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Recognition-by-Components: A Theory of Human Image Understanding
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The perceptual recognition of obijects is conceptualized to be a process in which the image of the
input is segmented at regions of deep concavity into an arrangement of simple geometric compo-
nents, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed
theory, recognition-by-components (RBC), is that a modest set of generalized-cone components,
called geons (N < 36), can be derived from contrasts of five readily detectable properties of edges in
a two-dimensional image: curvature, collinearity, symmeiry, parallelism, and cotermination. The
detection of these propérties is generally invariant over viewin_g position and image quality and conse-
quently allows robust object perception when the image is projected from a novel viewpoint or is
degmded RBC thys provides a principicd account of the heretofore undecided relation between
the classic principles of perceptual organization and pattern recognition: The constraints toward
regularization (Pragnanz) characterize not the complete object but the object’s components. Repre-
sentational power derives from an allowance of free combinations of the geons. A Principle of Com-
ponential Recovery can account for the major phenomena of object recognition: If an arrangement
of two or three geons can be recovered from the input, objects can be quickly recognized even when
they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments
on the perception of briefly presented pictures by human observers provide empirical support for

" the theory.

Any single object can project an infinity of image configura-
tions to the retina. The orientation of the object to the viewer
can vary continuously, each giving rise to a different two-dimen-
sional projection. The object can be occluded by other ubjecs
or texture fields, as when viewed behind foliage. The object
need not be presented as a fult-colored textured image but in-
stead can be a simplified line drawing. Moreover, the cbject can
even be missing some of its parts or be a novel exernplar of its
particular category. But it is only with rare exceptions that an
image fails to be rapidly and readily classified, either as an in-
stanuce of a fumiliar object category or as an instance that cannot
be so classified (itself a form of classification).

A Do-Tt-Yourself Example

Consider the object shown in Figure 1. We readily recognize
it as one of those objects that cannot be classified into a familiar
category. Despite its overall unfamiliarity, there is near unanim-
ity in its descriptions. We parse—or segment—its parts at re-
gions of deep concavity and describe those parts with common,
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simple volumetric terms, such as “a block,” “a cylinder” “a
funnel or truncated cone.” We can look at the zig-zag horizontal
brace as a texture region or zoom in and interpret it as a series _
of vonnected blocks. The same is true of the mass at the lower
Ieft: we can see it as a texture area or zoom in and parse it into
its various bumps.

Although we know that it is not a familiar object, afier a while
we can say what it resembles: “A New York City hot dog cart,
with the large block being the central food storage and cooking
area, the rounded part underneath as a wheel, the large arc on
the right as a handie, the funnel as an orange juice squeezer and
the various vertical pipes as vents or umbrella supports.” It is
not & good cart, but we can see how it might be related to one.
It is like a 10-letter word with 4 wrong latters.

We readily conduct the same process for any object, familiar
or unfamiliar, in our foveal field of view. The manner of segmen-
tation and analysis into components does not appear to depend
on our familianty with the particular object being identified.

The naive realism that emerges in descriptions of nonsense
objects may be reflecting the workings of a representational sys-
ter by which objects are identified.

A_n Analogy Between Speech and Object Perception

As will be argued in a later section, the number of categories
into which we can classify objects rivals the number of words
that can be readily identified when listening to speech. Lexical
access during speech perception can he successfully modeled as
a process mediated by the identification of individual primitive
elements, the phonemes, from a relatively small set of primi-
tives (Marslen-Wilson, 1980). We only need about 44 phonemes
1o code all the words in English, 15 in Hawatian, 35 to represent
virtually all the words in all the languages spoken around the
world. Because the set of primitives is so small and each pho-
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Figure 1. A do-it-yourself object. (Ther_e is strong consensus in the seg-
mentation loci of this configuration and in the description of its parts.)

neme specifiable by dichotomous (or trichotomous) contrasts
(e.e.. voiced vs. unvoiced, nasal vs. oral) on a handful of attri-
butes, ofie heed not make particulatly fine discriminations in
the speech stream. The representational power of the system
derives frofii its permissiveness in allowing relatively free com-
binations of its primitives,

The hypothesis explored here is that a roughly analogous Sys-
tem may account for our capacities for object recognition. In
the visiial domain, however, the primitive eleiments wonld hot
be phonériies but a modest number of simple geometric compo-
nents--getierally convex and volumetric—such as cylinders,
Blocks, wedges, and cones. Objects are segmented, typically at
regiohs of sharp concavity, and the resultant parts matched
against the best fitting primitive. The set of primitives derives
from combinations of contrasting characteristics of the edgesin
a two-dimensional ithage (e.g., straipht vs. curved, symmetrlcal
vs. asymnietrical) that define differences athong a set of sithiple
volumes (viz., those that tend to be symmetrical and lack sharp
concavities). As in speech perception, these contrasts need only
be dichotomous or trichotomous ratlier than quantitative, so
that the hiiman’s limited capacities for absolute judgment are
not taxed. The particular properties of edges that are postulated
to be relevant to the generation of the voliimetric primitives
have the desirable properties that they are inivariant over
changes in orientation and can be determined from just a few
points on each edge. Cofiseqiiénitly, théy allow a primitive to
be extracted with great tolerance for variations of viewpoint,
occlusion, and noise.

Just as the relations among the phionemes are critical in lexi-
cal access—*“fur” and “rough” have the same phonemes but
are niot the same words—the relations among the volumes are
critical for object recognition: Two different arrangemenis of
the same components could produce different objects. In both
cases, the representational power derives from the ehormoiis
number of combinations that can arise from a modest number
of primitives. The relations in speech are limited to left-to-right

(sequential) orderings; in the visual domain a richer set of possi-
ble rclations allows a far greater représéntational capacity from
a comparable number of primitives. The matching of objects in
recognition is hypothesized to be a process in which the percep-
tual input is miatched against a representation thidt can be de-
scribed by a few simple categorized volumes in specified re-
lations to each other.

‘Iheoretical Domain: Primal Access to Contour-Based
Perceptial Categories

Qur theoretical goal is to account for the initial categoriza-
tion of isolated objects. Often, bitt not always, this categoriza-
tioh will be at a basic level, for example, when we know that a
given object is a typewriter, 4 bamiana, or a giraffe (Rosch,
Mervis, Gray, Jobmson, & Boyes-Braem, 1976). Miich of our
knowledge about objects is organized dt this level of categoriza-
tion: the level at which there is typically some readily available
name to describe that category (Rosch et al., 1976). Thé hy-
pothesis explored here predicts that when the componential de-
scription of a particular subordinate differs substantxally from
a basic-level prototype, thit is, when a subordinate is perceptu-
ally nonprototypical, categorizations will initially be made at
the subardinate level, Thus, we might know that a giveri object
is a floor lamp, a penguin, a sports car, or a dachshund more
rapidly than we know that it is a lamp, a hird, a cat or a3 dog
(e.g., Jolicoeur, Gluck, & Kosslyn, 1984). {(For both theoretical
and exposiiory purposes, these readily identifiable nonproto-
typical members [subordinates] of basic level categories will
also be considered basic level in this article.)

Count Versus Mass Noun Entities: The Role
of Surface Characteristics

There is a restriction on the scope of this approach of volu-
metric modeling that should be noted. The modeling has been
limijted to concreie entities with specified boundaries. In En-
glish, such objects are typically designated by colint. noiins,
These are coricrete objects that have specified boutidaries and
to which we caii apply the indefinite drticle and niumber, For
example, for 4 couiit niotin such as “chiaif’’ we can say ““a chair”
or “three chairs.” By contrast, mass nouns are concrete entities
to which the indefinite article or mithber cannot be applied,
such as water, sand, or snow. So we cannot say “a water” or
“three sands,” unless we refer to a court noun shape, as in “a
drop of water,” “a bucket of water,” “d grain of sand,” or “a
sriowball,” cach of which docs have a simplc volumctrlc de-
scription. We cotijecture that mass fiouns are identified prirmiar-
ily through surface characteristics such as texture and color
rather than through volumetric primnitives.

Primal Access

Under restricted vicwing and uincertaih conditions, as when
aii object is partially occluded, texture, color, and other cues
(suich as position in the scene and iabels) may constitute part
or all of the irformation determining memory access, as for
example when we identify a particular shirt in the laundry pile
from seeing just a bit of fabric. Such identifications are indirect,
typically the result of inference over a limited set of possible
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objects. (Additional analyses of the role of surface features is
presented later in the discussion of the experimental compari-
son of the perceptibility of color photography and line draw-
. ings.) The goal of the present effort is to account for what can
= be called primal access: the first contact of a perceptual input
. from an isolated, unanticipated object to a representation in
. memory.

Basic Phenomend of Object Recognition

Independent of laboratory research, the phenomena of every-
day object identification provide strong constraints on possible
.models of recognition. In addition to the fundamental phenom-
" enon that objects can be recognized at all (not an altogether
obvious conclusion), at least five facis are evident. Typically, an
~ object can be recognized rapidly, when vicwed most from novel
* orientations, under moderate levels of visual noise, when par-
tially occluded, and when it is a new exemplar of a category.

The preceding five phenomena constrain theorizing about
- object interpretation in the following ways:

I. Access to the mental representation of an object should
" not be dependent an absolute judgments of quantitative detail,
~ because such judgments are slow and error prone (Garner,
1962; Miller, 1956). For example, distinguishing among just
- several levels of the degree of curvature or length of an object
* typically requires more time than that required for the identifi-
“cation of the object itself. Consequently, such quantitative pro-
:-cessing cannot be the controlling factor by which recognition is
- ‘achieved. '
2. The information that is the basis of recognition should
*'be relatively invariant with respect to orientation and modest
- 'degradation.
- 3. Partial matches should be computable. A theory of object
interpretation should have some principled means for comput-
. ing a match for occluded, partial, or new exemplars of a given
category. We should be able to account for the human’s ability
- to identify, for example, a chair when it is partially occluded by
ther furniture, or when ii is missing a leg, or when it is a new
“madel.

