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Analyzing changes in the shape and scale of single cell response fields is a key component of many
neurophysiological studies. Typical analyses of shape change involve correlating firing rates between
experimental conditions or “cross-correlating” single cell tuning curves by shifting them with respect to
one another and correlating the overlapping data. Such shifting results in a loss of data, making inter-
pretation of the resulting correlation coefficients problematic. The problem is particularly acute for two
dimensional response fields, which require shifting along two axes. Here, an alternative method for quan-
eference frames
ector correlation
radients
eceptive field
ovement field

eparability

tifying response field shape and scale based on correlation of vector field representations is introduced.
The merits and limitations of the methods are illustrated using both simulated and experimental data.
It is shown that vector correlation provides more information on response field changes than scalar
correlation without requiring field shifting and concomitant data loss. An extension of this vector field
approach is also demonstrated which can be used to identify the manner in which experimental variables

neur
are encoded in studies of

. Introduction

Since Sherrington first described variations in afferent
esponses resulting from tactile stimulation to different parts
f the body surface (Sherrington, 1906) neurons have been charac-
erized by their response fields, constructs which relate the firing
requency of action potentials (and more recently frequency bands
f the power spectra of local field potential signals) to sensory,
otor or cognitive variables. In the sensory domains (visual,

uditory, etc.) these response fields are typically referred to as
receptive fields’ and in the motor realm as motor or ‘movement
elds’. Similarly, hippocampal and entorhinal ‘place fields’ can be
onsidered cognitive response fields or cognitive maps as they
epresent a memory trace of an animal’s experienced position in
ts environment (McNaughton et al., 2006; O’Keefe and Nadel,
978). Importantly, these response fields are not fixed entities
ut can change in shape and/or scale as a function of time and/or
ask conditions (Kusunoki and Goldberg, 2003; Taylor et al., 2002),
eneral brain state (Worgotter et al., 1998), experience (Mehta
t al., 2000), or attention (Womelsdorf et al., 2008).

Various methods have been used to quantify experimentally

nduced changes in response field shape. On the sensory side,
hese methods often assume either implicitly or explicitly that the
esponse field is an approximate Gaussian or sigmoid function of
he experimental variable being investigated. For example, in the

∗ Tel.: +1 480 727 0841.
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165-0270/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.02.008
al reference frames.
© 2011 Elsevier B.V. All rights reserved.

study by Womelsdorf et al. (2008), changes in visual receptive fields
were quantified by the extent to which the center of the field shifted
when attention was diverted toward a location outside the field
(see also Britten and Heuer, 1999; Raiguel et al., 1995). Responses
were fit by two-dimensional Gaussians which were parameterized
by their centers, orientations (main elliptical axis), and standard
deviations along their two axes. These investigators also quanti-
fied response fields nonparametrically via spine interpolation of
response surfaces, using the center of mass of the area above one-
half of the maximum response and the square root of this area as
measures of response field center and size respectively.

Arm movement fields are typically characterized by changes
in mean firing rate as a function of movement related parame-
ters such as direction and/or amplitude (Fu et al., 1993; Messier
and Kalaska, 2000). In the motor cortex for example, many arm
movement related neurons can be described as ‘cosine-tuned’ to
the direction of hand movement, and can be further character-
ized by their preferred directions, a vector quantity that roughly
corresponds to the ‘peak’ of this cosine function (Georgopoulos
et al., 1982). Significant changes in these fields due to experimen-
tal manipulation can be determined by quantifying the degree of
rotation of these preferred directions. At the population level, rota-
tions of the ‘population vector’ (the vector sum of the contribution
of each individual neuron along its preferred direction) can also

be quantified as can changes in the length of this vector, which is
thought to represent changes in movement velocity (Georgopoulos
et al., 1986; Schwartz and Moran, 1999).

