al. 2018) ​.  In this model, it was assumed that 

each pixel of the VSDI represents the average Vm of two populations of interacting neurons, excitatory 

regular-spiking (RS) neurons, and inhibitory fast-spiking (FS) neurons ​(Chemla and Chavane 2010b) ​. 

Arranging this model into a spatially extended interconnected populations of RS-FS cells (Fig. 5A, see 

Methods) allows to simulate the propagating waves observed in awake monkey under VSDI. The great 

advantage of such model is to explicitly take into account conductance-based interactions (COBA) as 

well as a different gain between excitation and inhibition. These ingredients are often neglected as they 

introduce difficulties in mathematical tractability of mean field models ​(Landau et al. 2016; Vogels, 

Rajan, and Abbott 2005) ​. Nevertheless, these features are biologically relevant and, as we show here, 

are actually the main elements determining waves suppression. Examples of two independent waves are 

shown in Fig. 5B (upper row). When the two stimuli are presented in succession  (see Fig. 5B lower left) 

the observed response shows a suppression (Fig. 5B lower right), whose values are quantitatively similar 

to those of experimental data ( suppression of around 50% of the response max). Such suppressive 

effect was robustly observed across a wide range of the parameters space. The first parameter that was 
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found to strongly affect the suppression is the ongoing spontaneous activity of the system pre-stimulus. 

As we report in Fig. 5C (COBA model, red dots), the suppression decreases when the spontaneous 

activity of the system increases (see example marked by a circle, Fig 5D). Moreover, two further 

mechanisms were necessary to explain this suppressive effect. First, inhibitory cells need to have a 

higher gain than excitatory cells. When the gain of FS cells was reduced (see inset of Fig. 5C) to have a 

gain closer to the one of RS cells, the suppression effect was strongly affected (blue dots in Fig. 5C, 

example marked by a square in Fig. 5D). Accordingly, increasing FS cell gain (cyan dots  in Fig. 5C, 

example marked by a pentagon in Fig. 5D) increases the suppression strength.  Second, the interaction 

between excitatory and inhibitory inputs needed to occur through conductances-based mechanisms. 

Indeed, when using a current-based (CUBA) model (see Methods), we mostly observed facilitation (black 

triangles in Fig. 5C) that do not appear to propagate (see example marked by a triangle, Fig. 5D). While 

we do not exclude that such suppression may be observed in current-based synapses, it is clear from 

these data that the non-linearity of voltage dependent synapses induces a strong suppression in VSDI 

signal. The suppression can thus be explained by the mesoscopic combination of the nonlinearity of 

conductance interactions and the differential gain of excitatory and inhibitory cells. 
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Figure 5: A computational model to investigate the possible origin of the suppressive wave. 

A: ​​ Mean-field model of excitatory and inhibitory neurons distributed on the cortical trajectory of the stimulus with 

horizontal connectivity (longer for excitatory than inhibitory neurons). ​B: ​​ Model ST response to the first stimulus 

(upper left), the second (upper right), the apparent motion sequence (lower left) and the non-linearities normalized 

to the maximal response over space and time of the response to single stimuli (lower right). The input has an 

amplitude ν0=20 Hz. ​C: ​​ Amount of suppression/facilitation  as a function of the spontaneous excitatory firing rate. 

Colored dot stand for different interneurons gain (see inset), while black triangles stand for the Current-based 

(CUBA) model, that shows little suppression but facilitation. The input has an amplitude ν0=10 Hz. ​D: 
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Representative ST suppressive/facilitative patterns as marked in C by different geometric shapes (circle, square, 

pentagon, triangle). The star in C corresponds to the model parameters used for obtaining the suppressive pattern 

shown in B. 

 

The function of the suppressive wave is to explain away ambiguous representations 

What can be the function of the suppressive wave? Here we propose that it will shape an unambiguous 

representation of motion along the apparent-motion trajectory. Indeed, silencing the cortical 

representation of the initial stimulus when the second stimulus is being processed will have as a 

consequence to represent only one stimulus at a time, hereby improving motion representation by 

explaining away ambiguous position representation (problem of “phenomenal identity”) ​(Ternus 1926) ​. 

To quantify such hypothesis, we developed a simple algorithm to decode, at every instant, what is the 

most probable stimulus position that evoked the observed cortical spatial profile out of four categories: 

no stimulus, S1, S2, or joint S1 & S2. We used the ST representations of the evoked activity to the 

apparent motion sequence (Fig. 6A) and used the linear prediction (Fig. 6B) as a control. The decoding 

was computed using the joint probability that the spatial profile observed at one point in time (white 

profile) is drawn from the spatial profile observed during blank (first row, black), S1 (second row, red), 

S2 (third row, blue), or the joint S1 & S2 (last row, green). In the example shown in figure 6, we apply 

this decoding method to the activity evoked by  a 6.6°/s two stroke apparent motion stimulus (Fig.6A). 

When S1 is presented (red), the probability that the spatial profile of the evoked response will be similar 

to the blank distribution is quickly dropping from 1 to 0 and the probability that the evoked response 

will be decoded as being evoked by S1 alone is jumping from 0 to 1 very rapidly (in 10ms). When S2 is 

presented (at time 50ms) there is a sharp and rapid transition from the evoked activity being decoded as 

S1 to S2 (blue) in about 50ms. However, the probability that the evoked activity is evoked by S1 & S2 at 

the same time (green) is only increased moderately (peaking at 0.5) and transiently. In contrast, when 
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we apply the same approach to the linear prediction (Fig.6B), while the beginning of the decoding is the 

same (two first rows), as expected, when S2 appears, the evoked activity is ambiguously decoded as 

being attributed to S2 or S1 & S2 conjointly with similar probability (around 0.5).  

 

 

Figure 6: A dynamic decoding of stimulus position: Principle. ​​ The decoding of stimulus position on  ST maps, here 

taking the example of the activity evoked by a 6.6 °/s lrAM stimulus shown in ​A​​ or the activity pattern predicted by 

the linear combination in space and time of the responses to both individual stimuli in ​B. ​​The decoding consists in 
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evaluating the probabilities that the spatial profile observed at each point in time (white contours in A and B) is 

similar to one of the four spatial profiles shown on the left column: Blank (first row, black profile), S1 (second row, 

red profile), S2 (third row, blue profile), and the joint S1 & S2 (last row, green profile). Each profile was computed by 

averaging the corresponding ST response in a 50ms-window around the time of maximum response and 

normalized. The four color-coded probabilities are respectively plotted as a function of time (time 0 corresponds to 

the onset of S2) for the lrAM response (​column A​​) and for the linear prediction (​column B​​). Compared to the linear 

prediction, the actual signal is more rapidly decoded, revealing a likely function of the suppressive wave: shaping 

stimulus position representation. 

 

We applied this approach to all speeds and sessions in both monkeys (Figure 7A&B), for spatial interval 

of 1°, differentiated across the different inter-stimulus intervals (ISI). We separated these conditions 

because, when S2 appears, the residual activity in response to S1 will be less important for long ISI (the 

offset time constant being of the order of 80 ms). In both monkeys and for ISI <= 50ms, the averaged 

results confirm the individual example shown in Figure 6: the evoked activity results in a sharp and clear 

transition from the representation of S1 to the representation of S2, with only transient increase of the 

representation of S1 & S2 conjointly. In comparison, the linear prediction always leads to an ambiguous 

representation that cannot tease apart the probability that the evoked activity is coming from S2 alone 

or S1 & S2 together (blue and green curves merging together). For an ISI >= 100ms, in contrast, the 

evoked activity resembles more the linear prediction, as expected.  
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Figure 7: A dynamic decoding of stimulus position: Application to all lrAM speeds and sessions. ​​  ​A: ​​Color-coded 

probabilities (same as Figure 6) for the observed lrAM response (first row) and its corresponding linear prediction 

(second row) for monkey WA, averaged across three ISI categories: ISI < 25 ms (left column), ISI = 50 (central 

column) and ISI > 100 ms (right column).  ​B: ​​ Application of the decoding algorithm to all the data of monkey BR. ​C: 

Explaining away index (see text and methods) computed as the probability of detecting joint S1 & S2  in the 

observed response minus the probability of detecting joint S1 & S2 in the linear prediction, from monkey WA data 

shown in panel A. ​D:​​ Explaining away index from monkey BR data shown in panel B. 

 

To quantify the effect of explaining away ambiguous positional representations during lrAM 

stimulations, we calculated an index by subtracting the probability of detecting joint S1&S2 in the 

observed and the linear prediction for both monkeys, (Fig. 7C&D), and bothIE.A. = P obss1&s2 − P preds1&s2  

stimuli spatial intervals (SI) of 1 and 2° (first and second rows respectively). In all conditions but the long 

SI and long ISI, a systematic decrease of the index was observed. This reveals a dynamic effect of 

explaining away the ambiguous representation of S1&S2. Importantly, in both monkeys and practically 

all conditions (ISIs and stimulus separation), we observed two peaks in the index decrease. They 
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correspond to the bidirectional interactions occurring for each of the two evoked waves. The first peak 

corresponds to the effect of delaying response onset to S2 (by propagating activity from S1 to S2) , and 

the second peak corresponds to a shortening of the representation of S1 (by propagating activity from 

S2 to S1). Importantly, this calculation revealed two further phenomena that are expected because of 

the propagation delay and spatial extent. First, the timing of the second peak is delayed when going 

from 1 to 2° spatial separation. Second, the general amplitude of the decrease diminishes from short to 

longer ISI. 