Recognition-by-Components: An Overview

Our hypothesis, recognition-by-components {RBC), bears
some relation to several prior conjectures for representing ob-
~'jects by paris or modules (e.g., Binford, 1971; Brooks, 1981;
% Giozman, 1971; Marr, 1977; Marr & Nishihara, 1978; Tversky
& Hemenway, 1984). RBC's contribution lies in its proposal for
a particular vocabulary of components derived from percep-
tual mechanisms and its account of how an arrangement of
these components can access a representation of an object in
memory.

Stages of Processing

Figure 2 presents a schematic of the presumed subprocesses
by which an object is recognized. These stages are assumed 1o
be arranged in cascade. An early edge extraction stage, respon-
sive to differences in surface characteristics namely, luminance,
textire, or color, provides a line drawing description of the ob-
< Ject, From this description, nonaccidental propertics of image

edges (e.g., collinearity, symmetry) are detected. Parsing is per-
formed, primarily at concave regions, simultaneously with a de-
tection of nonaccidental properties. The nonaccidental proper-
ties of the parsed regions provide critical constraints on the
identity of the components. Within the temporal and contex-
tual constraints of primal access, the stages up to and including
the identification of components are assumed to be bottom-up. '
A delay in the determination of an object’s components shonld
have a direct effect on the identification latency of the object.

The arrangement of the components is then matched against
a representation in memory. It is assumed that the matching
of the components occurs in parallel, with unlimited capacity.
Partial matches are possible with the degree of match assumed
to be proportional to the similarity in the components between
the image and the representation.” This stage model is presented
to provide an overall theoreticat context. The focus of this arti-
cle is on the nature of the units of the representation.

When an image of an object is painted on the retina, RBC
assumes that a representation of the image is segmented—or
parsed—into separate regions at poinis of deep concavity, par-
ticularly at cusps where there are discontinuities in curvature
(Marr & Nishihara, 1978). In general, paired concavities will
arise whenever convex volumes are joined, a principle that
Hoffman and Richards (1985) term fransversality. Such seg-
mentation conforms well with human intuitions about the
boundarics of objcct parts and does not depend on familiarity

! The only top-down route shown in Figure 2 is an effect of the nenac-
cidental properties on edge extraction. Even this route (aside from col-
linearity and smooth' curvature} would run counter o the desires of
many in computational vision (¢.g., Marz, 1982) to build a completely
bottom-up system for edge extraction. This assumption was developed
in the belief that edge extraction does not depend on prior familiarity
with the object. However, as with the nonaccidental properties, a top-
down route from the component determination stage to edge extraction
could precede independent of familiarity with the object itself. It is pos-
sible that an edge extraction sysiem with a competence equivalent 10
that of a human—an as vet unrealized accomplishment—will require
the inclusion of such top-down influences. it is also likely that other top-
down routes, such as those from expectancy, object familiarity, or scene
constraints {e.g., Biederman, 1981; Biederman, Mezzanotie, & Rabin-
owitz, 1982), will be observed at a number of the stages, for example,
af segmentation, component definition, or matching, especially if edges
are degraded. These have heen omitted from Figure 2 in the interests of
simplicity and because their actual paths of influence are as yet undeter-
mined. By proposing a general account of object recognition, it is hoped
that the proposed theory will provide a framework for a principled anal-
ysis of top-down cffects in this domain.

2 Modeling the matching of an object image to a mental representa-
tion is a rich, relatively neglected problem area. Tversky’s (1977) con-
trast model provides a useful framework with which to consider this
similarity problem in that it readily allows distinctive features {compo-
nents) of the image to be considered separately from the distinctive com-
ponents of the representation. This allows principled assessments of
similarity for partial objects (components in the representation but not
in the image) and novel objects (containing components in the image
that are not in the representation). It may be possible to construct a
dynamic model based on a parallel distributed process as a modification
of the kind proposed by Mc("lelland and Rumelhart (1981} for word
perception, wnh components p_laym_g thé rele of letters. One difficulty
of such an effort is that the set of neighbors for a given word is well
specified and readily available from a dictionary; the set of neighbors

for a given object is not.
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Stages in Object Perception

Edge
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Detection of Parsing at Regions
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Figure 2. Presumed processing stages in ohject recognition.

with the ohject, as was demonstrated with the nonsense object
in Figure 1.

Each segmented region is then approxiniited by one of a pos-
sible set of simple componerits, called geons (for “geometrical
ions™), that can be modeled by generalized cones (Binford,
1971; Marz, 1977, 1982). A generalized cone is the volume
swept out by a cross section moving along an axis (as illustrated
in Figure 5). (Marr [1977, 1982] showed that the contours gen-
erated by any smooth surface could be modeled by a general-
ized cone with a convex cross section.) The cross section is typi-
cally hiypothesized to be at righit angles to the axis. Secondary
segmentation criteria (and criieria for détermining the axis ofa
comporient) are those that afford descriptions of volumes that
niakifnize syminetty, axis length, and constancy of the size and
curvature of the cross section of the comporient. Of these, sym-
metry often provides the most compelling subjective basis for
selecting subparts (Brady & Asada, 1984; Connell, 1985). These
secondary bases for segrnentation and component identification
are discussed below,

The primitive cotiponetits are Hypothesized to be simple,

typically syimivietrical volumies lacking sharp concavities, sich
as blocks, cytifides, sphetes. atid wedges. The fundametital per-
ceptual assuiiiption of RBC is that the components can be
differeritiated ot the basis of perceptual properties if the two-
dimensional image that are readily detectable and refatively ini-
dependent of viewing postiivn and degradaiion. These percep-
tual properties include several that traditionally have been
thought of as principles of perceptual organization, such as

good continuation, symmetry, and Pragnanz. RBC thus pro-
vides a principted account of the relation between the classic
pheniomena of perceptual organization and pattern recognition:
Although objects can be highly complex and irregular, the units
by which obiects are identified are simple and regular. The con-
straints toward regularization (Pragnanz) are thus assumed to
characterize not the complete object but the object’s com-
ponents.

Color and Texture

The pireceding acconni is clearly edge-hased. Stirface charac-
teristics siich as color, brightness, and textiire will typically have -
only secondary roles in primal access. This should not be ititer-
preted as siiggesting thiat the perception of surface characteris-
tics per se is deldyed relative to the perception of the compo-
neiits (but see Barrow & Tenenbaum, 1981), but merely that in
most cases the surface characteristics ate genierally less efficient
routes for accessing the classification of a eoint ohject. That is,
we may know that a chair has 4 particuldr color and texture
similtaneously with its componential description, buf it is only
the volumetric description that provides efficient access to the
riervtal representation of v chair™”

Relations Among the Components

Althoiigh the comtiponents themselves are the focus of this
article, as noted previcusly the arrangement of primitives is
necessary for representing a particular object. Thus, an arc
side-connected to a cylinder can yield a cup, as shown in Figure
3C. Different arrangements of the same components can readily
lead to different objects, as when an arc is connected to the top
of the cylinder to produce a pail (Figure 3D). Whether a compo-
nent is attached to a long or short surface can also affect classi-
fication, as with the arc producing either an attaché case (Figure
3A) or a strongbox (Figure 3B).

The identicdl situation between primitives and their arrange-
ment exists in the phonemic representation of words, where a
given subsei of phoreiiies can be rearranged to produce differ-
ent words.

Ttie representation of an object would thus be a structural
description that expressed the relations dmong the components
(Ballard & Brown, 1982; Winston, 1975). A suggested (mihi-
mial) set of relations will be described latet (see Table 1). These

3 There arc, however, objects that would seefii to require both a voli-
mietric description and a textiire region for an adeqiidte represetitation,
such as hairbriishes, typewriter keyboards, ahd corkscrews. It is unlikely
that many of the individual bristles, keys, or coils are parsed and identi-
fied prior o the identification of the objest. Instoad those regions arc
represented through the statistical processing that characterizes their
textire (for example, Beck, Prazdny, & Rosenfeld, 1983; Tulesz, 1981),
although we retain a capacity to zoom dowe and attend to the voluthei-
ric nature of the individual efements. The structural description that
would serve as a representafion of such objects would include s statisti-
cdl specification of the texture field along with 4 specification of the
larget voliimetric componetits. Thiese compotind texture-componen-
tial objects lizive not beeti stiidied, biit it is possible that the characteris-
tics of their identification woiild differ from objects that are feadily de-
fined solely by their arrangement of voliithetric components,
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Figure 3 Different arrangements of the same components can produce different objects.

relations include specification of the relative sizes of the compo-
nents, their orientation and the locus of their attachment,

Nonaccidental Properties: A Perceptual Basis for a
Componential Representation

Recent thecretical analyses of perceptual orpanization (Bin-
ford, 1981; Lowe, 1984; Rock, 1983; Witkin & Tenenbaum,
1983) provide a perceptual basis for generating a set of geons.
The central organizational principle is that certain properties
of edges in a two-dimensional image are taken by the visual
system as strong evidence that the edges in the three-dimen-
sional world contain those same properties. For example, if
there is a straight line in the image (colliniearity), the visual sys-
tem infers that the edge producing that line in the three-dimen-
sional world is also straight. The visual system ignores the possi-
bility that the property in the image might be a result of a
(highly unlikely) accidental alignment of eye and curved edge.
Smoothly curved elements in the image (curvifineariry) are sim-
ilarly inferred to arise from smoothly curved features in the
three-dimensional world. These properties, and the others de-
scribed later, have been termed nonaccidental (Witkin & Tenen-
baum, 1983) in that they would only rarely be produced by
accidental alignments of viewpoint and ohject features and con-
sequently are generally unaffected by slight variations in view-
point.