In studies designed to examine the reference frames underly-
ing spatial representations in the brain, correlation methods are

dx.doi.org/10.1016/j.jneumeth.2011.02.008
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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Fig. 1. Cross-correlation of one-dimensional response fields. (A) Illustration of
an experiment involving visual receptive field mapping at two gaze positions.
(B) Response fields corresponding to the two gaze positions in (A), plotted in
10 C.A. Buneo / Journal of Neurosc

ften used to quantify changes in response field shape (Batista
t al., 1999; Buneo et al., 2002; Chang and Snyder, 2010; Mullette-
illman et al., 2005). In some cases direct scalar correlation of the

esponse fields has been used. For example, Batista et al. (1999)
ecorded the responses of parietal neurons in an arm reaching
ask where goal locations were the same in eye-centered coor-
inates but different in limb-centered coordinates and correlated
hese data with those obtained when locations were the same in
imb coordinates but different in eye coordinates. No shifting of the
esponse fields was performed; instead these investigators simply
ompared the correlation coefficients obtained for the two compar-
sons. Using this approach, statements can be made about which of
he two coordinate frames being examined best explains the data
ut it is difficult to arrive at more definitive conclusions. That is,
his approach does not allow direct investigation of the “inter-

ediate”, “mixed,” or “hybrid” reference frames that have been
eported in some studies (Buneo et al., 2002; Chang and Snyder,
010; Mullette-Gillman et al., 2005).

Another scalar correlation method involves shifting the
esponse fields or tuning curves (in the case of one dimensional
ata) in increments of the sampled workspace and correlating
he data at each step (Cohen and Andersen, 2000). This ‘cross-
orrelation’ approach results in a vector of coefficients, with the
aximum of that vector taken as the location in space where the

ata are best aligned. Fig. 1 illustrates the procedure in the context
f an experiment where visual receptive fields are mapped along
he horizontal dimension at two different gaze positions. Fig. 1B
epicts these receptive fields as one-dimensional Gaussian tun-

ng curves with peak responses centered on each fixation position
i.e. they are retinotopic). Fig. 1C show the cross-correlation func-
ion that is obtained by incrementally shifting (in both directions)
he ‘gaze right’ tuning curve with respect to the ‘gaze left’ tuning
urve. The cross-correlation function demonstrates a sharp peak at
shift of −8, as expected given the shapes and locations of the peak

esponses in each tuning curve. In principle this shifting method is
uperior to the direct correlation approach mentioned above, as it
llows for examination of intermediate reference frames, but the
ethod suffers from the fact that the shifting procedure necessar-

ly results in data vectors which are progressively non-overlapping
i.e. data loss). This is illustrated in Fig. 1D, where the number of
ata points used to derive the cross-correlation function in 1C is
lotted as a function of shift. The gradually decreasing number of
orrelated data points for shifts away from zero shift is associated
ith a decreasing likelihood of obtaining a statistically significant

orrelation (Zar, 1996), which can substantially affect the conclu-
ions drawn from such an analysis. In addition, such correlation
ethods assume implicitly that response fields are symmetric and

emain so during shifting. However, response fields are not always
ell approximated as symmetric Gaussians and such “skewness”
as implications for how these data and subsequent analyses are

nterpreted (Mehta et al., 2000). As a result, if cross-correlation is to
e used to quantify response field similarity then skewness should
lso be explicitly quantified. Alternatively, skewness or other asym-
etries in response field shape can be taken into account implicitly

sing other nonparametric methods (see below).
The data loss resulting from cross-correlation can be ame-

iorated somewhat by sampling a sufficiently large number of
ocations during an experiment. However, in awake, behaving
nimal preparations the time associated with maintaining stable
ecordings is often the limiting factor determining the number of
ocations and trials that can be sampled. For studies involving mul-

iple locations sampled in two-dimensions this problem is even

ore acute. Thus, methods are required which allow quantifica-
ion of the degree of relatedness of neural response fields while
lso obviating sampling unnecessarily large numbers of locations
nd/or cross-correlating response fields.
world/screen coordinates (arbitrary units). (C) Correlation coefficient (R) plotted
as a function of response field shift. (D) Number of points correlated as a function of
shift.