Unambiguous representation for optimal encoding of velocity in V1 

Shaping the cortical population representation of the lrAM could promote an accurate encoding 

of direction-selective motion signals for an optimal read-out by downstream area. To test whether the 

measured cortical response encodes an accurate direction-selective signal, we applied opponent motion 

energy filters directly to V1 population responses ​(Adelson and Bergen 1985) ​. Indeed, direction 

selectivity in MT is well described and captured by motion energy models ​(Adelson and Bergen 1985; 

Rust et al. 2006) ​. Such an approach is generally developed to model MT receptive field from a 

spatio-temporal input image. The rationale here is to apply the same processing directly to V1 

population responses that feed downstream areas such as MT or V4. This is justified by the fact that the 

cortical extent imaged here (~ 9mm, corresponding to 3°, see ​Dow et al. 1981; Van Essen, Newsome, 

and Maunsell 1984) ​ actually corresponds to the V1 cortical extent converging to a MT or V4 neuron at 

our recorded eccentricity (3°, see ​Albright and Desimone 1987​; ​Gattass, Sousa, and Gross 1988) ​. Since 

we record VSD responses that represent both sub- and supra-thresholds activities ​(Chemla and Chavane 

2010b) ​, we first processed our ST maps through a non-linearity to account for the VSD to spike rate 

transformation ​(Chen, Palmer, and Seidemann 2012) ​ (Fig 8A). The resulting ST maps were convolved 

with a set of spatio-temporal filters covering a wide range of speeds and scales. For a given value of filter 

speed and scale, we squared and summed the convolution from filters in quadrature, and subtracted the 
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resulting phase-independent measure of local motion energy for opposite directions (ie. MEu - MEd) to 

obtain the opponent motion energy response (OME, Fig 8A). We thereby obtained the opponent motion 

energy for all speeds, scales and directions. For each position on the ST map, we could hence extract the 

filter velocity for which the opponent motion energy is maximal, that we represented for both monkeys, 

and different velocities (10°/s upward in monkey1, Fig8B and -33°/s downward in monkey 2, Fig8C). In 

this representation, the color hue represents the velocity of the filter yielding a maximal opponent 

motion energy and the color intensity its amplitude (as a fraction of the maximum evoked fluorescence 

response). The contour of the evoked response is overlaid in white to ease comparison. The same 

analysis on the corresponding linear predictions serves as a control. For all the conditions we explored, 

we then extracted the values of the optimal velocity within a ST region of interest (between S1 and S2’s 

centers and from 10 to 200 ms after stimulus 2 onset) and represented them as a function of the AM 

speed for both monkeys (Fig 8D and 8E). Our results show that the ST response, shaped through the 

suppressive wave, is indeed generating a direction selective motion energy for a speed that is well 

correlated with the stimulus speed. In other words, intra-cortical non-linear interactions in V1 promote 

an unambiguous optimal encoding of velocity-selective motion signal along the apparent motion path.  
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Figure 8: Encoding of direction-selective motion signal. A: ​​ Application of the opponent motion energy model 

(Adelson & Bergen, 1985) to the ST representation of cortical response to an upward 10° /s AM sequence shown at 

the top. The first step consists  in convolving the ST data with a set of oriented ST filters. Phase-independency is 

obtained by squaring and summing the outputs of quadrature pair of filters, while motion opponency is obtained by 

subtracted the two oriented motion energies (OME = MEu-MEd). The maximal energy values for each ST filter are 

plotted as a function of speed (in °/s) and scale (in mm). The energy values resulting from the same computation 

applied on the linear prediction and the non-linearities  for this AM sequence are respectively shown at the bottom 

left and right. ​B: ​​ST representation of the opponent motion energies computed in panel A. For each ST position, the 

filter velocity for which the energy was maximal is represented as different color hue. The amplitude of the energy 

is coded as color intensity. For comparison, the result for the corresponding linear prediction is shown below. 

Non-linearities correspond to observed AM -  linear prediction.  ​C: ​​Same than B for monkey BR, for another AM 

sequence condition (33.3° /s downward motion).​ D: ​​Filter speed​ ​​that generated the strongest OME ​ ​​within a ST 
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region of interest (see Methods)​ ​​as a function of the actual lrAM speed for monkey WA. The color and size of the 

dots (upward motion conditions) and squares (downward motion conditions) code for the value of the 

direction-selectivity index (DI).​ E: ​​Same than D for monkey BR. 

 

Discussion 

We have shown that intra-cortical interactions play a key role in shaping the sensory representation of 

the long-range apparent motion within the retinotopic map of V1 in awake monkeys. Our results 

demonstrate that intra-cortical propagation encompasses large spatial and temporal distances allowing 

to link information between stimuli presented in distal spatial positions (spatial constant of about 3 mm, 

equivalent to 1°, and time constant of about 80 ms). Importantly, above these values, the apparent 

motion illusion gradually fades out ​(Kolers 1972; Cavanagh and Mather 1989) ​. In response to a 

two-stroke lrAM sequence, we observe a clear displacement of activity on the cortical surface that 

deviates from the linear prediction in two aspects. First, the initial stimulus suppresses and delays the 

response to the second stimulus. Second, a suppressive wave is evoked by the second stimulus that 

strongly and rapidly attenuates the residual activity evoked by the first stimulus. The spatio-temporal 

characteristics of the suppression show similar spatial constant and similar propagation speed as what 

was observed for the evoked activity, independent of the speed of the apparent motion stimulus. 

However, the suppression propagated as a true wave in direction of the initial stimulus position, even at 

the trial-averaged level, an observation that departs from what we observed in the evoked activity 

(Muller et al. 2014) ​. We propose that the suppression arises from a simple gain-control mechanisms 

pooling feedforward and horizontal inputs ​(Reynaud, Masson, and Chavane 2012) ​. To demonstrate this, 

we used a conductance based mean-field model developed to account for VSD dynamics ​(Zerlaut et al. 

2018) ​. This model shows that the observed suppression can be explained by nonlinear conductance 
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interactions, combined with the different gain of excitatory and inhibitory cells. A decoding approach 

demonstrates that the suppressive wave acts as explaining away the ambiguous representation allowing 

to represent only one stimulus at a time in the cortex. Using opponent motion analysis applied to the 

population response, we demonstrate that such unambiguous representation allows V1 to encode 

accurately the velocity signal of the lrAM that could support the read-out process from downstream 

areas. 

 

Suppression and normalization as generic operations in the visual system 

The dynamics of the suppression is seen here as a central and key mechanism by which the input is 

shaped and normalized by V1 populations. When more than one stimulus is present in a visual scene, 

suppressive interactions between the feedforward-driven activities is what is traditionally reported, such 

as the well documented surround suppression ​(Blakemore and Tobin 1972; Angelucci et al. 2002; 

Cavanaugh, Bair, and Movshon 2002) ​. This suppression is generally attributed to be an emergent 

property of the divisive normalization computation ​(Carandini and Heeger 2011) ​. Importantly, we have 

shown that this normalization process is dynamic and propagate from the representation of the stimulus 

surround towards the representation of the center ​(Reynaud, Masson, and Chavane 2012) ​. Adding a 

new lateral input (mostly excitatory at long-distance) therefore results in a decrease from the linear 

prediction, a paradoxical inhibitory effect ​(Tsodyks et al. 1997) ​ well captured by Stabilized Supralinear 

Networks ​(Ozeki et al. 2009) ​. Similar suppression was also seen in response to the line-motion stimulus 

(Jancke et al. 2004) ​, however, in that stimulus conditions, it was preceded by a transient facilitation. The 

main difference with our paradigm is that, in the line-motion condition, the second stimulus, a bar, 

provides a feedforward activation all along the trajectory of the evoked wave. In the apparent motion, 

the interactions involve only cortical interactions at positions that do not receive any feedforward input. 

This may explain the differences observed with the line-motion stimulus. We believe that dynamic 
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non-linear interactions subtended by intra-cortical network acts as a general gain control shaping the 

representation of visual stimulus in space and in time.  

 

Modeling the suppressive waves 

Possible mechanisms underlying the observed suppressive effects were investigated using a 

mean-field computational model ​(Markounikau et al. 2010) ​, that has been spatially extended. We 

found that the model can reproduce the observed suppression, provided two mechanisms are 

present: excitatory and inhibitory cells have a different gain, with a higher gain for inhibition, and 

excitatory and inhibitory synaptic inputs must combine through conductance-based interactions. 

Although these two mechanisms are well known, they are usually neglected in mean-field models 

because they represent a mathematical difficulty. The classic mean-field models with linear 

(current-based) interactions and uniform gain in all cells, fail to reproduce the suppressive effect of 

propagating waves, and thus the present model can be considered as a step towards biologically 

more realistic mean-field models. Hence, by constructing a realistic mean-field model, we could 

demonstrate that this suppression wave is an expected byproduct of the known anatomy and does 

not need to be expressed solely by pure inhibition. This computational approach demonstrates how 

excitatory and inhibitory propagation of activity along horizontal network can dynamically change the 

cortical gain control resulting in the emergence of the observed suppression dynamics. 