If the image is symmetrical (symmetry), we assume that the
object projecting that image is also symmetrical. The order of
symmetry is also preserved: Images that are symmetrical under
both reflection and 90° increments of rotation, such as a square
or circle, are interpreted as arising from objects (or surfaces)

.thiat are symmetrical under both rotation and reflection. Al-
though skew symmetry is often readily perceived as arising
from a tilted symmetrical object or surface (Palmer, 1983),
there are cases where skew symmetry is not readily detected
(Aitneave, 1982). When edges in the image are parallel or coter-

" minate we assume that the real-world edges also are parallel or
coterminate, respectively.
= These five nonaccidental properties and the associated three-

‘dimensional inferences are described in Figure 4 (adapted from .

Lowe, 1984). Witkin and Tenenbaum (1983; see also Lowe,
- 1984) argue that the leverage provided by the nonaccidental re-
lations for imferring a three-dimensional structure from a two-
dimensional image edges is so great as to pose a challenge to the
c[forl in wmpuuuunai visivn and perceptual psychology that
: -_ass_lgned central importance to variation in local surface char-
- acteristics, such as Juminance gradients, from which surface

curvature could be determined (as in Besl & Jain, 1986). Al-
though a surface property derived from such gradients will be
invariant over some transformations, Witkin and Tenenbaum
(1983) demonstrate that the suggestion of a volumetric compo-
nent through the shape of the surface’s silhouette can readily
override the perceptual interpretation of the luminance gradi-
ent. The psychological literaturc, summarized in the next sce-
tion, provides considerable evidence supporting the assumption
that these nonaccidental properties can serve as primary organi-
zational constraints in human image interpretation.

Psychological Evidence for the Rapid Use of
Nonaccidental Relations

There can be little doubt that images are interpreted in a
manner consistent with the nonaccidental principles. But are
these refations used quickly enough to provide a perceptual ba-
sis for the components that allow primal access? Although all
the principles have not received experimental verification, the
available evidence strongly suggests an affirmative answer to the
preceding question. There is strong evidence that the visual sys-
tem quickly assumes and uses collinearity, curvature, symme-
try, and cotermination. This evidence is of two sorts: (a) demon-
strations, often compelling, showing that when a given two-di-
mensional relation is produced by an accidental alignment of
object and image, the visual system accepts the relation as exist-
ing in the three-dimensional world; and (b) search tasks showing
that when a target differs from distractors in a nonaccidental
property, as when one is searching for a curved arc among
straight segments, the detection of that target is facilitated com-
pared to conditions where targets and background do not dlfFET'
in such properties.

Collinearity versus curvature. The demonstration of the col-
linearity or curvature relations is too obvious to be performed
as an experiment. When looking at a straight segment, no ob-
server would assume that it is an accidental image of a curve.
That the contrast between straight and curved edges is readily
available for perception was shown by Neisser (1963). He found
that a search for a letter composed only of straight segments,
such as a Z, could be performed faster when in a field of curved
distractors, such as C, G, O, and Q, then when among other
letters composed of straight segments such as N, W, V, and M.

Symmetry and parallelism. Many of the Ames demonstra-
tions (Ittleson, 1952), such as the trapezoidal window and Ames
room, derive {rom an assumpiion of symmetry that includes
parallelism. Palmer (1980) showed that the subjective direction-
ality of arrangements of equilateral triangles was based on the



120 IRVING BIEDERMAN

Principle of Non-Accidentainess: Critical information is unlikely to be a
consequence of an accident of viewpoint.

Three Space Inference from mage Features

2-D Relatioh 3-0 inference Examples
1. Collinearity of Collinacrity in 3-Space ,r/ ;
points or lines //
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2. Curvilingarity of
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(Skew Symmetry ?)
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4.Parcliel Curves Curves are parallel in 3-Space
(Over Smalt /_\/
Visual Angles} A/

5. Vertices--two or more Curves jerminote ol a

terminations ata comrnon point in 3-Space
comibon point Y 4\
/“L"\ "Fork" "Arrow"

Figure 4. Five nonaccidental relations. (From Figure 5.2, Perceptual
organization and visual recognition [p. 77] by David Lowe. Unpub-
lished doctorial dissertation, Stanford University. Adapted by permis-

sion.)

derivation of an axis of symmetry for the arrangement. King,
Meyer, Tangney, and Biederman {1976) demonstrated that a
perceptual bias toward symmetry contributed to apparent
shape constancy effects. Garner (1974), Checkosky and Whit-
lock (1973), and Pomcrantz (1978) provided ample cvidence
that not only can symmetrical shapes be quickly discriminated
from asymmetrical stimuli, but that the degree of symmetty
was also a readily available perceptual distinction. Thus, stimuli
that were invariant under both reflection and 90° increments in
rotation could be rapidly discriminated from those that were
only invariant under reflection (Checkosky & Whitlock, 1973).

Cotermination. The “peephole perception” demonstrations,
such as the Ames chair (Ittleson, 1952) or the physical realiza-
tion of the “impossible” triangle (Penrose & Penrose, 1958),
are produced by accidental alignment of the ends of noncotet-
minous segments to produce—from one viewpoint only—L, Y,
and arrow vertices. More recently, Kanade (1981} has presented
a detailed analysis of an “accidental” chair of his own construc-
tion. The suceess of these demonstrations document ihe inime-
diate and compelling impact of cotermination.

The registration of cotermination is important for determin-

ing vertices, which provide information that can serve to distin-
giish the components. In fact, one theorist (Binford, 1981) has
suggested that the major function of eye movements is to deter-
mine coincidence of segments. “Coincidence” would include
nulunly coterminytion of edges but the termination of vne edge
on another, as with a T vertex. With polyhedra (volumes pro-
duced by planar surfaces), the Y, arrow, and L vertices allow

inference as to the identity of the volume in the image. For ex-
ample, the silhouette of a brick contains a series of six vertices,
which alternate between Ls and arrows, and an internal Y ver-
tex, as iflustrated in Figure 5. The Y vertex is produced by the
cotermination of three segments, with none of the angies
greater than 180°. (An arrow vertex, also formed from the coter-
mination of three segments, contains an angle that exceeds
180° an L vertex is formed by the cotermination of two seg-
ments.) As shown in Figure 5, this vertex is not present in com-
ponents that have curved cross sections, such as cylinders, and
thus cdn provide a distinctive cue for the cross-section edge.
(The curved Y vertex present in a cylinder can be distinguished
from the Y or arrow vertices in that the termination of one seg-
ment in the curved Y is tangent to the other segment [Chakra—
varty, 1979].)

Perking (1983) has described a perceptual bias toward paral-
lelism in the interpretation of this vertex.* Whether the pres-
ence of this particular internal vertex can facilitate the identifi-
cation of a brick versus a cylinder is not yet known, but a recent
study by Biederman and Blickle (1985), described below, dem-
onstrated that deletion of vertices adversely affected object rec-
ognition more than deletion of the same amount of contour at
midsegment.

The T vertex represents a special case in that it is not a locus
of cotermination (of two or more segments) but only the termi-
nation of one segmient on another. Such vertices are important
for determining occlusion and thus segmentation (aleng with
concavities), in that the edge forming the (normally) vertical
segment of the T cannot be closer to the viewer than the segment
forming the top of the T (Binford, 1981). By this account, the
T vertex might have a somewhat different status than the Y,
arrow, and L vertices, ini that the T’s primary role would be
n segmentauon rather than in establishing the identity of the
volume,’

Vertices composed of three segments, such as the Y and ar-

* Wheh such vertices formed the central angle in a polyhedron, Per-
kins (1983) reported that the sirfices would almost always be inter-
preted as meeting at right angles, as long as none of the three angles was
less than 90°. Indeed, suich vertices cannot be projections of acute angles
{Karnade, 1981} but the human appears insensitive 1o the possibility that
the vertices could liave arisen from obtuse angles. If one of the angles in
the central Y vertex was acuie, then the polyhedra would be interpreted
as ifreptilar. Perkins found that subjects from rural areas of Botswana,
whete there was a lower incidetice of exposire to carpenitered {right-
angled) efivironmenis, had an even stroniger bias toward rectilinear in-
terpretations than did Westerners {Perkins & Deregowski, 1982). .

5 The arrafigemerit of vertices, particularly for polyhedra, offers con-
straints on “possible” interpretations of lines as corivex, concave, or
occludiiig (e.g., Sugihara, 1984). In general, the constrdints take the
form that a segment cannot change its interpretation, for example, from
concave to convex, unless it passes through a vertex. “Impossible” ob-
jects can be constructed from violations of this constraint (Waltz, 1975)
as well as from more peneral considerations (Sugihara, 1982, 1984), It
is tempting to consider that the visual system captures these constraints
in the way in which edges are grouped into objects, but the evidence
would seemi to algue against sich an interpretation. The impossibility
of miost ifiipossible objecis is not imniediately registered, bt requires
scrutiny and thought before the inconsistency is detected. What this
means il the present conitext is that the visual system has a capacity for
classifying vertices locally, but no perceptual routines for determining
the global consistency of a set of vertices.
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Some Nonaccidental Differences Between a Brick and a Cylinder

Brick
inner
Y vertex
Three Three
parailel outer
edges arrow
vertices

Cylinder

Two tangent Y vertices
{Occluding edge tangent
at vertex to
discontinuous edge)

Curved edges

Two paralie!
edges

Figure 5. Some differences in nonaccidental properties between a cylinder and a brick.,

row, and their curved counterparts, are important determinants
as to whether a given component is volumetric or planar. Planar
components (to be discussed later) lack three-pronged vertices.
The high speed and accuracy of determining a given nonacci-
dental relation (e.g., whether some pattern is symmetrical)
should be contrasted with performance in making absolute
quantitative judgments of variations in a single physical attri-
bute, such as length of a segment or degree of tilt or curvature.
For example, the judgment as to whether the length of a given
segment is 10, 12, 14, 16, or 18 cm is notoriously slow and error
prone (Beck, Prazdny, & Rosenfeld, 1983; Fildes & Triggs,
1985; Garner, 1962; Miller, 1956; Virsu, 1971a, 1971b). Even
these modest performance levels are challenged when the judg-
ments have to be executed over the brief 100-ms intervals
(Egeth & Pachella, 1969) that are sufficient for accurate object
-identification. Perhaps even more telling against a view of ob-
ject recognition that postulates the making of absciute judg-
ments of fine quantitative detail is that the speed and accuracy
of such judgments decline dramatically when they have to be
made for multiple attributes (Egeth & Pachella, 1969; Garner,
1962; Miller, 1956). In contrast, object recognition latencies for
complex objects are reduced by the presence of additional (re-
dundant) components (Biederman, Ju, & Clapper, 1985, de-
scribed below).