Here a nonparameteric method for quantifying changes in the
scale and shape of neural response fields is described, one that nat-
urally accounts for irregularities/asymmetries in the fields such as
skewness. This method involves converting a matrix of scalar fir-
ing rates into gradients, then correlating these vector fields using
methods originally derived for the quantification of geographic data
(Hanson et al., 1992). The calculations produce a correlation coef-
ficient that is analogous to scalar correlation but also provide a
measure of the rotational or reflectional relationship between two
vector fields and a measure of their scaling relationship. It is shown

that vector correlation provides information about the degree of
relatedness between two-dimensional response fields that cannot
be obtained via simple scalar correlation, and that this information
can be obtained without response field shifting. The basic method
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s demonstrated using idealized and real response fields in the con-
ext of reference frame experiments though the method can be used
o quantify 2D field changes in virtually any context. In addition, an
xtension of the method is discussed in the context of the sep-
rable/inseparable fields that are encountered in the analysis of
patio-temporal and movement related responses.

. Methods

.1. Vector field correlation

.1.1. Neural responses
Both idealized and real neural responses were used to illustrate

he vector field analyses. The real neural responses were obtained
rom the posterior parietal cortex (PPC) of the monkey during arm

ovement studies investigating the frames of reference for visu-
lly presented targets presented in a vertical plane (Buneo et al.,
008). As a result, idealized responses were generated with similar
xperiments in mind. Neural responses were generally simulated
s Gaussian functions of target position along two spatial dimen-
ions (i.e. 2D Gaussians). For more complex fields, combinations
f sigmoid functions and Gaussian functions were used. For the
imple 2D Gaussian fields, neural responses were described by the
ollowing equation:

(X, Y) = Ae−(X2/2�2
X

+Y2/2�2
Y

) (1)

here X and Y represent position along two arbitrary orthogonal
xes. To generate sets of idealized data similar to the real neural
eference frame experiments the following procedure was used. A
calar neural response field was first generated for one set of ‘exper-
mental’ conditions (e.g. eyes fixated straight ahead, arm to the left
f the fixation point). A set of ‘shifted’ responses was then pro-
uced for the second set of conditions, i.e. a response field with the
ame tuning structure but with a peak response that was associated
ith a different location. Once the shifted responses were gener-

ted the corresponding gradients were numerically determined for
oth scalar fields (Matlab, The Mathworks). After generating the
radients the correlation between the vector fields was calculated
s described below.

.1.2. Correlation analysis
Numerous measures of vector correlation have been defined

n the literature, both parametric and non-parametric (reviewed
y Hanson et al., 1992). With few exceptions (Shadmehr and
ussa-Ivaldi, 1994), these methods have been used to analyze

ector-valued data outside the realm of neuroscience, such as wind
peeds and ocean currents. Here the vector correlation method of
anson et al. (1992) was used, which was originally developed for

he analysis of geographic data. This method produces a correlation
oefficient that is analogous to the scalar Pearson product–moment
orrelation and which describes the degree of relatedness between
wo sets of two-dimensional vectors. In addition, the method quan-
ifies the degree of rotational or reflectional dependence and the
caling relationship between the vector fields. Vector fields illus-
rate rotational dependence when the pairwise difference of the
ngular components of the vectors is constant. One can then iden-
ify the angle of rotation (clockwise or counterclockwise) that best
ligns the sets of vectors with respect to one another. Fig. 2A and
show vector fields exhibiting perfect rotational dependence. The
eld in B can be reproduced by rotating each of the vectors in A

ounterclockwise by exactly 45◦. In contrast, reflectional depen-
ence is implied when the pairwise sum of the angular components

s constant. Here it is possible to identify the reflectional axis that
est aligns the vector fields. The vector fields in Fig. 2A and C
emonstrate perfect reflectional dependence: the field in C can be
Fig. 2. Illustration of vector field rotation and reflection. (A) Gradient plotted as a
two-dimensional vector field (left) and in polar form (right). (B) Vector field obtained
by rotating the vectors in A counter clockwise by 45◦ . (C) Vector field obtained by
reflecting the vectors in A about the 45/225◦ axis.

reproduced exactly by reflecting each of the vectors in A about the
45◦/225◦ axis.