 

Backward suppression to ​​keep track of object identity along the apparent motion path 

This suppression can help to represent unambiguously one object at a time on the cortical surface, as 

our decoding model suggests. This means that the lateral interactions can link the transient 

spatio-temporal events while keeping track of the object moving along the trajectory.  This could be a 

first mechanism involved in solving the correspondence problem ​(Ullman 1978) ​. This problem, first 
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introduced by Ternus as a problem of phenomenal identity ​(Ullman 1978; Ternus 1926) ​, put to light the 

fact we need to keep track of the identity of an object in movement, and, in the case of multiple objects 

present at each time frame, a problem of correspondence may occur. The  literature clearly show that 

the correspondence is solved through spatio-temporal coherence more than shape or color consistency 

(Kahneman, Treisman, and Gibbs 1992) ​. The correspondence, called “reviewing” by Kahneman et al. 

(1992) was proposed by these authors to “ ​operate(...) backward, (...) select(...) only a single item, and 

(...) is guided mainly by the features that control the unity and continuity of an object over time, but not 

by the shape, color, or content of the target.”​  We believe that the mechanisms of backward suppression 

demonstrated here is an elementary and preliminary form of this reviewing process, explaining away 

ambiguities in the representation of the object trajectory, that will evidently necessitate further 

processing downstream the visual system. For instance, what we documented here could explain the 

ability of our visual system to detect objects based solely on the coherence of their spatio-temporal 

trajectory.  In their seminal work, Watamaniuk and collaborators (1995) indeed showed that a single dot 

following a temporally coherent trajectory can be detected against a background of dots following a 

random walk, the only difference between signal and noise dots movement being their spatio-temporal 

coherence ​(Watamaniuk, McKee, and Grzywacz 1995) ​. Computational studies suggested that this ability 

to detect coherent trajectories necessitates propagation of information in retinotopic reference frames 

(Perrinet and Masson 2012) ​, in full accordance with our results. 

 

Local vs Global motion processing 

The processing that we describe here clearly departs from classical motion integration documented in 

short-range apparent motion using random-dot kinetogram ​(Mikami, Newsome, and Wurtz 1986b, [a] 

1986) ​ In these stimuli, motion occurs and is evenly distributed within a stationary aperture typically 

covering a receptive field, and motion is extracted locally through motion energy detectors ​(Majaj, 
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Carandini, and Movshon 2007; Pack et al. 2006) ​. Simple L-NL hierarchical models account very well for 

the selective properties of neurons in V1 and MT in response to such kind of drifting or RDK stimuli ​(Rust 

et al. 2006; Carandini et al. 2005) ​. However, there should be intrinsic differences in the processes 

involved in integrating local drifting motion vs global trajectory motion of a single object.  Indeed, 

Hedges and collaborators (2011) have showed that MT receptive fields are only sensitive to local motion 

presented within stationary aperture, totally independent of the direction of long-range trajectory 

simulation in which these local motion stimuli are embedded ​(Hedges et al. 2011) ​. We have very limited 

understanding of the processing actually required to extract motion information along a trajectory. The 

experiments of Watamaniuk and colleagues show that this processing cannot be simply integrated from 

large receptive field of downstream areas ​(Watamaniuk, McKee, and Grzywacz 1995) ​. Here we suggest 

that the visual system can simply encodes the trajectory at mesoscopic level within retinotopic map.  

 

Encoding the motion trajectory in the retinotopic map for optimal read-out  

The suppressive wave we documented decreases the residual activity evoked by the first stimulus, 

hereby shaping the dynamic response within the retinotopic map of V1 that could be read out as motion 

information by a downstream area. V4 or MT neurons have receptive fields whose retinotopic size 

encompasses the cortical region we imaged in this study. As shown by our read-out analysis (Fig. 8), 

those neurons will be able to simply detect this population-encoded direction selective motion 

information through motion energy detectors ​(Adelson and Bergen 1985) ​. This signifies that V1 

intra-cortical interactions would preformat the population representation of long-range apparent 

motion for an optimal read-out by downstream areas ​(Adelson and Bergen 1985; Mumford 1991, 1992) ​. 

One intriguing consequence is that encoding of motion signal at the level of the population could be 

operated without specific extraction of motion signal at the level of local V1 neuronal receptive fields. 

Indeed, neurons with non-optimal direction preference or no direction selectivity could still participate 
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into this population response by small variations of their response that would occur at the right moment 

depending on their position in the retinotopic space. In other words, V1 would have the possibility to 

encode multiple motion signals in parallel at local and global level. These results are in accordance with 

human fMRI experiments that showed that V1 is actively involved in the network that processes and 

represents the perceived illusory lrAM ​(Muckli et al. 2005) ​.  

 

lrAM along ventral and dorsal streams, feedback vs horizontal propagation  

In the visual cortex of the ferret, it was shown using VSDI, that lrAM induces feedback propagation of 

differential activity from area 21 down to area 17 ​(Roland et al. 2006) ​. Similarly, using stimuli that could 

span a much large visual scale (16.5° spatial separation) and systematically larger cortical separations, it 

was suggested that human MT complex feedbacks on early visual cortices to process long-range 

apparent motion ​(Wibral et al. 2009; Vetter, Grosbras, and Muckli 2015) ​. Areas on the ventral stream 

(LOC) seems to be also implicated in processing such stimuli ​(Zhuo et al. 2003) ​. Ventral stream areas 

may actually be well suited since they will process the information about object through strong feedback 

interactions with V1 ​(Poort et al. 2012) ​ and are as well strongly involved in motion processing ​(Roe et al. 

2012; Ferrera, Rudolph, and Maunsell 1994) ​. The experiment from ​(Hedges et al. 2011) ​ indeed 

suggested that MT may not be the most appropriate area, at least in non-human primates, for extracting 

motion along a lrAM trajectory. It is important to consider though that, in all these studies, there are 

important difference in the spatial and a temporal scales of the lrAM has been presented that may 

affect the relative weight of intra-cortical and feedback mechanisms processing this information 

between and within the different visual areas (see Discussion in ​Reynaud, Masson, and Chavane 2012​).  

 

 

Conclusion 
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As recently proposed by ​Muller et al. (2018) ​, traveling waves within and between cortical areas can 

provide an advantageous framework for dynamic computations that will influence neuronal processing. 

However, in this review, it was also noted that clear functional roles of these waves have yet to be 

discovered. Here we show that two discrete stimuli generating the long-range apparent motion illusion, 

will induce multiple wave interactions resulting in propagation of suppression in a direction opposite to 

that of the AM stimulation. This suppression shapes the stimulus response and allows a decoder to keep 

track of the stimulus position along the motion trajectory. We believe that our work has revealed a first 

elementary step in how the brain links visual stimuli in space and time. Further work is needed to 

understand which areas, if any, is reading-out the population representation of motion trajectory on V1 

retinotopic map and the relative role of intra- and inter-cortical interactions.  

 

Acknowledgments  

The authors are thankful to Guillaume Masson, Andrew Meso, Eero Simoncelli, Dirk Jancke, Yves 

Frégnac, Cyril Monier, Lyle Muller and Tony Movshon for fruitful discussions during different phases of 

this work. They are also grateful to Marc Martin, Frédéric Barthélemy, Ivan Balansard and Luc Renaud 

for their assistance regarding experiments. 

The authors acknowledge funding from the European Community (FET grants FACETS FP6-015879 and 

BrainScaleS FP7-269921), from la Fondation de l’œil (IA) and from the French National Research Agency 

(ANR Trajectory, ANR-15-CE37-0011-01, and ANR Horizontal V1, ANR-17-CE37-0006-02). 

 

Author Contributions 

F.C. designed the research and supervised the project. S.C. and A.R. performed the experiments and S.C. 

analyzed the data. M.D. and Y.Z. designed and implemented the computational model in interaction 

with S.C. and F.C., while supervised by A.D.. F.C. and L.P. designed the decoding model and S.C. 

 
31.  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/372763doi: bioRxiv preprint first posted online Jul. 20, 2018; 

https://paperpile.com/c/JbHSZi/RBP4v
http://dx.doi.org/10.1101/372763


 

implemented it. S.C. prepared the figures and F.C. wrote the main manuscript text. All authors reviewed 

the manuscript.  

 

Declaration of  Interests 

The authors declare no competing interests. 

 

References 

Adelson, E. H., and J. R. Bergen. 1985. “Spatiotemporal Energy Models for the Perception of Motion.” 
Journal of the Optical Society of America. A, Optics and Image Science​ 2 (2): 284–99. 

Albright, T. D., and R. Desimone. 1987. “Local Precision of Visuotopic Organization in the Middle 
Temporal Area (MT) of the Macaque.” ​Experimental Brain Research. Experimentelle Hirnforschung. 
Experimentation Cerebrale​ 65 (3): 582–92. 

Angelucci, Alessandra, Jonathan B. Levitt, Emma J. S. Walton, Jean-Michel Hupe, Jean Bullier, and 
Jennifer S. Lund. 2002. “Circuits for Local and Global Signal Integration in Primary Visual Cortex.” 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 22 (19): 8633–46. 

Blakemore, C., and E. A. Tobin. 1972. “Lateral Inhibition between Orientation Detectors in the Cat’s 
Visual Cortex.” ​Experimental Brain Research. Experimentelle Hirnforschung. Experimentation 
Cerebrale​ 15 (4): 439–40. 

Braddick, O. J. 1980. “Low-Level and High-Level Processes in Apparent Motion.” ​Philosophical 
Transactions of the Royal Society of London. Series B, Biological Sciences​ 290 (1038): 137–51. 

Bringuier, V., F. Chavane, L. Glaeser, and Y. Frégnac. 1999. “Horizontal Propagation of Visual Activity in 
the Synaptic Integration Field of Area 17 Neurons.” ​Science​ 283 (5402): 695–99. 