Geons Generated From Differences in Nonaccidental
Properties Among Generalized Cones

I have emphasized the particular set of nonaccidental proper-
ties shown in Figure 4 because they may constitute a perceptual
basis for the generation of the set of components. Any primitive

that is hypothcsized to be the basis of object recognition should
be rapidly identifiable and invariant over viewpoint and noise.
These characteristics would be attainable if differences among
components were based on differences in nonaccidental proper-
ties. Although additional nonaccidental properties exist, there
is empirical support for rapid perceptual access to the five de-
scribed in Figure 4. In addition, these five relations reflect intu-
itions about significant perceptual and cognitive differences
among objects.

From variation over only two or three levels in the nonaccidental
relations of four attributes of generalized cylinders, a set of 36
geons can be generated. A subset is illustrated in Figure 6.

Six of the generated geons (and their attribute values) are
shown in Figure 7. Three of the attributes describe characteris-
tics of the cross section: its shape, symmetry, and constancy of
size as it is swept along the axis. The fourth attribute describes
the shape of the axis. Additional volumes are shown in Figures
8and 9.

Nonaccidental Two-Dimensional Contrasts
Amuong the Geons

Asindicated in the above outline, the values of the four gener-
alized cone attributes can be directly detected as contrastive
differences in nonaccidental properties: straight versus curved,
symmetrical versus asymmetrical, parallel versus nonparallel
(and if nonparallel, whether there is a point of maximal convex-
ity). Cross-section edges ond curvature of the axis are distin-
guishable by collinearity or curvilinearity. The constant versus
expanded size of the cross section would be detectable through
parallelism; a constant cross section would produce a general-
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Expand & Contract

Asymmetrical thhon
’\ I~
Size

Symmetry Rotation & Constant
\mﬂﬂn

/~1 wmigm
Edge Curved Axis
'/ Straight

Curved

oo

Figure 6. An illustration of hiow variations in threc attributes of a cross
section (curved vs. straight edges; constant vs. expanded vs. expanded
and contracted size; mirror and rotational symmetry vs, mifror symme-
try vs. asymmetrical) and one of the shape of the axis (straight vs.
curved) can generate a set of generalized cones differing in nonacciden-
tal relations. (Constant-sized cross sections have parallel sides; ex-
panded or expanded and contracted cross sections have sides that are
not parallel. Curved versus straight cross sections and axes are detect-
able through collinearity or curvature. The three values of cross-section
symmetry [symmietrical under reflection & 90° rotation, reflection only,
or asymmetrical] are detectable through the symmetry relation. Neigh-
bors of a cylinder are shown here. The full family of geons has 36 mem-
bers.)

ized cone with parallel sides (as with a cylinder or brick); an
expanded cross section would produce edges that were not pat-
allel (as with a cone or wedge). A cross section that expanded
and then contracted would produce an cllipsoid with nonparal-
lel sides and extrema of positive curviture (as with a lemon).
Such extrema are invariant with viewpoint (e.g., Hoffman &
Richards, 1985) and actually constitite a sixth nonaccidental
relation. The thiee levels of cross-section symmietry are equiva-
lent to Garner’s (1974) distinction as to the number of different
stimuli produced by increments of 90° rotations and reflections
of a stimulus. Thus, a square or circle would be invariant under
90° rotation and reflection, but a rectangle or ellipse would be
invariatit only under reflection, as 90° totations would produce
another figure in each case. Asymmetrical figures would pro-
duce eight different figures under 90° rotation and reflection.
Specification of the nonaccidental properties of the three at-
tributes of the cross section and one of the axis, as described in
the previous paragraph, is sufficient to uniquiely classify a given
arrangement of edges as one of the 36 geons. These would be

matched against a structural description for each geon that |

specified the values of these four nondccidental image proper-
ties. But thiere are actually more distinctive nonaccidental im-
age features for each geon than the four described in the previ-
ous paragraph (or indicated in Figures 7, 8, and 9). In particu-
lar, the arrabgemient of vertices, both of the sithouette and the
presence of an interior Y vertex, and the presence of a discon-
tinuous (third) edge along the axis (which prodiices the interior

Y vertex) provide a richer description for each component than

" do the four properties of the getierating furiction. This point can

be readily appreciated by considering, as an example, some of
the additional nonaccidental properties differentiating the brick
from the cylinder in Figure 5. Each geon’s structural descrip-
tion would thus include a larger number of contrastive imagc
properties than the four that were directly related to the generat-
ing function.

Consideration of the featural basis for the structural descrip-
tions for each geon suggests thdt 4 similarity measure can be
defined on the basis of the comimon versus distinctive image
features for any pair of components. The similarity measure
would permit the promotion of alternative geons under cond;-
tions of ambigiity, as when one or several of the image features
were undecidable, .

Is geon identification iwo-dimensionial or three-dimensional?
Although the 36 geons have a clear subjective volumetric inter-
pretation, it must be emphasized they can be uniquely specified
from their two-dimensional image properties. Consequently,
recogtitiont need not follow the construction of an “objcct cen-
tered” (Marr, 1982) three-dimensional interpretation of each
volime. It is also possible that, despite the subjective compo-
nential interpretation given to the arrangement of image fea-
tiites as simple volumes, it is the image features themselves, in
specified relationships, that mediate perception. These aiterna-
tives remain to be evaluated.

Additional Sources of Contour and
Recognition Variation

RBC seeks to account for the recognition of an infinitely var-
ied perceptial input with a modest set of idealized primitives.

Partiol Tentotive Geon Set Based on Nonaccidentalness Relations
CROSS SECTION

Edde Symeetiy Size Auis

Sirdight § | Rot & Ref ++ |Congiont ++ | Straight +

Geon Curved ©  |Refs Expanded- | Curved -

Asymm- Exp & Cont~-

@ S ++ ++ +
6) c +4 ++ +
[ | 5 + - +
@ S ++ + —
@ c ++ - +
ﬁ s + + +

Figure 7. Proposed partial set of volumetric primitives (geons)
derived from differences in rionacciderital properties.
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Geons with Expanded and Contracted Cross Sections (--)

Cross Section:
Edge- Curved (C}
Symmetry: Yas (+)
Size: Expanded & Contracted: {--)

{Lemon) Axis: Stroight {+)

Cross Section:
Edge: Curved (C)
Symemelry: Yes {+)
Size: Expanded (+}

{Horn) Axis: Curved (~)

Cross Section:
Edge: Curved (C)
Symmetry: Yas (+)
Size: Expanded & Contracted (--)

Axis: Curved {-)
(Gourd)

Figure 8. Three curved geons with curved axes or expanded and/or con-
tracted cross sections. (These tend to resemble biological forms.)

A number of subordinate and related issues are raised by this
attempt, some of which will be addressed in this section. This
section need not be covered by a reader concerned primarily
with the overall gist of RBC.

Asymmetrical cross sections. There are an infinity of possible
cross sections that could be asymmetrical. How does RBC rep-
resent this variation? RBC assumes that the differences in the
departures from symmetry are not readily available and thus
do not affect primal access. For example, the difference in the
shape of the cross section for the two straight-edged volumes in
Figure 10 might not be apparent quickly enough to affect object

_ recognition. This does not mean that an individual could not
store the details of the volume produced by an asymmetrical
cross section. Bui the presumption is that the access for this
detail would be too slow to mediate primal access. I do not
know of any case where primal access depends on discrimina-
tion among asymmetrical cross sections within a given compo-
nent type, for example, among curved-edged cross sections of
constant size, straight axes, and a specified aspect ratio. For in-
stance, the curved cross section for the component that can
model an airplane wing or car door is asymmetrical. Ditterent
wing designs might have different shaped cross sections. It is
likely that most people, including wing designers, will know that
the objcet is an airplanc, or cven an airplane wing, before they
know the subclassification of the wing on the basis of the asym-
metry of its cross section. )

A second way in which asymmetrical cross sections need not
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be individually represented is that they often produce volumes
that resemble symmetrical, but truncated, wedges or cones.
This latter form of representing asymmetrical cross sections
would be analogous to the schema-plus-correction phenome-
non noted by Bartlett (1932). The implication of a schema-
plus-correction representation would be that a single primitive
category for asymmetrical cross sectiong and wedges might be

- sufficient. For both kinds of volumes, their similarity may be a

function of the detection of a lack of parallelism in the volume.
One would have 10 eaerl scrutiny to determine whether a lack
of paralielism had originated in the cross section or in a size
change of a symmetrical cross section. In this case, as with the
components with curved axes described in the preceding sec-
tion, a single primitive category for both wedges and asymmet-
rical straight-edged volumes could be postulated that would al-
low a reduction in the number of primitive components. There
is considerable evidence that asymmetrical patterns require
more time for their identification than symmetrical patterns
(Checkosky & Whitlock, 1973; Pomerantz, 1978). Whether
these effects have conscquences for the time required for object
identification is not yet known.

One other departure from regular components might also be
noted. A volume can have a cross section with edges that are
both curved and straight, as would result when a cylinder is sec-
tioned in half along its length, producing a semicircular cross
section. The conjecture is that in such cases the defanlt cross
section is the curved one, with the straight edges interpreted as
slices off the curve, in schema-plus-correction representation
(Bartlett, 1932).