Derivations of the following equations are given in Hanson et al.
(1992) and will not be repeated here. If x and y refer to the com-
ponents of one set of vectors and u and v the components of the
second set, the vector correlation (�) can be computed as follows:

� = s

√
�2

xu + �2
yv + �2

xv + �2
yu + 2s�

(�2
x + �2

y )(�2
u + �2

v )
(2)

where

� = �xu�yv − �xv�yu, (3)

s = �∣∣�∣∣ (4)
and �x, �y, �v, and �u represent the variances of x, y, u and v
and �xu, �yv, �xv, and �yu represent the four component covari-
ances. The vector correlation p is analogous to the scalar (Pearson’s
product–moment) correlation coefficient in the sense that it is
formed as a ratio of the covariances to the product of the vari-
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nces. The quantity � is a rotation/reflection index; if � is positive
t implies that the relationship between the two sets of vectors is
etter explained by rotational dependence and if � is negative then
eflection is a better fit. Lastly, s is simply a sign variable that is used
o help automate the calculations.

Two additional quantities can also be computed, a scale factor

= s�

√
�2

u + �2
v

�2
x + �2

y

(5)

nd a phase angle

= atan

(
�xv − s�yu

�xu − s�yv

)
. (6)

is formed from the ratio of the variances of the two sets of vec-
ors and thus describes their scaling relationship (under rotation or
eflection). The phase angle � represents the angle of reflection or
otation required to best align the two sets of vectors.

The correlation coefficient � ranges from −1 to 1, with 1
epresenting a perfect rotational relationship, −1 representing a
erfect reflectional relationship and 0 representing no relationship
Hanson et al., 1992). Thus, correlating a field with itself would be
xpected to give a � of 1, a phase angle (�) of 0◦ and a scale fac-
or (ˇ) of 1. It is important to note that � quantifies the degree
f relatedness of the two sets of vectors after accounting for the
otational (or reflectional) dependence. Thus, it is possible to have
arge phase angles between two vector fields while still having
orrelation coefficients that are close to 1 or −1.

.2. Field orientations

In some situations it is useful to quantify the orientation of a
esponse field and gradients can be used for this purpose (Buneo
t al., 2002). The “field orientation” is essentially the magnitude
ormalized resultant of the individual vectors in a given field, which
rovides a concise description of the variable or variables that most
trongly determine the firing rate of the cell. Field orientations have
reviously been used to quantify the manner in which reach and
accade related variables such as target, hand and eye position are
epresented in single neurons (Buneo et al., 2002; Pesaran et al.,
006, 2010). Although to date these analyses have been used exclu-
ively in the sensorimotor domain they can potentially be used in
ny circumstance where quantification of field orientations is desir-
ble, for example in the investigation of the space-time separability
f visual responses (Deangelis et al., 1995).

Idealized responses were also used to illustrate the field orien-
ation analysis. Here responses were assumed to be obtained in
xperiments involving independent manipulation of two experi-
ental variables, e.g. space and time (Deangelis et al., 1995), target

osition and hand position (Buneo et al., 2002), etc. Responses were
imulated using either Eq. (1) or the following equation, where X
nd Y were assumed to be encoded as a single variable:

(X, Y) = e
−((X−Y)2/2�2

(X−Y)
)

(7)

Field orientations were determined by (1) computing the two-
imensional gradient of the scalar response field, (2) doubling the
ngles of the individual vectors, (3) summing these vectors, and
4) normalizing the result by its magnitude. Angling doubling is
ommonly used in circular statistics when estimating mean vec-
ors, and prevents cancellation of diametrically opposed groups of

ectors (Zar, 1996). Here the angle doubling procedure prevents
ancellation of the vectors in cases where the neural response fields
re centered and symmetrically shaped. As a byproduct, the pro-
edure transforms the data in such a way that the responses of a
euron can be expressed in terms of their dependence on each of
Methods 197 (2011) 109–117

the experimental variables, as well as their sum and difference. This
has been shown to be useful for determining the relevant parame-
ters encoded by reach-related and saccade-related cortical neurons
(Buneo et al., 2002; Pesaran et al., 2006, 2010).