Bullier, J. 2001. “Integrated Model of Visual Processing.” ​Brain Research. Brain Research Reviews​ 36 
(2-3): 96–107. 

Burr, David, and Peter Thompson. 2011. “Motion Psychophysics: 1985–2010.” ​Vision Research​ 51 (13): 
1431–56. 

Buzás, P., U. T. Eysel, P. Adorján, and Z. F. Kisvárday. 2001. “Axonal Topography of Cortical Basket Cells in 
Relation to Orientation, Direction, and Ocular Dominance Maps.” ​The Journal of Comparative 
Neurology​ 437 (3): 259–85. 

Carandini, Matteo, Jonathan B. Demb, Valerio Mante, David J. Tolhurst, Yang Dan, Bruno A. Olshausen, 
Jack L. Gallant, and Nicole C. Rust. 2005. “Do We Know What the Early Visual System Does?” ​The 
Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 25 (46): 10577–97. 

Carandini, Matteo, and David J. Heeger. 2011. “Normalization as a Canonical Neural Computation.” 
Nature Reviews. Neuroscience ​ 13 (1): 51–62. 

Cavanagh, P., and G. Mather. 1989. “Motion: The Long and Short of It.” ​Spatial Vision​ 4 (2-3): 103–29. 
Cavanaugh, James R., Wyeth Bair, and J. Anthony Movshon. 2002. “Selectivity and Spatial Distribution of 

Signals from the Receptive Field Surround in Macaque V1 Neurons.” ​Journal of Neurophysiology​ 88 
(5): 2547–56. 

Chemla, S., and F. Chavane. 2010a. “Voltage-Sensitive Dye Imaging: Technique Review and Models.” 

 
32.  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/372763doi: bioRxiv preprint first posted online Jul. 20, 2018; 

http://paperpile.com/b/JbHSZi/ZVzwn
http://paperpile.com/b/JbHSZi/ZVzwn
http://paperpile.com/b/JbHSZi/ZVzwn
http://paperpile.com/b/JbHSZi/fomT
http://paperpile.com/b/JbHSZi/fomT
http://paperpile.com/b/JbHSZi/fomT
http://paperpile.com/b/JbHSZi/fomT
http://paperpile.com/b/JbHSZi/fomT
http://paperpile.com/b/JbHSZi/Jw1K4
http://paperpile.com/b/JbHSZi/Jw1K4
http://paperpile.com/b/JbHSZi/Jw1K4
http://paperpile.com/b/JbHSZi/Jw1K4
http://paperpile.com/b/JbHSZi/CrUiq
http://paperpile.com/b/JbHSZi/CrUiq
http://paperpile.com/b/JbHSZi/CrUiq
http://paperpile.com/b/JbHSZi/CrUiq
http://paperpile.com/b/JbHSZi/CrUiq
http://paperpile.com/b/JbHSZi/brEW1
http://paperpile.com/b/JbHSZi/brEW1
http://paperpile.com/b/JbHSZi/brEW1
http://paperpile.com/b/JbHSZi/brEW1
http://paperpile.com/b/JbHSZi/Oby35
http://paperpile.com/b/JbHSZi/Oby35
http://paperpile.com/b/JbHSZi/Oby35
http://paperpile.com/b/JbHSZi/Oby35
http://paperpile.com/b/JbHSZi/XoiXL
http://paperpile.com/b/JbHSZi/XoiXL
http://paperpile.com/b/JbHSZi/XoiXL
http://paperpile.com/b/JbHSZi/XoiXL
http://paperpile.com/b/JbHSZi/7eELO
http://paperpile.com/b/JbHSZi/7eELO
http://paperpile.com/b/JbHSZi/7eELO
http://paperpile.com/b/JbHSZi/7eELO
http://paperpile.com/b/JbHSZi/8yVzy
http://paperpile.com/b/JbHSZi/8yVzy
http://paperpile.com/b/JbHSZi/8yVzy
http://paperpile.com/b/JbHSZi/8yVzy
http://paperpile.com/b/JbHSZi/8yVzy
http://paperpile.com/b/JbHSZi/Ad1kT
http://paperpile.com/b/JbHSZi/Ad1kT
http://paperpile.com/b/JbHSZi/Ad1kT
http://paperpile.com/b/JbHSZi/Ad1kT
http://paperpile.com/b/JbHSZi/Ad1kT
http://paperpile.com/b/JbHSZi/DPtt5
http://paperpile.com/b/JbHSZi/DPtt5
http://paperpile.com/b/JbHSZi/DPtt5
http://paperpile.com/b/JbHSZi/WK25P
http://paperpile.com/b/JbHSZi/WK25P
http://paperpile.com/b/JbHSZi/WK25P
http://paperpile.com/b/JbHSZi/eomHg
http://paperpile.com/b/JbHSZi/eomHg
http://paperpile.com/b/JbHSZi/eomHg
http://paperpile.com/b/JbHSZi/eomHg
http://paperpile.com/b/JbHSZi/eomHg
http://paperpile.com/b/JbHSZi/RXiE1
http://dx.doi.org/10.1101/372763


 

Journal of Physiology, Paris​ 104 (1-2): 40–50. 
———. 2010b. “A Biophysical Cortical Column Model to Study the Multi-Component Origin of the VSDI 

Signal.” ​NeuroImage​ 53 (2): 420–38. 
Chen, Yuzhi, Chris R. Palmer, and Eyal Seidemann. 2012. “The Relationship between Voltage-Sensitive 

Dye Imaging Signals and Spiking Activity of Neural Populations in Primate V1.” ​Journal of 
Neurophysiology​ 107 (12): 3281–95. 

Daley, D. J., and David Vere-Jones. 2007. ​An Introduction to the Theory of Point Processes: Volume II: 
General Theory and Structure​. Springer Science & Business Media. 

Deco, Gustavo, and Per Roland. 2010. “The Role of Multi-Area Interactions for the Computation of 
Apparent Motion.” ​NeuroImage​ 51 (3): 1018–26. 

Dow, B. M., A. Z. Snyder, R. G. Vautin, and R. Bauer. 1981. “Magnification Factor and Receptive Field Size 
in Foveal Striate Cortex of the Monkey.” ​Experimental Brain Research. Experimentelle 
Hirnforschung. Experimentation Cerebrale​ 44 (2): 213–28. 

Ferrera, V. P., K. K. Rudolph, and J. H. Maunsell. 1994. “Responses of Neurons in the Parietal and 
Temporal Visual Pathways during a Motion Task.” ​The Journal of Neuroscience: The Official Journal 
of the Society for Neuroscience​ 14 (10): 6171–86. 

Gattass, R., A. P. Sousa, and C. G. Gross. 1988. “Visuotopic Organization and Extent of V3 and V4 of the 
Macaque.” ​The Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 8 (6): 
1831–45. 

Gerard-Mercier, Florian, Pedro V. Carelli, Marc Pananceau, Xoana G. Troncoso, and Yves Frégnac. 2016. 
“Synaptic Correlates of Low-Level Perception in V1.” ​The Journal of Neuroscience: The Official 
Journal of the Society for Neuroscience​ 36 (14): 3925–42. 

Grinvald, A., E. E. Lieke, R. D. Frostig, and R. Hildesheim. 1994. “Cortical Point-Spread Function and 
Long-Range Lateral Interactions Revealed by Real-Time Optical Imaging of Macaque Monkey 
Primary Visual Cortex.” ​The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience ​ 14 (5 Pt 1): 2545–68. 

Grinvald, Amiram, and Rina Hildesheim. 2004. “VSDI: A New Era in Functional Imaging of Cortical 
Dynamics.” ​Nature Reviews. Neuroscience​ 5 (11): 874–85. 

Hedges, James H., Yevgeniya Gartshteyn, Adam Kohn, Nicole C. Rust, Michael N. Shadlen, William T. 
Newsome, and J. Anthony Movshon. 2011. “Dissociation of Neuronal and Psychophysical Responses 
to Local and Global Motion.” ​Current Biology: CB​ 21 (23): 2023–28. 

Jancke, Dirk, Frédéric Chavane, Shmuel Naaman, and Amiram Grinvald. 2004. “Imaging Cortical 
Correlates of Illusion in Early Visual Cortex.” ​Nature​ 428 (6981): 423–26. 

Kahneman, D., A. Treisman, and B. J. Gibbs. 1992. “The Reviewing of Object Files: Object-Specific 
Integration of Information.” ​Cognitive Psychology​ 24 (2): 175–219. 

Kolers, Paul A. 1972. “THEORIES OF APPARENT MOTION.” In ​Aspects of Motion Perception​, 172–86. 
Landau, Itamar D., Robert Egger, Vincent J. Dercksen, Marcel Oberlaender, and Haim Sompolinsky. 2016. 

“The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.” 
Neuron ​ 92 (5): 1106–21. 

Lee, T. S., D. Mumford, R. Romero, and V. A. Lamme. 1998. “The Role of the Primary Visual Cortex in 
Higher Level Vision.” ​Vision Research​ 38 (15-16): 2429–54. 

Majaj, Najib J., Matteo Carandini, and J. Anthony Movshon. 2007. “Motion Integration by Neurons in 
Macaque MT Is Local, Not Global.” ​The Journal of Neuroscience: The Official Journal of the Society 
for Neuroscience ​ 27 (2): 366–70. 

Markounikau, Valentin, Christian Igel, Amiram Grinvald, and Dirk Jancke. 2010. “A Dynamic Neural Field 
Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging.” ​PLoS 
Computational Biology​ 6 (9). https://doi.org/ ​10.1371/journal.pcbi.1000919​. 