CROSS SECTION

Edge Symmetry Sizg Axis
Straight S | Rot GiRef ++ |Constant ++ | Straight +
Geon Curved C Ref + Exponded— | Curved-
Asymm-— Exp 8 Cont—
m C + + 4+ -
@ s | o+ | - -

)| ¢ 4
—~J| s
Q c " - -

Figure 9. Geons with curved axis and straight or curved cross sections,
(Determining the shape of the cross section, particularly if straight,
might require attention.)
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Figure 10. Volumes with an asymmetrical, straight-edged, cross section.
(Detection of differences between such volumies might require atten-
tion.)

Component terminations. When a cross section varies in size,
as with a cone, it can converge to a point, as with the horn in
Figure §, or appear truncated, as with the cone in Figure 7.
Such termination differences could be represented as indepen-
dently specified chardcteristics of the structiiral description for
the geon, determinable ini the image by whether the termination
was a single L vertex {with a point) or two tangent Y vertices
(with a truncated cone).

Another case arises when a cylinder has a cross section that
remains constant for part of its length but then tapers to pio-

duce a point, as with a sharpened pencil. Such objects could be

modeled by joining a cylinder to a cone, with the size of the
cross sections matched so that no concavity is produced. The
parsing point in this case would be the join where different non-
accidental properties were required to fit the volumies, namely,
the shift from parallel edges with the cylinder to converging
edges with the cone. Suchi joins provide a decidedly weaker ba-
sis—subjectively—for segthentation than joins producing

.

cusps. The perceptual conisetiences of such variation have not’
been studied.

Meiric variation. For any given geon type, theie can be contin-
uous metric variation in aspect ratio, degree of curvature (for
curved components), and deépartiire from parallelism (for non-
parallel components). How should this quantitdtive variation
be conceptualized? The discussion will concentrate on aspect
ratio, probably the most important of the variations. But the
issues will be generally applicable 1o the other metric variations
as well.®

One possibility is to include specification of a range of aspect
ratios in the structural description of the geons of an ohject as
well as the object itself. It seems plausible to assume that recog-
nition can be indexed, in part, by aspect ratio in addition to a
componeiitial description. An object’s aspect ratio would thus
play a role similar to that played by word lengthi in the tachisto-
scopic identification of words, where lorig words are rarely prof-
fered when a shoit word is flashed. Consider an elongated ob-
ject, siich as a haseball hat, with an aspect ratio of 15:1. Whern
the oricntation of the object is orthogonal to the viewpoint, so
that the aspect ratio of its image is dlso 15:1, recognition might
be faster than wheri presented at an orientation where the aspect
ratio of its image differéd greatly from that value, say 2:1. One
need not have a particiilarly fine-tuned function for aspect ratio
as laige differences in aspect ratio between two coniponeiits
would, like parallelism, be preserved over a large proportion of
arbitrary viewing angles.

Another way to incorporate variations in thie aspect ratio of
an object’s image is to represent only qualitative differences, so
that variations in aspect ratios exert an effect only when the
relative size of the longest dimensions undergo reversal. Spe-
cifically, for each component and the complete object, three
variations could be defined depending on whether the axis wds
much smaller, approximately equal to, of fiiuch longer than the
longest dithension of the cross séction. For example, for 4 geori
whose axis was loniger thdn the diameter of the cross section
{which would be irue in most cases), only when the projectiott
of the cross sectioi becaine longer thaii the axis would there be
an effect of the object’s oriefitation, as when the bat was viewed
almost fromi on end so that the diameter of the handle was
greater than the projectioni of its length.

A close depenidence of object recogitition perfoimiance on the
preservation of the aspect ratio of 4 geor in the image would
challenge RBC’s emphasis on dicliciomous contrasts of nonac-
cidental relations. Fortunately, these issues on the role of aspect
ratio are readily testable. Bartram’s (1976) experiments, de-
scribed Iater in the scction ofi otieditation variability, suggest
that seasitivity to variations in aspect ratic heed riot be given
heavy weight: Recogaitioii speed is unaffected by vériation in
aspect ratio dcross different views of the saiiée object.

Planar geons. Wheii a three-pronged vertex (viz., Y, tangeiit
Y, or arrow) is tiot present in a parsed regiot, the resultant re-
giori appeats planat, as with the flipper of the penguin in Figiire

5 Aspect ratio is a measure of the elongation of a component. For
constant-sized cross sectionis and siraighit axes, it can be expressed as
the width-to-heiglit ratio of the smallest bounding rectangle that wouid
just enclose the coiviporient, More comjilex fiinctions are heeded ex-
pressing the chanpe in aspect ratio as a functiori of axis position when
the cross section varies in size of the akis i§ cuirved.
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10 or the eye of the elephant in Figure 11. Such shapes can be
conceptualized in two ways. The first (and less favored) is to
assume that these are just quantitative variations of the volu-
metric components, but with an axis length of zero. They would
then have default values of a straight axis (+) and a constant
cross section (+). Only the edge of the cross section and its sym-
metry could vary.

Alternatively, it might be that a planar region is not related

perceptually to the foreshortened projection of the geon that
could have produced it. Using the same variation in cross-sec-
tion edge and symmetry as with the volumetric components,
seven planar geons could be defined. For ++symmetry there
would be the square and circle (with straight and curved edges,
respectively) and for +symmetry the rectangle, triangle, and el-
lipse. Asymmetrical (—) planar geons would include trapezoids
(straight edges), and drop shapes (curved edges). The addition
of these seven planar geons to the 36 volumetric geons yields
43 components {a number close to the number of phonemes
required to represent English words}. The iriangle is here as-
sumed to define a separate geon, although a triangular cross
section was not assumed to define a separate volume under the
intuition that a prism (produced by a triangular cross section)
is not q\.uckly distinguishable from a wedge. My preference for
assuming that planar geons are not perceptually related to their
foreshortened volumes is based on the extraordinary difficulty
of recognizing objects from views that are parallel to the axis of
the major components so that foreshortening projects only the
planar cross section, as shown in Figure 27. The presence of
three-pronged vertices thus provides strong evidence that the
image is gererated frum 4 volumetric rather than a planar com-
ponent.
" Selection of axis. Given that a volume is segmented from the
ohject, how is an axis selected? Subjectively, it appears that an
axis is selected that would maximize the axis’s length, the sym-
metry of the cross section, and the constancy of the size of the
cross section. By maximizing the length of the axis, bilateral
symmetry can be more readily detected because the sides would
be closer to the axis. Ofien a single axis satisfies all three criteria,
but sometimes these criteria are in opposition and two (or
more) axes (and component types) are plausible (Brady, 1983).
Under such conditions, axes will often be aligned to an external
frame, such as the vertical (Humphreys, 1983).

Negative values. The plus values in Figures 7, 8, and 9 are

those favored by perceptual biases and memory errors. No bias

. isassumed for straight and curved edges of the cross section. For
symmetry, clear biases have been documented For example, if
a0 image could have arisen from a symmetrical object, then it
is interpreted as symmetrical (King et al., 1976). The same is
apparently true of parallelism. If edges could be parallel, then
they are typically interpreted as such, as with the trapezoidal
room or window.

Curved axes. Figure 8 shows three of the most negatively
marked primitives with curved crossed sections. Such geons of-
ten resemble biological entities, An expansion and contraction
of a rounded cross section with a straight axis produces an ellip-
soid (lemon), an expanded cross section with a curved axis pro-
ducés a horn, and an expanded and contracted cross section
with a rounded cross section produces a banana slug or gourd.

In contrast to the natural forms generated when both cross
section and axis are curved, the geons swept by a straight-edged

cross section traveling along a curved axis (e.g., the components
on the first, third, and fifth rows of Figure 9) appear somewhat
less familiar and more ditlicult to apprehend than their curved
counterparts. It is possible that this difficulty may merely be a
consequence of unfamiliarity. Alternatively, the subjective
difficulty might be produced by a conjunction—attention effect
(CAE) of the kind discussed by Treisman (e.g., Treisman & Gel-

" ade, 1980). (CAEs are described later in the section on atten-

tional effects.) In the present case, given the presence in the im-
age of curves and straight edges (for the rectilinear cross sec-
tions with curved axis), attention (or scrutiny) may be required
to determine which kind of segment to assign to the axis and
which v assign 1o the cross section. Curicusly, the problem
does not present itself when a curved cross section is run along
a straight axis to produce a cylinder or cone. The issue as to
the role of attention in determining geons would appear to be
empmcally tractable using the paradigms created by Treisman
and her colleagues ( Treisman, 1982; Treisman & Gelade, 1980).

Conjunction-attentional effects. The time required to detect
a single feature is often independent of the number of distract-
ing items in the visual field. For example, the time it takes to
detect a blue shape (a square or a circle) among a field of green
distractor shapes is unaffected by the number of green shapes.
However, if the target is defined by a conjunction of features, for
example, a blue square among distractors consisting of green
squares and blue circles, so that both the color and the shape of
each item must be determined to know if it is or is not the target,
then target detection time increases linearly with the number of
distractors (Treisman & Gelade, 1980). These resulis have led
to a theory of visual attention that assumes that humans can
monitor all potential display positions simultaneously and with
unlimited capacity for a single feature (e.g., something blue or
something curved). But when a target is defined by a conjunc-
tion of features, then a limited capacity attentional system that
can only examine one display position at a time must be de-
ployed (Treisman & Gelade, 1980).

The extent to which Treisman and Gelade’s (1980} demon-
stration of conjunction-attention effects may be applicable to
the perception of volumes and objects has yet to be evaluated.
In the extreme, in a given moment of attention, it may be the
case that the values of the four attributes of the components are
detected as independent features. In cases where the atiributes,
taken independently, can define different volumes, as with the
shape of cross sections and axes, an act of atiention might be
required fo determine the specific component generating those
attributes: Am [ looking at a component with a curved cross
scction and a straight axis or is it a straight cross scction and
a curved axis? At the other extreme, it may be that an object
recognition systern has evolved to allow automatic determina-

tion of the geons.