3. Results

3.1. Vector correlation

As indicated above, vector correlation can be used to quantify
changes in two-dimensional response fields arising from virtually
any experimental manipulation. Here the technique is illustrated in
the context of a reference frame experiment. Fig. 3 shows idealized
neural responses plotted on a 5 × 5 grid; this grid could represent
horizontal and vertical position on a vertical tangent screen, touch
screen, etc. As a result, the choice of axis labels is arbitrary and as
a result ‘X position’ and ‘Y position’ were used here and through-
out. The leftmost columns depict grayscale maps of scalar firing
rates, simulated as two-dimensional Gaussian functions of X and
Y position (Eq. (1)). The peak response (white square) shifts from
left to right in panels 3A–C. These responses could represent the
behavior of a retinotopic receptive field in an experiment where
gaze is varied from left to right along the X axis. The middle col-
umn shows vector field representations derived from the scalar
responses. These field vectors clearly converge toward the peak
response in all three panels; thus vector fields provide informa-
tion not only about the location of the peak response but also how
rapidly responses changes from location to location within a given
response field.

The right column of Fig. 3 shows polar plots of the same field
vectors; these plots are useful for visualizing the rotational and
reflectional relations between vector fields. Vector correlation of
the fields in A and C gave a correlation coefficient (�) of −0.24. This
negative correlation indicates that reflection (rather than uniform
rotation) best described the relationship between these two sets of
vectors. Indeed, close inspection of the compass plots suggests the
field vectors in C have the same spatial distribution as those in A,
reflected about the Y (±90◦) axis. This was partially supported by
the vector correlation analysis which returned a phase coefficient
(�) of 90◦. However, the low correlation coefficient indicates that
even after accounting for this reflection the two vector fields were
not well correlated. This is due to the fact that in the vector corre-
lation procedure, the 2D structure of each field is preserved. As a
result, examination of the compass plots alone (which ignore this
structure), can lead to erroneous interpretation of the degree of cor-
relation between fields. To appreciate the latter one has to compare
the 2D fields at each position. Doing so reveals that even after each
of the vectors in C is reflected, the magnitudes of the two vectors
differ at nearly every position, which results in the relatively low
degree of correlation.

Vector correlation and scalar correlations can result in markedly
different impressions of the degree of relatedness of two response
fields. This can again be appreciated from the data in Fig. 3. When
the scalar fields in Fig. 3A and C were each compared with the one in
3B using the Pearson product–moment correlation coefficient, the
degree of correlation was quite low in both cases (r = 0.18). Note
however that the vector fields in A and C illustrate some similarity
with the one B in the sense that at least half of the vectors have a
similar orientation; this can be best appreciated in the polar plots.
In contrast to scalar correlation, vector correlation was sensitive to
these similarities: correlation of the fields in A and C with the one if

B resulted in a negative correlation, again indicating a reflectional
relation, with a phase angle of 90◦. The magnitude of this correlation
however (0.59) indicated that after accounting for this reflection,
the two fields were better related than simple scalar correlation
would suggest.
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Fig. 3. Idealized scalar response fields and vector fields. (A) Left: Idealized response field with a peak response (white square) at the left middle region of the workspace
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top). Middle: Vector field representation of the scalar data. Gradient converges to
esponse fields and vector fields with peaks in the center and right middle portion o
oth cases) an r = 0.18. Correlating the vector fields in (A) and (C) with those in (B) g

The examples described above suggest that when response
elds undergo relatively large changes in structure, vector correla-
ion generally indicates a reflectional relation between the fields.
o investigate more generally the properties of vector correlation
nder response field shifting, 2D Gaussian fields were generated
ith peak responses located at 25 equally spaced positions in the
orkspace, and vector correlations were calculated between each

f these ‘shifted’ fields and a reference field centered at 0, 0 (i.e. the
ne shown in Fig. 3B). Plots of each of the correlation parameters
s a function of shift are depicted in Fig. 4. For this relatively simple
esponse field structure the behavior of all parameters was rela-
ively easy to interpret. That is, the correlation coefficient (�), was

oderately high and positive for relatively small shifts of the field
way from the center position (4A) and then quickly reversed sign
or larger shifts. Regarding the phase (�), small shifts resulted in
irtually no rotation. Larger shifts to the far right (and up) resulted
n moderate degrees of positive rotation while those to the right
nd down resulting in counterclockwise rotations of the field. Scale

actors (ˇ) showed the most sensitivity to shifting, being generally
igh for the smallest shifts and rapidly diminishing in magnitude

or larger shifts (4C).
The discussed trends will of course depend on the particular

hape of the response field, including its width. To illustrate the
the peak response. Right: Vector field plotted in polar format. (B and C) Idealized
orkspace. Correlating the scalar responses in (A) and (C) with those in (B) gave (in