Markov, N. T., P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran, M. A. Gariel, et al. 2011. “Weight 

 
33.  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/372763doi: bioRxiv preprint first posted online Jul. 20, 2018; 

http://paperpile.com/b/JbHSZi/RXiE1
http://paperpile.com/b/JbHSZi/RXiE1
http://paperpile.com/b/JbHSZi/kY2OW
http://paperpile.com/b/JbHSZi/kY2OW
http://paperpile.com/b/JbHSZi/kY2OW
http://paperpile.com/b/JbHSZi/kY2OW
http://paperpile.com/b/JbHSZi/qrOi
http://paperpile.com/b/JbHSZi/qrOi
http://paperpile.com/b/JbHSZi/qrOi
http://paperpile.com/b/JbHSZi/qrOi
http://paperpile.com/b/JbHSZi/qrOi
http://paperpile.com/b/JbHSZi/6hvk4
http://paperpile.com/b/JbHSZi/6hvk4
http://paperpile.com/b/JbHSZi/6hvk4
http://paperpile.com/b/JbHSZi/6hvk4
http://paperpile.com/b/JbHSZi/KcJtl
http://paperpile.com/b/JbHSZi/KcJtl
http://paperpile.com/b/JbHSZi/KcJtl
http://paperpile.com/b/JbHSZi/KcJtl
http://paperpile.com/b/JbHSZi/WU9v
http://paperpile.com/b/JbHSZi/WU9v
http://paperpile.com/b/JbHSZi/WU9v
http://paperpile.com/b/JbHSZi/WU9v
http://paperpile.com/b/JbHSZi/WU9v
http://paperpile.com/b/JbHSZi/RQxta
http://paperpile.com/b/JbHSZi/RQxta
http://paperpile.com/b/JbHSZi/RQxta
http://paperpile.com/b/JbHSZi/RQxta
http://paperpile.com/b/JbHSZi/RQxta
http://paperpile.com/b/JbHSZi/hj3w
http://paperpile.com/b/JbHSZi/hj3w
http://paperpile.com/b/JbHSZi/hj3w
http://paperpile.com/b/JbHSZi/hj3w
http://paperpile.com/b/JbHSZi/hj3w
http://paperpile.com/b/JbHSZi/k9RE0
http://paperpile.com/b/JbHSZi/k9RE0
http://paperpile.com/b/JbHSZi/k9RE0
http://paperpile.com/b/JbHSZi/k9RE0
http://paperpile.com/b/JbHSZi/k9RE0
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/cfZ5f
http://paperpile.com/b/JbHSZi/Ojl7t
http://paperpile.com/b/JbHSZi/Ojl7t
http://paperpile.com/b/JbHSZi/Ojl7t
http://paperpile.com/b/JbHSZi/Ojl7t
http://paperpile.com/b/JbHSZi/ueP9c
http://paperpile.com/b/JbHSZi/ueP9c
http://paperpile.com/b/JbHSZi/ueP9c
http://paperpile.com/b/JbHSZi/ueP9c
http://paperpile.com/b/JbHSZi/ueP9c
http://paperpile.com/b/JbHSZi/u63mS
http://paperpile.com/b/JbHSZi/u63mS
http://paperpile.com/b/JbHSZi/u63mS
http://paperpile.com/b/JbHSZi/u63mS
http://paperpile.com/b/JbHSZi/DYEA8
http://paperpile.com/b/JbHSZi/DYEA8
http://paperpile.com/b/JbHSZi/DYEA8
http://paperpile.com/b/JbHSZi/DYEA8
http://paperpile.com/b/JbHSZi/k27gF
http://paperpile.com/b/JbHSZi/k27gF
http://paperpile.com/b/JbHSZi/k27gF
http://paperpile.com/b/JbHSZi/JqoQ0
http://paperpile.com/b/JbHSZi/JqoQ0
http://paperpile.com/b/JbHSZi/JqoQ0
http://paperpile.com/b/JbHSZi/JqoQ0
http://paperpile.com/b/JbHSZi/rf0rr
http://paperpile.com/b/JbHSZi/rf0rr
http://paperpile.com/b/JbHSZi/rf0rr
http://paperpile.com/b/JbHSZi/rf0rr
http://paperpile.com/b/JbHSZi/XQoHh
http://paperpile.com/b/JbHSZi/XQoHh
http://paperpile.com/b/JbHSZi/XQoHh
http://paperpile.com/b/JbHSZi/XQoHh
http://paperpile.com/b/JbHSZi/XQoHh
http://paperpile.com/b/JbHSZi/Tv4j
http://paperpile.com/b/JbHSZi/Tv4j
http://paperpile.com/b/JbHSZi/Tv4j
http://paperpile.com/b/JbHSZi/Tv4j
http://paperpile.com/b/JbHSZi/Tv4j
http://dx.doi.org/10.1371/journal.pcbi.1000919
http://paperpile.com/b/JbHSZi/Tv4j
http://paperpile.com/b/JbHSZi/XpJfX
http://dx.doi.org/10.1101/372763


 

Consistency Specifies Regularities of Macaque Cortical Networks.” ​Cerebral Cortex ​ 21 (6): 1254–72. 
Mikami, A., W. T. Newsome, and R. H. Wurtz. 1986a. “Motion Selectivity in Macaque Visual Cortex. II. 

Spatiotemporal Range of Directional Interactions in MT and V1.” ​Journal of Neurophysiology​ 55 (6): 
1328–39. 

———. 1986b. “Motion Selectivity in Macaque Visual Cortex. I. Mechanisms of Direction and Speed 
Selectivity in Extrastriate Area MT.” ​Journal of Neurophysiology​ 55 (6): 1308–27. 

Muckli, Lars, Axel Kohler, Nikolaus Kriegeskorte, and Wolf Singer. 2005. “Primary Visual Cortex Activity 
along the Apparent-Motion Trace Reflects Illusory Perception.” ​PLoS Biology​ 3 (8): e265. 

Muckli, Lars, Nikolaus Kriegeskorte, Heinrich Lanfermann, Friedhelm E. Zanella, Wolf Singer, and Rainer 
Goebel. 2002. “Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of 
Perceptual Switches and States.” ​The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience ​ 22 (9): RC219. 

Muller, Lyle, Frédéric Chavane, John Reynolds, and Terrence J. Sejnowski. 2018. “Cortical Travelling 
Waves: Mechanisms and Computational Principles.” ​Nature Reviews. Neuroscience​ 19 (5): 255–68. 

Muller, Lyle, Alexandre Reynaud, Frédéric Chavane, and Alain Destexhe. 2014. “The Stimulus-Evoked 
Population Response in Visual Cortex of Awake Monkey Is a Propagating Wave.” ​Nature 
Communications​ 5 (April): 3675. 

Mumford, D. 1991. “On the Computational Architecture of the Neocortex. I. The Role of the 
Thalamo-Cortical Loop.” ​Biological Cybernetics​ 65 (2): 135–45. 

———. 1992. “On the Computational Architecture of the Neocortex. II. The Role of Cortico-Cortical 
Loops.” ​Biological Cybernetics​ 66 (3): 241–51. 

Ozeki, Hirofumi, Ian M. Finn, Evan S. Schaffer, Kenneth D. Miller, and David Ferster. 2009. “Inhibitory 
Stabilization of the Cortical Network Underlies Visual Surround Suppression.” ​Neuron​ 62 (4): 
578–92. 

Pack, Christopher C., Bevil R. Conway, Richard T. Born, and Margaret S. Livingstone. 2006. 
“Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex.” ​The Journal of 
Neuroscience: The Official Journal of the Society for Neuroscience​ 26 (3): 893–907. 

Perrinet, Laurent U., and Guillaume S. Masson. 2012. “Motion-Based Prediction Is Sufficient to Solve the 
Aperture Problem.” ​Neural Computation​ 24 (10): 2726–50. 

Poort, Jasper, Florian Raudies, Aurel Wannig, Victor A. F. Lamme, Heiko Neumann, and Pieter R. 
Roelfsema. 2012. “The Role of Attention in Figure-Ground Segregation in Areas V1 and V4 of the 
Visual Cortex.” ​Neuron​ 75 (1): 143–56. 

Reynaud, Alexandre, Guillaume S. Masson, and Frédéric Chavane. 2012. “Dynamics of Local Input 
Normalization Result from Balanced Short- and Long-Range Intracortical Interactions in Area V1.” 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 32 (36): 12558–69. 

Roe, Anna W., Leonardo Chelazzi, Charles E. Connor, Bevil R. Conway, Ichiro Fujita, Jack L. Gallant, 
Haidong Lu, and Wim Vanduffel. 2012. “Toward a Unified Theory of Visual Area V4.” ​Neuron​ 74 (1): 
12–29. 

Roland, Per E., Akitoshi Hanazawa, Calle Undeman, David Eriksson, Tamas Tompa, Hiroyuki Nakamura, 
Sonata Valentiniene, and Bashir Ahmed. 2006. “Cortical Feedback Depolarization Waves: A 
Mechanism of Top-down Influence on Early Visual Areas.” ​Proceedings of the National Academy of 
Sciences of the United States of America​ 103 (33): 12586–91. 

Rust, Nicole C., Valerio Mante, Eero P. Simoncelli, and J. Anthony Movshon. 2006. “How MT Cells 
Analyze the Motion of Visual Patterns.” ​Nature Neuroscience​ 9 (11): 1421–31. 