The more general issue is whether relational siructures for
the primitive components are defined automatically or whether
a limited attentional capacity is required to build them from
their individual-edge attributes. It could be the case that some
of the most positively marked geens are detected automatically,
but that the volumes with negatively marked attributes might
require attention. That some limited capacity is involved in the
perception of objects (but not necessarily their components) is
documented by an effect of the number of distracting objects
on perceptual search {Biederman, Blickle, Teitelbaum, Klatsky,
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& Mezzgnotte, in press). In their experiment, reaction times
and errors for detecting an ohject such as a chair increased lin-
early as a function of the number of nontarget objects in a 100-
ms presentation of nonscene arrangements of objects. Whether
this effect arises from the necessity to use a limited capacity to
consirucl a geon from ity attributes or whether the effect arises
from the matching of an arrangement of geons to a representa-
tion is not yet known.

Relations of RBC to Principles
of Perceptual Qrganization

Textbook presentations of perception typically include a sec-
tion of Gestalt organizational principles. This section is almost
never linked to any other function of perception. RBC posits
a specific role for these organizational phenomena in pattern
recognition. As suggested by the section on generating geons
through nonaccidental properties, the Gestalt principles, par-
ticularly those promoting Pragnanz (Good Figure), serve to de-
termine the individual geons, rather than the complete object,
A complete object, such as a chair, can be highly complex and
asymmetrical, but the components will be simple volumes. A
consequence of this interpretation is that it is the components
that will be stable under noise or perturbation. If the compo-
nents can be recovered and object perception is based on the
compaonents, then the ohject will be recognizable.

This may be the reason why it is difficult to camouflage ob-
jects by moderate doses of random occluding noise, as when
a car is viewed behind foliage. According to RBC, the geons
accessing the representation of an object can readily be recov-
ered through routines of collinearity or curvature that restore
contours (Lowe, 1984). These mechanisms for contour restora-
tion will not bridge cusps (¢.g., Kanizsa, 1979). For visual noisc
to be effective, by these considerations, it must obliterate the
concavity and interrupt the contours from one geon at the pre-
cise point where they can be joined, through collinearity or con-
stant curvature, with the contours of another geon. The likeli-
hood of this occurring by moderate random noise is, of couirse,
extraordinarily low, and it is a major reason why, according to
RBC, ubjects are rarely rendered unidentifiable by noise. The
consistency of RBC with this interpretation of perceptual orga-
nization should be noted. RBC holds that the (strong) loci of
parsing is at cusps; the geons are organized from the contours
between cusps. In classical Gestalt demonstrations, good figures
are organized from the contours between cusps, Experiments
subjecting these conjectures to test are described in a later
section.

A Limited Number of Comiporients?

According to the prior arguments, only 36 volumetric com-
ponents can be readily discriminated on the basis of differences
in nonaccidental properties among generalized cones. In addi-
tion, there are empirical and computational considerations that
are compatible with a such a limit.

Empirically, people are not sensitive to continuous metric
variations as cvidenced by severe limitations in humans’ capac-
ity for making rapid and accurate absolute judgments of quanti-
tative shape variations.” The errors made in the memory for
shapes also document an insensitivity to metric variations.

Computationally, a limit is suggested by estimates of the num-
ber of objects we might know and the capacity for RBC to
readily represent a far greater number with a limited number
of primitives,

Empirical Support for a Limit

Although the visual system is capable of discriminating ex-
tremely fine detail, I have been arguing that the number of volu-
metric primitives sufficient to model rapid human object recog-
nition may be limited. It should be noted, however, that the
number of proposed primitives is greater than the three—cylin-
dor, sphere, and cone-—advocated by some “How-to-Draw™
books. Although these three may be sufficient for determinitig
relative proportions of the parts of a figure and can aid perspec-
tive, they afe not sufficient for the rapid identification of ob-
jects.® Similarty, Mari and Nishihara’s (1978) pipe-cleaner
(viz., cylinder) representations of animals (their Figure 17)
would also appear to posit an insufficient number of primitives.
On the page, in the context of other labeled pipe-cleaner ani-
mals, it is certainly possible to arrive at an identification of a
particular (labeled) animal, for example, a giraffe. But the thesis
proposed here would hold that the identifications of objects that
were distinguished only by the aspect ratios of a single compo-
nent type would require more time than if the representation
of the object preserved its componential identity. In modeling
only animals, it is likely that Marr and Nishiliata capitalized on
the possibility that appendages (such as legs and some necks)
can often be moedeled by the cylindrical forins of a pipe cleaner.
By contrasl, it is urnlikely that a pipe-cleaner representation of
a desk would have had any success. The lesson from Marr and
Nishihara’s demonstration, even when limited to animals, may
be that an image that conveys only the axis stricture and axes
length is insufficient for primal access.

As noted earlier, onie reason not to posit a representation sys-
tem based on fine quantitative detail, for example, many varia-
tions in degree of curvatire, is thdt such absolute judgments are
notoriously slow and error prone unless limited o the 7 + 2
values argued by Miller (1956). Even this modest limit is chal-
lenged when the judgments have to be executed over a brief 100-
ms interval (Egeth & Pachella, 1969) that is sufficient for acci-
rate object identification, A further reduction in the capacity
for ahsolute judginents of quantitative variations of a simple

7 Absolute judginents are judgments made against a staridard in
nieniory, for exattiple, that Shape A iz 14 em. in length. Such judgmetits
are to be distinguishied from comparative judgmients in which both
stinmili are available for simultaneous comparison, for example, that
Shape A, lyitig alongside Shape B, is longer than B. Comparative judg-
metits gppcar limited only by the resolving power of the sensory system.
Absoclute judgments are limited, in addition, by memory for physical
variation. That the memory limitations are severe is evidenced by the
ﬁndmg that comparative judgments can be made quickly and accurately
for differences so firie that thousdands of levels can be discriminated.
Biit accurate absolute jti'dgments tarely exceed 7 + 2 categoties (Millet,
1956).

8 Paul Cezannie is often 1ncorrectly cited on this point. “Treat natitre
by the cylinder, the sphere, the cone, everiithinig in proper perspective 5o
that each side of an object or planie is directed towards a central point”
(Cezanne, 1904/1941, p. 234, italics mine). Cezanne was referring to
perspective, not the veridical representation of nhjects.
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shape would derive from the necessity, for most objects, to make
simultaneous absolute judgments for the several shapes that
constitute the object’s parts (Egeth & Pachella, 1969; Miller,
1956). This limitation on our capacities for making absolute
judgments of physical variation, when combined with the de-
pendence of such variation on orientation and noise, makcs
quantitative shape Judgments a most implausible basis for ob-
ject recognition. RBC's alternative is that the perceptual dis-
criminations required to determine the primitive components
can be made categorically, requiring the chscnmmatlon of only
two or three viewpoint-independent levels of variation.’

Qur memory for irregular shapes shows clear biases toward
“regularization” (e.g., Woodworth, 1938). Amply documented
in the classical shape memory literature was the tendency for
errors in the reproduction and recognition of 1rregula.r shapes
to be in o direction of regularization, in which slight deviations
from symmetrical or regular figures were omitted in attempts
at reproduction. Alternatively, some irregularities were empha-
sized (“accentuation™), typically by the addition of a regular
subpart. What is the significance of these memory biases? By
the RBC hypothesis, these errors may have their origin in the
mapping of the perceptual input onto a representational system
based on regular primitives. The memory of a slight irregular
form would be coded as the closest regularized neighbor of that
form. If the irregularity was fo be represented as well, an act
that would presumably require additional time and capacity,
then an additional code (sometimes a component) would be
added, as with Bartlett’s (1932) “schema with correction.”

C orﬁputational Considerations: Are 36 Geons Sufficient?

Is there sufficient representational power in a set of 36 geons
Lo express Lhe human’s capacity for basic-level visual categori-
zations? Two estimates are needed to provide a response to this
question: (a) the number of readily available perceptual catego-
ries, and (b) the number of possible objects that couid be repre-
sented by 36 geons, The number of possible objects that could
be represented by 36 geons will depend on the allowable re-
lations among the geons. Obviously, the value for (b) would have
to be greater than the value for (a) if 36 geons are to prove
suiﬁclent

How many readily distinguishable objects do people know?
How might onc arrive at a liberal estimate for this value? One
estimate can be obtained from the lexicon. There are less than
. 1,500 relatively common basic-level object categories, such as
chairs and elephants o we assume that this estimate is too
errors in the esumate then we can assumc pctenual classﬂica—
tion into approximately 3,000 basic-level categories. RBC as-
sumes that perception is based on a particular componentiat
configuration rather than the basic-level category, so we need to
estimate the mean number of readily distinguishable compo-
nential configurations per basic-level category. Almost all natu-
ral categories, such as elephants or giraffes, have one or only a
few instances with differing componential descriptions. Dogs
represent a rare exception for natural categories in that they
have been bred to have considerable variation in their descrip-
tions. Categories created by people vary in the number of allow-
able types, but this number often tends to be greater than the
natural categories. Cups, Lypewrilers, and lamps have just a few

(in the case of cups) to perhaps 15 or more (in the case of lamps)
readily discernible exemplars.!! Let us assume (liberally) that
the mean number of types is 10. This would yield an estimate
of 30,000 readily discriminable objects (3,000 categories X 10
types/category),

A second sourcc for the cstimate derives from considering
plausible rates for learning new objects. Thirty thousand ob-

* jects would require learning an average of 4.5 objects per day,

every day for 18 vears, the modal age of the subjecis in the exper-
iments described below.

¢ This limitation on our capagitics for absolute judgments also occurs
in the auditory domain in speech pcrocptlon in which the modest num-
ber of phonemes can be interpreted as arising from dichotomeous or
tnchotomous contrasts among a few invariant dimensions of speech
productlon (Miller, 1956). Examples of invariant categorized speech
features would be whether transitions are “feathered” (a cue for voicing)
or the formaats “murmured” (a cue for nasality). That these features
are dichotomous allows the recognition system to avoid the limitations
of absolute judgment in the auditory domain. It is possible that the lim-
ited number of phonemes derives more from this limitation for access-
ing memory for fine quantitative variation than it does from limits on
the fineness of the commands to the speech musculature.