�, �, and ˇ of −0.59, 90◦ , and 0.9, respectively.

effects of the latter the results of the field shifting analysis are
shown in a different format in Fig. 5. Here the parameters are
plotted as a function of field shift, quantified as the Euclidean dis-
tance between the peaks of the correlated response fields. Results
for three different response field widths are shown: the one illus-
trated in Fig. 3 (�2 = 2), as well as fields with half or double
that width. Wider response fields (�2 = 4) resulted in generally
higher correlations (�) and scale factors (ˇ) for smaller shifts but
otherwise all three field widths exhibited the same pattern of
decay/reversal with field shift. The phase angle was surprisingly
insensitive to variations in field width. For simplicity of presen-
tation, only the negative phase angles are shown for the rotation
parameter. Although this parameter also changed abruptly with
large field shifts, the behavior was similar for the different widths,
i.e. the plot lines representing different field widths are largely
superimposed for this parameter.

These examples suggest that vector correlation can provide
important information about the degree of relatedness of response

fields that can substantially augment scalar correlation analyses.
Not surprisingly the scalar correlation coefficient (r) degrades in a
manner similar to � as two fields are systematically shifted with
respect to one another (e.g. see Fig. 1). However, the phase and
scale parameters arising from vector correlation provide additional
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Fig. 4. Variation in vector correlation parameters with response field shifts along
the X and/or Y axes. (A) Vector correlation coefficients (�), plotted as a pseudocolor
map, with redder hues indicating stronger (positive) correlations. (B) Phase (�):
redder hues indicate positive (counterclockwise) rotations. (C) Scale (ˇ): redder hues
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Fig. 5. Variation in vector correlation parameters with response field shift. Data for
ndicate higher scale factors, indicating greater similarity in scale. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of the article.)

nformation regarding precisely how the field is changing (shape
s. scale) and the sign of the phase parameter provides information
bout the extent of these changes. This information would be par-
icularly useful for interpreting the results of experiments probing
rames of reference. That is, two response fields that are shifted
y small amounts with respect to one another appear to be asso-
iated with relatively strong correlations and low to moderately
ositive phase angles. Allowing for experimental and neural vari-
bility, these would be consistent with the idea that responses in
hese conditions reflect an encoding of information in the same
eference frame. In contrast, low correlations and negative (reflec-
ional) phase angles appear to imply large-scale changes in shape
hat are inconsistent with a common reference frame.

Clearly, more complex patterns of variation in the vector corre-
ation patterns can be observed under different circumstances. This
s illustrated in Fig. 6 which shows the results of the field shifting
nalysis for an idealized neuron with a more complex field struc-

ure than the one in Fig. 3; here the response was simulated as
sigmoidal function of X and a Gaussian function of Y. Although

ome similarities can be observed between the plots in this figure
nd those in Fig. 4, there are clearly some substantial differences
2D Gaussian response fields of various widths are shown. Field shift is defined as
the norm of the vector joining the peak of a shifted 2D Gaussian with an identical
2D Gaussian located at the center of the workspace.

as well. That is, although vector correlation parameters indicated a
relatively high degree of similarity between fields when shifts were
small, as demonstrated for the more symmetric 2D Gaussian fields,
the pattern of decay with shift was more anisotropic for both the
correlation and scale parameters. In instances where real responses
exhibit such complex structure, augmentation of vector correla-
tion with simulation procedures might be necessary to assist in
interpreting changes in response field shape.