Salin, P. A., and J. Bullier. 1995. “Corticocortical Connections in the Visual System: Structure and 
Function.” ​Physiological Reviews​ 75 (1): 107–54. 

Sato, Tatsuo K., Ian Nauhaus, and Matteo Carandini. 2012. “Traveling Waves in Visual Cortex.” ​Neuron 
75 (2): 218–29. 

 
34.  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/372763doi: bioRxiv preprint first posted online Jul. 20, 2018; 

http://paperpile.com/b/JbHSZi/XpJfX
http://paperpile.com/b/JbHSZi/XpJfX
http://paperpile.com/b/JbHSZi/XpJfX
http://paperpile.com/b/JbHSZi/qCiRm
http://paperpile.com/b/JbHSZi/qCiRm
http://paperpile.com/b/JbHSZi/qCiRm
http://paperpile.com/b/JbHSZi/qCiRm
http://paperpile.com/b/JbHSZi/qCiRm
http://paperpile.com/b/JbHSZi/4vCAI
http://paperpile.com/b/JbHSZi/4vCAI
http://paperpile.com/b/JbHSZi/4vCAI
http://paperpile.com/b/JbHSZi/4vCAI
http://paperpile.com/b/JbHSZi/8wmic
http://paperpile.com/b/JbHSZi/8wmic
http://paperpile.com/b/JbHSZi/8wmic
http://paperpile.com/b/JbHSZi/8wmic
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/qHVdT
http://paperpile.com/b/JbHSZi/RBP4v
http://paperpile.com/b/JbHSZi/RBP4v
http://paperpile.com/b/JbHSZi/RBP4v
http://paperpile.com/b/JbHSZi/RBP4v
http://paperpile.com/b/JbHSZi/x3v95
http://paperpile.com/b/JbHSZi/x3v95
http://paperpile.com/b/JbHSZi/x3v95
http://paperpile.com/b/JbHSZi/x3v95
http://paperpile.com/b/JbHSZi/x3v95
http://paperpile.com/b/JbHSZi/7I61J
http://paperpile.com/b/JbHSZi/7I61J
http://paperpile.com/b/JbHSZi/7I61J
http://paperpile.com/b/JbHSZi/7I61J
http://paperpile.com/b/JbHSZi/qWv9Z
http://paperpile.com/b/JbHSZi/qWv9Z
http://paperpile.com/b/JbHSZi/qWv9Z
http://paperpile.com/b/JbHSZi/qWv9Z
http://paperpile.com/b/JbHSZi/CJHIz
http://paperpile.com/b/JbHSZi/CJHIz
http://paperpile.com/b/JbHSZi/CJHIz
http://paperpile.com/b/JbHSZi/CJHIz
http://paperpile.com/b/JbHSZi/CJHIz
http://paperpile.com/b/JbHSZi/iBIB7
http://paperpile.com/b/JbHSZi/iBIB7
http://paperpile.com/b/JbHSZi/iBIB7
http://paperpile.com/b/JbHSZi/iBIB7
http://paperpile.com/b/JbHSZi/iBIB7
http://paperpile.com/b/JbHSZi/ON0H7
http://paperpile.com/b/JbHSZi/ON0H7
http://paperpile.com/b/JbHSZi/ON0H7
http://paperpile.com/b/JbHSZi/ON0H7
http://paperpile.com/b/JbHSZi/vTsiO
http://paperpile.com/b/JbHSZi/vTsiO
http://paperpile.com/b/JbHSZi/vTsiO
http://paperpile.com/b/JbHSZi/vTsiO
http://paperpile.com/b/JbHSZi/vTsiO
http://paperpile.com/b/JbHSZi/8OkcW
http://paperpile.com/b/JbHSZi/8OkcW
http://paperpile.com/b/JbHSZi/8OkcW
http://paperpile.com/b/JbHSZi/8OkcW
http://paperpile.com/b/JbHSZi/SpDu5
http://paperpile.com/b/JbHSZi/SpDu5
http://paperpile.com/b/JbHSZi/SpDu5
http://paperpile.com/b/JbHSZi/SpDu5
http://paperpile.com/b/JbHSZi/SpDu5
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/UAtsT
http://paperpile.com/b/JbHSZi/FSYtV
http://paperpile.com/b/JbHSZi/FSYtV
http://paperpile.com/b/JbHSZi/FSYtV
http://paperpile.com/b/JbHSZi/FSYtV
http://paperpile.com/b/JbHSZi/IhfO6
http://paperpile.com/b/JbHSZi/IhfO6
http://paperpile.com/b/JbHSZi/IhfO6
http://paperpile.com/b/JbHSZi/IhfO6
http://paperpile.com/b/JbHSZi/k5gqx
http://paperpile.com/b/JbHSZi/k5gqx
http://paperpile.com/b/JbHSZi/k5gqx
http://paperpile.com/b/JbHSZi/k5gqx
http://dx.doi.org/10.1101/372763


 

Slovin, Hamutal, Amos Arieli, Rina Hildesheim, and Amiram Grinvald. 2002. “Long-Term 
Voltage-Sensitive Dye Imaging Reveals Cortical Dynamics in Behaving Monkeys.” ​Journal of 
Neurophysiology​ 88 (6): 3421–38. 

Stetter, Martin. 2002. “The Early Visual System of Macaque Monkeys.” In ​Exploration of Cortical 
Function​, 23–45. Springer, Dordrecht. 

Ternus, Josef. 1926. “Experimentelle Untersuchungen über Phänomenale Identität.” ​Psychologische 
Forschung​ 7 (1): 81–136. 

Tsodyks, M. V., W. E. Skaggs, T. J. Sejnowski, and B. L. McNaughton. 1997. “Paradoxical Effects of 
External Modulation of Inhibitory Interneurons.” ​The Journal of Neuroscience: The Official Journal 
of the Society for Neuroscience​ 17 (11): 4382–88. 

Ullman, S. 1978. “Two Dimensionality of the Correspondence Process in Apparent Motion.” ​Perception​ 7 
(6): 683–93. 

Van Essen, D. C., W. T. Newsome, and J. H. Maunsell. 1984. “The Visual Field Representation in Striate 
Cortex of the Macaque Monkey: Asymmetries, Anisotropies, and Individual Variability.” ​Vision 
Research ​ 24 (5): 429–48. 

Vetter, Petra, Marie-Helene Grosbras, and Lars Muckli. 2015. “TMS over V5 Disrupts Motion Prediction.” 
Cerebral Cortex ​ 25 (4): 1052–59. 

Vogels, Tim P., Kanaka Rajan, and L. F. Abbott. 2005. “NEURAL NETWORK DYNAMICS.” ​Annual Review of 
Neuroscience ​ 28 (1): 357–76. 

Watamaniuk, S. N., S. P. McKee, and N. M. Grzywacz. 1995. “Detecting a Trajectory Embedded in 
Random-Direction Motion Noise.” ​Vision Research​ 35 (1): 65–77. 

Wertheimer, Max. 1912. “Experimentelle Studium Uber Das Sehen von Bewegung.” ​Zeitschrift Fur 
Psychologie​ 61 (3): 161–265. 

Wibral, Michael, Christoph Bledowski, Axel Kohler, Wolf Singer, and Lars Muckli. 2009. “The Timing of 
Feedback to Early Visual Cortex in the Perception of Long-Range Apparent Motion.” ​Cerebral Cortex  
19 (7): 1567–82. 

Zerlaut, Yann, Sandrine Chemla, Frederic Chavane, and Alain Destexhe. 2018. “Modeling Mesoscopic 
Cortical Dynamics Using a Mean-Field Model of Conductance-Based Networks of Adaptive 
Exponential Integrate-and-Fire Neurons.” ​Journal of Computational Neuroscience​ 44 (1): 45–61. 

Zhuo, Yan, Tian Gang Zhou, Heng Yi Rao, Jiong Jiong Wang, Ming Meng, Ming Chen, Cheng Zhou, and Lin 
Chen. 2003. “Contributions of the Visual Ventral Pathway to Long-Range Apparent Motion.” ​Science 
299 (5605): 417–20. 

 

Materials and Methods 

The experiments were conducted on two male rhesus macaque monkeys (macaca mulatta, aged 14 and 

11 years old respectively for monkey WA and monkey BR) over a period of three years. The 

experimental protocols had been previously approved by the local Ethical Committee for Animal 

Research (approval A10/01/13, official national registration 71-French Ministry of Research) and all 