® This estimate was obtained from three sources: (a) several linguists
and cognitive psychologists, who provided guesses of 300 to 1,000 con-
crete noun object categories; (b) the average 6-year-old child, who can
pame most of the objects seen in his or her world amd on elevision and
has a vocabulary of less than 10,000 words, about 10% of which are
conerete count nouns; and (¢) & 30-page sample from Websier’s Seventh
New Collegiate Dictionary, which provided perhaps the most defensible
estimate; I counted the number of readily identifiable, unique concrete
nouns that would not be subordinate to other nouns. Thus, “wood
thrush™ was not included because it could not be readily discriminated
from “sparraw” hut “penguin”™ and “ostrich” were counted as separate
noun categories, as were borderline cases. The mean number of such
nouns per page was 1.4, so given a 1,200 page dictionary, this is equiva-
lent to 1,600 noun categories.

" Tt might be thought that faces constitutc an obvicus exception to
the estimate of a ratio of ten exemplars per category presented here, in
that we can obviously recognize thousands of faces. But can we recog-
nize individual faces as rapidly as we recognize differences among basic
level categories? I suspect not. That is, we may know that it is a Face and
noi a chair in less time than that required for the identification of any
particular face. Whatever the ultimate data on face recognition, there
is evidence that the routines for processing faces have evolved to differ-
entially respond fo cuteness (Hildebrandt, 1982; Hildebrandt & Fitzger-
ald, 1983), age (¢.g., Mark & Todd, 1985), and emotion and threats (.g.,
Coss, 1979; Trivers, 1985). Faces may thus constitute 2 special stimulus
case in that specific mechanisms have evolved to respond to biologically
relevant quantitative variations and caution may be in order before re-
sults with face stimuli are considered characteristic of perception in gen-
eral. Another possible exccptlon to the exemplar/category ratio pre-
sented here occurs with categones such as ia.mps, whick could have an
arbitrarily large ‘number of possible bases, shade types, and so on. But
these variations may actually serve to hinder recognition. In a number
of experiments in our laboratory, we have noted that highly stylized or
unusual exemplars of a category are extremely difficult to identify under
brief exposures (and out of context). The elements producing the varia-
tion in these cases may thus be acting as noise (or irrelevant compo-
nents) in the sense that they are present in the image hut not present in
the mental representation for that category. These potential difficulties
in the identification of faces or objects may not be subjectively apparent
from the casual perusal of objects on a page, particularly when they are
in a conlext that facilitates their classification.
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Table |
(Tenerative Power of 36 (Feons
Value Component
36 First component (G,)
X
36 Second component (G2}
X X
3 Size (G » G;, G, €62, G = Gy)
X X
2.4 G, top ot bottom or side (represented for 80% of the objects)
X X
2 Nature of join (end-to-end [off center] or end-to-side
[centcred])
X X
2 Join at long or short surface of G,
X X
2 Join at long ar short surface of (3,

Total: 74,649 possible two-geon objects

Note. With three geons, 74,649 X 36 X 57.6 = 154 million possible
objects. Equivalent to learning 23,439 new objects every day (approxi-
mately 1465/waking hr or 24/min) for 18 years.

Although the value of 4.5 objects learned per day seemis rea-
sonable for a child in that it approximates the maximum rates
of word acquisition diiritig the apes of 2-6 years (Carey, 1978),
it certainly overestimates the rate at which adults develop new
object categories. The iripressive visudl recognition comipe-
tefice of a 6-year-old child, if based on 30,000 visiial categories,
would require the learning of 13.5 objects per day, or about one
per waking hour. By the criterion of léarning rate, 30,000 cate-
gories would appear to be a liberal estimate.

Componential Relations: The Representational
Capacity of 36 Geons

How riany objects could be répiesented by 36 geons? This
calculatior i§ dependent pon two assumptions: (a) the number
of georis needed, ofi average, to uniqiiely specify each object;
anid {b) the number of readily discrifninable relatichs among
the geons, We will start with (b) and see if it will lead to an
empirically plausible value for (a). A possible set of relations is
presented in Table 1. Like the components, the properties of the
relations noted in Table 1 are nonaccidenital in that they can be
determined from virtually any viewpoint, are preserved in the
two-dintensional image, and are categorical, requiring the dis-
crimisiation of only two or three levels. The specification of
these five relations is likely coniservitive because (d) it is cer
tainly a nonexhanstive sét in that other relations can be defined;
and {b) il relations dre chly specified fot 4 pait, rather than
trlples, of geonis. Let iis consider these relations iti order of their
appearance in Table 1,

1. Relstive size. For atiy pair of geoiis, Gi and Gs. Gi could
be nich predter than, sinaller than, or approximately equal
to Gz .

2. Verticality. G, can be above or below or to the side of G,
a relation, by the author's estimate, that is defined for at least
80% of the objects. Thus giraffes, chairs, arid typewriters have a
top-down specification of their componerits, but forks and

imives do not. The handle of a cup is side-connected to the cyl-
inder

3. Centering. The cofinection between any pair of joined
geotis can be end-to-end (and of equal-sized cross section at the
join), as the upper dnd lower arms of a petson, or erid-to-side,
prodiicinig one or two concavities, respectively (Mart, 1977).
Two-concavity joins dre far inore common in that it is rare that
two atbitrarily joitied end-to-end coftiponents will have equal-
sized cioss scctioms. A ndorc gohneral distifiction might be
whether the end of one geon in an end-to-side join is centered
or off centered at thie side of the othér component. The etid-to-
ehd join tight Tepresent only the fmiting, albeit special, case
of off-cefitered joins. In general, the join of any two arbitrary
volumes {o# shapes) will produce two concavities, linless an
edge from one volumie is made to be joined and ccllinear with
an edge from the other voiume.

4. Relative size of surfaces at join, Other than the special
cases of a sphere and a cube, all primitives will have at least a
long and a shott siirface. The join cdn be ot either surface. The
attaché case in Figure 3A and the strongbox in Figiire 3B differ
by the relative lehipths of the sitfaces of the brick {hat ar¢ con-
nectsd to the arch (hatdle). The handie oni the shortest sufface
prodiices the strongbox; on 2 longer surface, the attaché case.
Similarly, the cup and the pail in Figures 3C and 3D, respec-
tively, differ as to whether the handle is conniected to the long
suirface of ihe cylinder (io produce a cup) or ihe short surface
(to produce a pail). In considering only two values for the rela-
tive size of the surface at the join, I am conservatively esiimating
the relational possibilities. Some volumes such as the wedge
hdve as many as five sarfaces, all of whiich can differ in size.

Representational Calculations

The 1,296 different pairs of the 36 geons (i.e., 36%), when mul-
tiplied by the number of relational coinbinations, 57.6 (the
prodiict of the vaticus vilues of the five rélatioiis), gives us
74,649 possible two-geon objects. If a third geori is added to the
1w, then this valae hias to be multiplied by 2,073 (36 geons X
57.6 ways in which the third geon can be related to one of the
two geonis), to yield 154 mﬁlxon possible three-component ob-
jects. This value, of coiirse, readily dccommodates the liberal
estirnate of 30,000 objects actiially known.

The extraordinary disparity between the representational
power of two of thiee geons and the niimber of objects i an
individual's object vocabulary rieans thai there is an extremely
high degree of redundancy in the filling of the 154 milliot cell
geon-relatio space, Fvert with three tithes the guniber of ob-
jects estimated fo be known by an individual (i.e., 90,000 ob-
jects), we would still have less than 5 of 1% of the possible comi-
binations of three geons actually used (i.e., over 99.9% redun-
daricy). _

There is a remiarkable consequerice of this redundancy if ve
assume that objects are distributed randomly throughout the
object space. (Any function that yielded a relatively homoge-
ncous distribution would serve as well) The sparse, homoge-
neous occupation of the space means that, on average, it will be
rare for an object to have a neighbor that differs only by one
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geon ot relation. "2 Because the space was generated by consider-
ing only the number of possible two or three component ob-
jects, a constraint on the estimate of the average number of com-
ponents per object that are sufficient for unambiguous identifi-
cation is implicated. If objects were distributed relatively
homogeneously among combinations of relations and geons,
then only two or three geons would be sufficient to unambigu-
ously represent most objects.

Experimental Support for a Componential
Representation

According to the RBC hypothesis, the preferred input for ac-
cessing object recognition is that of the volumetric geons. In
most cases, only a few appropriately arranged geons would be
all that is required to uniquely specify an object. Rapid obiject
recognition should then be possible. Neither the full comple-
ment of an object’s geons, nor its texture, nor its color, nor the
full bounding contour (or envelope or outling) of the object
need be present for rapid identification. The problem: of recog-
nizing tens of thousands of possible objects becomes, in each
case, just a simple task of identifying the arrangement of a few
from a limited set of geons.

Several object-naming reaction time experiments have pro-
vided support for the general assumptions of the RBC hypothe-
sis, although none have provided tests of the specific set of geons
proposed by RBC or even that there might be a limit 1o the
number of components.'?

In all experiments, subjects named or quickly verified briefly
presented pictures of common objects.!* That RBC may pro-
vide a sufficient-account of object recognition was supported by
experiments indicating that objects drawn with only two or
three of their components could be accurately identified from
a single 100-ms exposure. When shown with a complete com-
plement of components, these simple line drawings were identi-
fied almost as rapidly as full colored, detailed, textured slides of
the same objects. That RBC may provide a necessary account
of object recognition was supported by a demonstration that
degradation (contour deletion), if applied at the regions that
prevented recovery of the geons, rendered an object unidentifi-
able. All the original experimental results reported here have
received at least one, and ofien several, replications.