Fig. 7 shows the vector correlation analysis applied to a real pos-

terior parietal neuron with a relatively simple field structure. These
data were recorded in an experiment where a monkey made reach-
ing movements to visual targets on a vertically oriented board of
pushbuttons. Four experimental conditions were interleaved in this
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Fig. 7. Vector correlation analysis applied to real neural responses. (A) Response
fields and vector fields under conditions where reaching movements were made
from two different starting hand positions (H) to 12 target locations (squares) on
a vertically oriented board of pushbuttons (top and bottom) while gaze (G) was
held fixed. Vector fields were well correlated with a low phase angle, suggesting the
same reference frame was used to encode spatial information in the two conditions.
ig. 6. Variation in vector correlation parameters with response field shifts along the
and/or Y axes. Figure conventions as in Fig. 4. (For interpretation of the references

o color in this figure legend, the reader is referred to the web version of the article.)

xperiment; in two conditions a monkey fixated the same location
n the board while their starting hand position was varied to the
eft or right of this fixation point (Fig. 7A) and in the other condi-
ions their starting hand position on the board was the same and
aze was varied (Fig. 7B). Mean firing rate is represented by shades
f grey on these 2D grids and is scaled to the maximum across the
our conditions. The scalar fields appear very similar for the con-
itions where the same gaze position was used (A) but appear to
hift in the conditions where gaze was varied. For this neuron the
ector correlation analysis gave a result that was very much in line
ith the analysis of idealized responses shown in Figs. 3 and 4. Cor-

elation of the fields in A gave a �, �, and ˇ of 0.91, 29.5◦, and 1.2,
espectively while correlation of the fields in B gave a �, �, and ˇ of
.23, −150.5◦, and 0.2. Thus the fields were better correlated in A,
here the same gaze position was used, than in B, where the same

nitial hand positions (and thus movement vectors) were used. This
uggests the neuron was encoding target location in a gaze fixed
eference frame.
.2. Field orientations

Quantifying the orientation of a response field can provide valu-
ble insight into the manner in which experimental variables are
ncoded. Gradients can be used to quantify this important parame-
(B) Response fields and vector fields under conditions where the same initial hand
position was used but gaze was varied. Vector fields were weakly correlated with a
high phase angle, which suggests different reference frames were used under these
conditions.

ter of response field shape (Buneo et al., 2002; Pesaran et al., 2006,
2010). Fig. 8 shows this analysis applied to two different response
fields. The left column shows a two-dimensional Gaussian field
defined by Eq. (1), but with widths differing slightly along each axis
(i.e. �2

Y > �2
X ). The right column shows the response field defined

by Eq. (7). Panel A shows the scalar response fields, panel B the cor-
responding 2D vector fields and panel C the vector fields in polar
form. As described in Section 2, the field orientations in both cases
were obtained by first doubling the angles of the individual field
vectors; this has the effect of reflecting half of the vectors in a given
field (cf. 8C and D). The vectors in D were then summed to obtain
resultants (longer grey vectors) which were then normalized by
their respective lengths. The orientation of these vectors indicates
the field orientation. For the idealized neuron in the left column,
activity changed more rapidly along the X axis due to the inequal-
ity of widths (A), thus the field vectors are more strongly biased
along this axis (B, C) and the resultant points in the X direction (D).
For the neuron in the right column, the response was a function
of the difference between X and Y. As a result the response of the
neuron is tuned along an axis that is orthogonal to the main diag-
onal (A). The corresponding field vectors (B, C) illustrate this trend
clearly. Due to the angle doubling procedure the resultant for this
neuron points downward, which is consistent with an encoding of

X–Y. If X and Y were target and initial hand position respectively,
this would indicate that the neuron encoded the difference vector
or movement vector, rather than simply the target or initial hand
position.



116 C.A. Buneo / Journal of Neuroscience

Fig. 8. Illustration of the field orientation analysis. (A) Two idealized scalar response
fields. (B) Vector field representations of the scalar data. As in Fig. 3, gradients con-
verge toward the peak response(s). (C) Vector fields plotted in polar format. Lengths
of the vectors have been normalized to the length of the longest vector. (D) Vec-
tor fields after doubling the angles of each of the vectors. Grey vector represents
t
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v
fi
d
r
T
s
e
fi
o
p

variables in a more complex manner. Pesaran et al. (2006)
he resultant of the vector field (shortened for illustrative purposes). Note that the
ngle doubling transforms the space such that orientation is expressed in terms of
ts dependence on X and Y as well as their sum and difference.