 
35.  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/372763doi: bioRxiv preprint first posted online Jul. 20, 2018; 

http://paperpile.com/b/JbHSZi/uXo60
http://paperpile.com/b/JbHSZi/uXo60
http://paperpile.com/b/JbHSZi/uXo60
http://paperpile.com/b/JbHSZi/uXo60
http://paperpile.com/b/JbHSZi/uXo60
http://paperpile.com/b/JbHSZi/zRth4
http://paperpile.com/b/JbHSZi/zRth4
http://paperpile.com/b/JbHSZi/zRth4
http://paperpile.com/b/JbHSZi/zRth4
http://paperpile.com/b/JbHSZi/y9QJ4
http://paperpile.com/b/JbHSZi/y9QJ4
http://paperpile.com/b/JbHSZi/y9QJ4
http://paperpile.com/b/JbHSZi/y9QJ4
http://paperpile.com/b/JbHSZi/fqky5
http://paperpile.com/b/JbHSZi/fqky5
http://paperpile.com/b/JbHSZi/fqky5
http://paperpile.com/b/JbHSZi/fqky5
http://paperpile.com/b/JbHSZi/fqky5
http://paperpile.com/b/JbHSZi/GrBVa
http://paperpile.com/b/JbHSZi/GrBVa
http://paperpile.com/b/JbHSZi/GrBVa
http://paperpile.com/b/JbHSZi/GrBVa
http://paperpile.com/b/JbHSZi/xUGl
http://paperpile.com/b/JbHSZi/xUGl
http://paperpile.com/b/JbHSZi/xUGl
http://paperpile.com/b/JbHSZi/xUGl
http://paperpile.com/b/JbHSZi/xUGl
http://paperpile.com/b/JbHSZi/nEswQ
http://paperpile.com/b/JbHSZi/nEswQ
http://paperpile.com/b/JbHSZi/nEswQ
http://paperpile.com/b/JbHSZi/LEEme
http://paperpile.com/b/JbHSZi/LEEme
http://paperpile.com/b/JbHSZi/LEEme
http://paperpile.com/b/JbHSZi/LEEme
http://paperpile.com/b/JbHSZi/tEQ28
http://paperpile.com/b/JbHSZi/tEQ28
http://paperpile.com/b/JbHSZi/tEQ28
http://paperpile.com/b/JbHSZi/tEQ28
http://paperpile.com/b/JbHSZi/iF7F
http://paperpile.com/b/JbHSZi/iF7F
http://paperpile.com/b/JbHSZi/iF7F
http://paperpile.com/b/JbHSZi/iF7F
http://paperpile.com/b/JbHSZi/j4U0I
http://paperpile.com/b/JbHSZi/j4U0I
http://paperpile.com/b/JbHSZi/j4U0I
http://paperpile.com/b/JbHSZi/j4U0I
http://paperpile.com/b/JbHSZi/j4U0I
http://paperpile.com/b/JbHSZi/9dG0n
http://paperpile.com/b/JbHSZi/9dG0n
http://paperpile.com/b/JbHSZi/9dG0n
http://paperpile.com/b/JbHSZi/9dG0n
http://paperpile.com/b/JbHSZi/9dG0n
http://paperpile.com/b/JbHSZi/KQs59
http://paperpile.com/b/JbHSZi/KQs59
http://paperpile.com/b/JbHSZi/KQs59
http://paperpile.com/b/JbHSZi/KQs59
http://paperpile.com/b/JbHSZi/KQs59
http://dx.doi.org/10.1101/372763


 

procedures complied with the French and European regulations for Animal Research as well as the 

Guidelines from the Society for Neuroscience. 

 

Surgical preparation and VSDI protocol. ​​ ​The monkeys were chronically implanted with a head-holder 

and a recording chamber located above the V1 and V2 cortical areas of the right hemisphere. After full 

recovery, the monkeys were trained to perform foveal fixation of a small red target presented over 

different static and moving backgrounds for up to 2-3s, with their head fixed. Once a good fixation 

behavior was achieved, a third surgery was performed. The dura was removed surgically over the 

recording aperture (18mm diameter) and a silicon-made artificial dura was inserted under aseptic 

conditions to allow for a good optical access to the cortex over the whole period of weekly recordings. 

Before each recording session conducted in awake animal, the cortical surface was stained with the 

Voltage Sensitive Dye (VSD) RH-1691 (Optical Imaging ©) with the following procedure: The optical 

chamber was open, artificial dura-mater was removed and cortical surface was cleaned under strict 

sterile conditions. The dye solution was prepared in artificial cerebrospinal fluid (aCSF) at a 

concentration of 0.2 mg/ml, and filtered through a 0.2µm filter. The recording chamber was filled with 

this solution and closed for three hours, corresponding to the time lapse needed for a correct cortical 

staining. The chamber was then rinsed thoroughly with filtered aCSF to remove any supernatant dye. 

Before imaging, the artificial dura was placed back in position and the chamber was closed with 

transparent agar and cover glass. Experimental control, data collection and eye position monitoring 

were performed by the ReX software (NEI-NIH) running under the QNX operating system (Hays et al., 

1982). During each trial, the cortex was illuminated at 630 nm using epi-illumination and we recorded 

optical signals high-pass filtered at 665 nm during 999ms with a Dalstar camera (512x512 pixels 

resolution, frame rate of 110 Hz) driven by the Imager 3001 system (Optical Imaging ©). The beginning 

of both online behavioral control and image acquisition were heartbeat-triggered. The surgical 
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preparation and VSD imaging protocol have been described elsewhere ​(Reynaud, Masson, and Chavane 

2012; Muller et al. 2014) ​. 

 

Behavioral task and visual stimulation. ​​ Monkeys were trained for a simple fixation task. For each 

experimental trial, the monkeys were required to fixate a central red dot within a precision window of 

1°x1°. When correct fixation was achieved, the next heartbeat, detected with a pulse oximeter (Nonin 

8600V), triggered the beginning of the acquisition window. A visual stimulus appeared 100 ms after this 

trigger after which a blank screen was presented, ending the trial. Each trial ran for 700 ms. If the 

monkey had maintained fixation up to the end of the acquisition period, a reward (fruit compote drop) 

was given. Otherwise, the trial was canceled, an alert sound was delivered and the procedure was 

re-initiated. The visual stimuli were computed on-line using VSG2/5 libraries and were displayed on a 

22" CRT monitor at a resolution of 1024x768 pixels. Refresh rate was set to 100Hz. Viewing distance was 

of 57cm. Luminance values were linearized by mean of a look-up table. We used Gaussian blobs with 

standard deviation (controlling the spatial width) of 0.5°. They were presented at different positions, 

located at 0.5° or 2° on the left of the vertical meridian respectively for monkey WA and monkey BR, and 

between 1.5° and 4.5° below the horizontal meridian. We used different stimulus durations, 10 ms(1 

frame), 50ms or 100ms and different interstimulus intervals (ISI) for the two-stroke apparent motion 

stimulations (from 20 to 100 ms). All stimuli (single blobs of different durations, lrAM sequences and 

two blank conditions i.e. where no visual stimulus) were randomly interleaved with an inter-trial interval 

of 8 seconds for dye bleaching prevention. 

 

Data analysis. ​​ ​Stacks of images were stored on hard-drives for offline analysis. The analysis was carried 

on with Matlab R2014a  (The MathWorks Inc. ©) using the Optimization, Statistics and Signal Processing 

Toolboxes. VSD evoked responses to each stimulus were computed in three successive basic steps. First, 
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the recorded value at each pixel was divided by the average value before stimulus onset (“frame 0 

division”) to remove slow stimulus-independent fluctuations in illumination and background 

fluorescence levels. Second, this value was subsequently subtracted by the value obtained for the blank 

condition (“blank subtraction”) to eliminate most of the noise due to heartbeat and respiration . Third a 

linear detrending of the time series was applied to remove residual slow drifts induced by dye bleaching.  

 

Spatio-temporal representation (ST data). ​​For each ​ ​​time frame, activity was averaged across the 

x-dimension within the apparent-motion trajectory (e.g. ​dotted rectangle​ ​at frame 216 ms ​ in Fig. 1, C-G) 

to provide a unique spatial cortical dimension as a function of time.  

 

Latency estimation. ​​ Response latency was defined as the point in time at which the signal derivative 

crossed a threshold set a 2.57 times (99% confidence) the SD of its baseline computed during a 

100-ms-long window right before stimulus onset. 

 

Speed estimation. ​​Within the ST representation, the speed of activity propagation was estimated by 

computing  the slope of the linear regression between each latency estimate as a function of the cortical 

distance in the ST representation 

 

Data Fitting. ​​For extracting the space and time constants of the VSD responses, we fitted the ST data in 

space (for each time frame) to a Gaussian function of the form:  

F (x)  e = k −
2σ2

(x−μ)2
 

  

where ,  and  respectively denote the width (as the standard deviation),  the amplitude and theσ k μ  

spatial position of the Gaussian. We use the slope of the linear regression of for quantifying the(t)μ  

displacement of the response peak (see Fig. 4E). 
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In time (for each spatial point), the data was fitted to the combination of two halve Gaussian functions: 

  F (t) F (t) F (t) =  11 +  12   

 and (t) k e  . (t ≤t )F 11 =  1 
− (t−t )c

2τon2
2

c (t) k e  . (t )F 12 =  2 
− (t−t )c

2τof f
2

2

> tc  

where  and  denote the time-constants of each half Gaussian, while , and areτ on τ of f k1 k2 tc  

respectively their peak to peak amplitudes and the time of their common center.  

 

Statistical Procedure. ​​ We used a two-sample t-test procedure to test whether or not the distributions of 

the VSD response properties (i.e. space-constant, time-constants, latencies and cortical speed) were 

independent of stimulus duration or lrAM speed. p<0.01 is considered significant. 

 

Mean-field computational model.  ​​We consider a spatially extended ring model where every node of 

the ring represents the network activity of a large population of excitatory regular spiking (RS) and 

inhibitory fast spiking (FS) cells (see  Fig. 5A). We consider Adaptive Exponential integrate and fire 

(AdExp) neurons evolving according to the following differential equations : 

) ecm dt
dv = g (EL L − v + Δ ( )Δ

v−vth − w + Isyn  

   (v )  (t )dt
dw =  − w

τw
+ a − EL + b ∑

 

k
δ − tk  

where pF is the membrane  capacity, v is the voltage of the neuron and, whenever00cm = 1  

mV at times , v is reset to its resting value mV. The leak term has a− 0v > vth = 5 tk − 0vrest = 5  

conductance nS and a reversal potential mV. The exponential term has a different0gL = 1 − 5EL = 6  

strength for RS and FS cells, i.e. mV ( mV) for excitatory (inhibitory) cells. InhibitoryΔ = 2 .5Δ = 0  

neurons do not have adaptation (a=b=0) while excitatory neurons have an adaptive dynamics with 

nS,  b=40 nS and ms . The synaptic current can be expressed as:a = 4 00τw = 5  

(E )S (E )SIsyn = QE E − v E + QI I − v I  
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where  is the postsynaptic  current due to all presynaptic excitatory/(t )eSE/I = ∑
 

pre
θ − tpre,E/I

τE,I

t−tpre,E/I

 

Inhibitory neurons spiking at time  and θ is the Heaviside function. The reversal potentials aretpre,e/I  

mV and mV, the synaptic decays are equal for excitatory and inhibitory cells, EE = 0 − 0EI = 8 τE,I = 5

ms. The quantal conductances are nS and nS. We then consider a random network withQE = 1 QI = 5  

p=5% of connectivity and 80% of excitatory neurons.  

The activity of the network is simulated using a mean field model, shown capable of quantitatively 

predicting the stationary activity of the network and its response to an external stimuli ​(Zerlaut et al. 

2018) ​. All together, the dynamical equations for the spatially extended ring model read : 

− (x, ) F (r (x, ) yG (x )r (y, ), )T ∂t
∂r (x,t)E = rE t +  E drive + raf f t + ∫

 

R
d E − y E t − vc

x−y| | rI  

− (x, ) F (r (x, ) yG (x )r (y, ), )T ∂t
∂r (x,t)I = rI t +  I drive + raf f t + ∫

 

R
d I − y E t − vc

x−y| | rI  

where  is the population rate of excitatory/Inhibitory cells at the space-time position (x,t),(x, )rE/I t  

is the excitatory afferent input targeting both excitatory and inhibitory populations and   is(x, )raf f t GE/I  

the spatial connectivity in between subpopulations that we chose as Gaussian of width mmlexc = 5  

(excitation) and mm (inhibition). Moreover,  mm/s is the axonal conduction speed,.5linh = 2 00vc = 3  

an external time/space constant external drive and T=5ms is the decay time of population rate.rdrive  

The functions  are the transfer functions of excitatory/inhibitory neurons and are calculatedF E,I  

according to a semi-analytical tool as in ​(Zerlaut et al. 2018) ​ through an expansion in function of the 

three statistics of neurons voltage, i.e. its average , its standard deviation  and its autocorrelationμV σV  

time :τV  

Erfc( )F = 1
τV  σV

v −μef f
thr V  
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where ​Erfc ​ is the error function and the effective threshold is expressed as a first order expansionvef fthr  

with some fitting coefficients in function of  ( ). More details on this procedure can be found, ,μV σV τV  

in Zerlaut et al. ​(Zerlaut et al. 2018) ​. The values  ( ) are calculated from shot-noise theory, ,μV σV τV  

(Daley and Vere-Jones 2007) ​. Introducing the following quantities: 

K τ QμGE = rE E E E  

 σGE = QE√ 2
r K τE E E  

K τ QμGI = rI I I I  

 σGI = QI√ 2
r K τI I I  

μG = μGE + μGI + gL  

τm = cm
μG

 

(E )U s = μG
Qs

s − μV  

where is the amount synapses related to pre-synaptic excitatory/inhibitory neurons (we consider aKe/I  

network of N=10000 neurons inside each node of the ring), we obtain the following equations for the 

voltage moments: 

μV = μG

 μ E +μ E +g E Ge e Gi I L L  

 σV = √ r∑
 

s
Ks s

(U τ )s s
2

2(τ +τ )m s
 

τV =
r (U τ )∑

 

s
Ks s s s

2

r (U τ ) /(τ +τ )∑
 

s
Ks s s s

2
m s

 

The afferent input has the following form:  

(x, ) · e ·(H(t )e (t )e )raf f t = A 1
2√σinp

−( )
x−x0
σ√2  
inp

2

− t0  

−( )
t−t0

τ√2  
1

2

+ H 0 − t  

−( )
t−t0

τ√2  
2

2
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where A is the input amplitude, ( ) the stimulus location. And H the heaviside function. The spatial,x0 t0  

extension of the stimuli is mm, the time rise ms and the decay time  ms..5σinp = 3 5τ 1 = 1 0τ 2 = 9  

The time delay in between stimulus 1 and stimulus 2 is ms (if not stated differently) and the00Δt = 1  

spatial distance mm. The VSDI signal is calculated as follows :Δx = 7  

V
δV = μ0

V

μ −μV
0
V  

where is the average voltage pre-stimuli.μ0
V   

 

CUBA model : 

The current based model is obtained by considering the following synaptic coupling : 

S SIsyn = QE
CU

e + QI
CU

I  

where  and  are the coupling with excitatory and inhibitory neurons . The.03pAQE
CU = 0 − .15pAQI

CU = 0  

rest of the parameters are the same. The voltage of the neurons is calculated accordingly, i.e. 

μV = GL

 r K τ Q +r K τ Q +E e e e e
CU

e e e I
CU

L  

Also in this case we use the same methodology to estimate the neurons transfer function as done for 

the COBA model. 

 

Different FS gain : 

In order to modify the gain of FS cells we manually change the transfer function In practice,(r , ).F I E rI  

for any we calculate the value  for which TF changes convexity. This gives us the slope rI r*
E   

and the maximal value  that we estimate calculating F for very high rates(r , ) σr = drE

dF (r ,r ) 
E I *

E rI Fmax  

(typically ).   We then use the following function :00HzrE = 2  

(r , ) FF I E rI = 2 max • 1

1+e−( )σr
r −rE *

E
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where we recall that and  change in function of . This permits us to have a sigmoidal form of ther*
E νr rI  

transfer function . In order to change its slope we use a factor that scales the slope which becomesF γ  

then . In Fig. 4 we use equal to 1.2 or 0.8.σγ r γ  

 

Decoding Model.​​ ​The algorithm for the decoding model used in Figures 6 and 7 is detailed here. First, 

the ST data (i.e. space-time matrix) were whitened (i.e. spatially decorrelated and scaled) by applying a 

ZCA transformation. The whitening matrix was computed from the eigen-decomposition of the 

covariance matrix of the blank data. Next, the four spatial profiles (blank, stimulus 1, stimulus 2 and joint 

stimulus 1 and 2) were computed by averaging the corresponding ST response in a 50 ms-window 

around the time of maximum response and then normalized. The decoding of any ST data (e.g. the 

observed activity evoked by a 6.6 °/s two stroke apparent motion stimulus “ ​obs”​ or its linearly predicted 

pattern “ ​pred”​) thus consisted in evaluating the likelihood that the spatial profile observed at one point 

in time of the data was best correlated with one of the four spatial profiles with ).(x, )A t Sj ∈{1 }j : 4  

This comes down to calculating the four probability of the form:(t)P j   

(t)   P j = e
−  ( − )1

2σj
∑
 

x

A (x,t) 
||A(x,t)||

S (x)j
||S (x)||j

2 

 

  where is the averaged standard deviation of the residual activity between and σj (x, )A t (x).Sj  

Then, we defined the explaining away index as the probability of detecting joint S1&S2 in the observed 

minus the probability of detecting joint S1&S2 in the linear prediction as or P  P 4
obs obs

s1&s2  or PP 4
pred pred

s1&s2  

follows: 

   IE.A. = P obss1&s2 − P preds1&s2  

 

Opponent motion energy model.​​ ​To extract motion information from the population responses, we 

used the opponent motion energy model developed by ​(Adelson and Bergen 1985) ​. Briefly, this model 
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consists of combining quadrature pairs of spatial and temporal filters to obtain oriented spatio-temporal 

filters (i.e. Gabors) tuned in spatial frequency. The ranges of spatial and temporal frequencies were 

chosen so that the speed (i.e. FT/FS) of the resulting ST filters varies from 2 to 70 °/s and the scale (i.e. 

1/FS) from 0.2 to 6 mm. It resulted in 64 (FS,FT) couples representing 8 different speeds and scales. For 

each couple, we obtained two filters tuned for upward motion and two filters tuned for downward 

motion. The outputs of quadrature pairs of such filters are then squared and summed to give a 

phase-independent measure of local motion energy for both directions (i.e MEu and MEd values). Lastly, 

the opponent motion stage computes the difference between the oriented opposite energies (i.e. OME 

values). Note that before applying the OME model, the ST data were first normalized and passed 

through a non-linearity to account for the VSD to spike rate transformation as proposed by ​(Chen, 

Palmer, and Seidemann 2012) ​:  

R​SU​ = ​k​( ​R​VSDI​) ​
N 

where ​R ​SU​ and ​R​VSDI  ​are respectively the average firing rate and the average normalized VSDI response, ​k 

is a constant and ​N​ is an exponent. Here we took ​k ​= 10 and ​N​ = 3.8.  

Finally, for each ST position on the map, we could extract the velocity of the filter that generated the 

strongest OME and provide a ST velocity map representation (Fig. 8C-D) with velocity and amplitude as 

color hue and color intensity respectively. We then averaged the optimal velocity within a ST region of 

interest, spatially between S1 and S2’s center positions and in time from 10 to 200 ms after stimulus 2 

onset, to report a single value of filter speed for each AM speed condition (Fig. 8D-E). The 

direction-selectivity index is given by: 

 I  D =  max (V )OME

V − min(V )OME OME  

where  is to the amplitude of the OME.V OME  
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