Resampling methods can be used to assess the significance of the
ector correlation analyses discussed here. This is illustrated for the
eld orientation analysis in Fig. 9. Panel A depicts the vector field
escribed by Eq. (7) as a set of black vectors. The grey vectors rep-
esent simulated bootstrap-resampled versions of the same field.
hese were obtained by creating multiple ‘noisy’ samples of the
calar field and then recalculating the corresponding gradients for

ach sample. Thus, the black vectors can be thought of as a ‘mean’
eld and the grey vectors as an indication of the field’s variance. If
ne calculates the field orientation for each of the bootstrap sam-
les one can obtain an estimate of its variance as well, illustrated
Methods 197 (2011) 109–117

in Fig. 9B as the grey unit vectors. The non-parametric permutation
or randomization tests can then be used to determine statistically
significant differences in orientation (Efron and Tibshirani, 1993;
Good, 2005).

4. Discussion

Vector fields are discussed here as a tool for quantifying changes
in receptive and movement fields that result from temporal,
attentional, experiential, and task-related phenomena. Vector cor-
relation, a method conceptually analogous to scalar correlation,
is shown to substantially augment the latter when quantifying
changes in response field shape. Moreover, this additional infor-
mation is gained without having to shift response fields with
respect to one another, which can be problematic for data analysis
and interpretation. We also illustrate a variation of this approach
in the quantification of one particular aspect of response field
shape, i.e. orientation. The relevant merits and drawbacks of these
approaches are discussed below, as well as some instances where
vector field analyses have been used to successfully analyze neural
responses.

Vector correlation possesses distinct advantages over other
methods used to quantify changes in response fields. As
discussed above, cross-correlation is often used to quantify
the degree of relatedness between two response fields. This
method necessarily results in loss of data as the fields or
tuning curves are systematically slid past each other. In addi-
tion, cross-correlation also fails to account for the fact that
many response fields are skewed, i.e. asymmetric in shape
on each side of the peak response. The vector correlation
method however does not require shifting and can provide
more information than scalar correlation about the related-
ness of two fields as it distinguishes changes in shape from
changes in scale. In addition, vector correlation is nonparamet-
ric and naturally accounts for assymetric (skewed) response
fields.

The vector correlation method will clearly work best for
response fields that can be represented as a 2D grid. As a
result the method is not well suited to data sampled on a cir-
cle, such as that generated in a center-out task. In addition,
although the method accounts for asymmetries in response field
shape, our simulations show that the results of vector corre-
lation are most easily interpretable when fields are relatively
symmetric. Therefore, for cell populations involving more com-
plex fields or where an assortment of responses exist, it would
likely be beneficial to augment the analysis with Monte Carlo
simulations.

The field orientation method illustrated here represents an
important additional application of vector fields to the analy-
sis of neural responses. This method is designed for tasks where
two experimental variables are independently varied; under these
conditions field orientations can provide important insights into
the manner in which these variables are encoded. For example,
Andersen and colleagues have used this method to character-
ize the responses of reach-related parietal and premotor neurons
to independent variations of target position and initial hand
position (Buneo et al., 2008; Pesaran et al., 2006). In the pre-
motor cortex, field orientations indicated that these variables
were encoded largely as the difference between the position
of the hand and target while parietal neurons encoded these
combined the field orientation analysis with singular value decom-
position to determine whether response fields encoded these
variables separably (implying a ‘gain field’ representation) or
inseparably. These analyses provide a level of insight which
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ig. 9. Bootstrapping of vector fields. (A) Vector field described by Eq. (7) (black vec
ectors). (B) Field orientations for the ‘mean’ field in A (black) and the bootstrapped

ould not be obtained through other approaches; thus vec-
or field and related analyses represent an important addition
o the repertoire of the neurophysiologists data analysis tech-
iques.
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