Perceiving Incomplete Objects

Biederman, Ju, and Clapper (19835) studied the perception of
briefly presented partial objects lacking some of their compa-
nents. A prediction of RBC was that only two or three geons
would be sufficient for rapid identification of most objects. If
there was enough time to determine the geons and their re-
lations, then object identification should be possible, Complete
objects would be maximally similar to their representation and

should enjoy an identification speed advantage over their partial

versions.

Stinuli

The experimental objects were line drawings of 36 common
objects, 9 of which are illustrated in Figure 11. The depiction
of the objects and their partition into components was done

subjectively, according to generally easy agreement among at
least three judges. The artists were unaware of the set of geons
described in this article. For the most part, the components cor-
responded to the parts of the object. Seventeen geon types (out
of the full set of 36), were sufficient to represent the 180 compo-
nents comprising the complete versions of the 36 objects.

The objects were shown either with their full complement of
components or partially, but never with less than two compo-
nents. The first two or three components that were selected were
almost always the largest components from the complete object,
as illustrated in Figures 2 and [3. For example, the airplane
(Figure 13), which required nine components to look complete,
had the fuselage and two wings when shown with three of its
nine componenis. Additional components were added in de-
creasing order of size, subject to the constraint that additional
components be connected to the existing components. Occa-
sionally the ordering of large-to-small was altered when a
smaller component, such as the eye of an animal, was judged to
be highly diagnostic. The ordering by size was done under the
assumption that processing would be compleied earlier for
larger components and, consequently, primal access would be
controlled by those parts. However, it might be the case that a
smaller part, if it was highly diagnostic, wounld have a greater
role in controlling access than would be expected from its small
size. The objects were displayed in black line on a white back-
ground and averaged 4.5° in greatest extent.

12 Informal demonstrations suggest that this is the case, When a single
component or relation of an object is altered, as with the cup and the
pail, only with exireme rarity is a recognizable object from another cate-
gory produced.

2 Biederman (1985) discusses how a limit might be assessed. Among
other conseyuences, a limit vn the number of components would imply
categorical effects whereby quantitative variations in the contours of an
object, for example, degree of curvature, that did not alter a compo-
nent’s identity would have less of an effect on the identification of the
object than contour variations that did alter a component’s identity.

' Our decision o use a naming task with which to assess object rec-
ognition was motivated by several considerations. Naming is a sure sign
of recognition. Under the conditions of these experiments, if an individ-
ual cou]d name the object, he or she must have recognized it. With other
paradigms, such as discrimination or verification, it is difficult (if not
impossibie) to prevent the subject from deriving stimulus selection strat-
egies specific 1o the limited number of stimuli and distractors. Although
naming RTs are relatively slow, they are remarkably well behaved, with
surprisingly low variability (given their mean) for a given response and
few of the response anticipation or selection errors that occur with bi-
nary responscs (especially, keyprosses). As in any task with a behavioral
measure, one has to exert caution in making inferences abont represen-
tations at an earlier stage. In every experiment reported here, whenever
possible, the same objects (with the same name) served in all conditions.
The data from these experimenis (e.g., Figures 19 and 20) were so
closely and reasonably associated with the contour manipulations as
to preclude accounts based on a late name-selection stage. Moreover,
providing the subjects with the set of possible names prior io an experi-
ment, which might have been expected to affect response selection, had
v1rtuall_y no effect on performance. When objects could not be used as
their own controls, as was necessary in studies of complexity, it was
possible to experimentaily or statistically control naming-stage variabil-
ity because the determinants of this varigbility—specifically, name fa-
miliarity (which is highly correlated with frequency and age of acquisi-
tion) and length—are well understood.
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Figure 11. Nine of the experiniental obiects.

The purpose of this experiment was to determine whether the
first few geons that would be available from an unoccluded view
of a complete object would be sufficient for rapid identification
of the object. We ordefed the components by size and diagnos-
ticity because our interest, as just noted; was on primal access
in recognizing a complete object. Assuming that the largest and
most diagnostic componetits would coitrol this access, we stud-
ied the contribiition of the #th largest and most diagiostic cdim-
ponent, when added to the n—1 already existing components,
because this would more closely mimiic the contribution of that
component when looking at the complete object. (Another kind
of experiment inight explore the contribution of an “average”
component by balancing the ordering of the components, Such
an experiment would be relevant to the recognition of an object

_that wais occluded in such a way that only the displayed compo-
nents woild be available for viewing.)

Comiplexity

The objects shown in Figure 11 illustrate the second imajor
viriable in the experimient. Objects differ in complexity; by
RBC’s definition, the differences are évident in the number of
componeiits they require to look complete. For exaniple, the
lamp, the flashlight, the watering can, the scissors, and the ele-
phant require two, three, four, six, and nine components, re-
spectively. As noted previously, it would seem plausible that
partial objects would require more time for their identification
than complete objects, so that a complete airplane of nine com-

ponents, for examiple, might be mmore rapidly recognized thai
only a partial version of that dirplarie, with only three of its
componetts. The prediction fram RBC was that complex ob-
jects, by furnishing riore diagnostic combinations of compo-
nents that could be simiiltaniectsly matched, would be thote
rapidly identified than siniple objects. This prediction is con-
trary to models thdt assurie that objects are recoghized through
a seridl contour tracing process such as that studied by Ulliai

(1983).

General Procedure

Trials were self-paced. The depression of a key on the sub-
ject’s terminal initiated a sequenice of exposutres from thiee
projectors. First, the cotners of a 500.me fixation rectangle (6°
wide) that corresponded to the cortiers of the object slide were
showii, This fixation slide was immedistely followed by a 100-
ms exposiite of 4 slide of an object that had varying numbers
of ifs components present. The presenitation of the object was
imiiedidtely followed by a 500-rhs pattefii mask consisting of 2
rafidom dppearing arrangement of lines. The subjéct’s task was
to name the nhject as fast as possible into a microphone that
triggered a voice key. The experimenter recorded ertors. Prior
to the experiment, the subjects read a list of the object names
to be used in the experiment. (Subsequent experiments revealed
that this procedure for naime familiarization produced no
effect. When subjects were not familiarized with the names of
the experimental objects, results were virtially identical to
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Figure 12, lllustration of the partial and complete versions of 2 three-component objects
(the wine glass and flashlight) and 1 nine-component object (the penguin).

when such familiarization was provided. This finding indicates
that the results of these experiments were not a function of in-
ference over a small set of objects.) Even with the name famil-
iarization, all responses that indicated that the object was iden-
tified were considered correct. Thus “pistol,” “revolver,” “gun,”
and “handgun” were all acceptable as correct responses for the
same object. Reaction times (RTs) were recorded by a micro-
computer that also controlled the projectors and provided
speed and accuracy feedback on the subject’s terminal after
each trial.

Objects were selected that required two, three, six, or nine
components to look complete. There were 9 objects for each of
these complexity levels, yielding a total set of 36 objects. The
various combinations of the partial versions of these objects

“brought the total number of experimental trials (slides) to 99,
Each of 48 subjects viewed alf the experimental slides, with bal-
ancing accomplished by varying the order of the slides.

Results

Figure 14 shows the mean error rates as a function of the
number of components actually displayed on a given trial for
the conditions in which no familiarization was provided. Each
function is the mean for the nine objects at a given complexity
level. Although each subject saw all 99 slides, only the data for
the first time that a subject viewed a particular object will be
discussed here. For a given level of complexity, increasing num-
bers of components resuited in better performance, but error
rates overall were modest. When only three or four components
of the complex objects (those with six or nine components to

look complete) were present, subjects were almost 90% accu-
rate. In general, the complete objects were named without error,
so it is necessary to look at the RTs to see if differences emerge
for the complexity variable.

Mean correct RTs, shown in Figure 15, provide the same gen-
eral ouicome as the errors, except that there was a slight ten-
dency for the more complex objects, when complele, to have
shorter RTs than the simple objects. This advantage for the com-
plex objects was actually underestimated in that the complex
ohjects had lemger names (three and four syllables) and were less
familiar than the simple objects. Oldfield (1966) and Oldfield
and Wingfield (1965) showed that object-naming RIS were
longer for names that have more syllables or are infrequent. This
eftect of slightly shorter R1s for naming complex objects has
been replicated, and it seems safe to conclude, conservatively,
that complex objects do not require more {ime for their identi-
fication than simple objects. This result is contrary to what
would be expected from a serial contour-tracing process (e.g.,
Ullman, 1984). Serial tracing would predict that complex ob-
jects would require more time to be seen as compléte compared
to simple objects, which have less contour to trace. The slight
RT advantage enjoyed by the complex objects is an effect that
would be expected if their additional components were afford-
ing a redundancy gain from morc possibic diagnostic matches
to their representations in memory.

T.ine Drawings Versus Colored Photography

The components that are postulated to be the critical units
for recognition are edge-based and can be depicted by a line
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Figure 13. Ilustration of partial and complete versions of a nine-component object (airplane).

drawing. Color, brightness, and texture would be secondary
routes for recognition. From this perspective, Biederman and
Ju (1986) reasoned that naming RIS for objects shown as line
drawings should closely approximate naming RTs for those ob-
jects when shown as colored photographic slides with complete
detail, color, and texture. This prediction would be true of any
model that posited an edge-based representation mediating rec-
ognition. _

In the Biederman and Ju experiments, subjects identified
brief presentations (30— 100 ms) of slides of common objects.’”
Each object was shown in two versions: professionally phioto-
graphed in full color or as a simplified line drawing showiiig
only the ohject’s major components (wiich as those in Figire
11). In three experiments, subjects named the object; in a
fourth experiment a yes-no verification task was performed
against a target name. Overall, performatice levels with thie two
types of stimuli were equivalent: mean latencies in identifying
images presetited by color photography were 1 { ms shorter than
the drawing but with a 3.9% higher error rate.

A previously unexplored color diagnosticity distinction
among objects allowed us to determine whether color and light-

ness was providing a contribution to primal access independent

of the main effect of photos versus drawings. For some kinds
of objects, such as bananas, forks, fishes, or cameras, color is
diagnostic to the object’s identity. For other kinds, such as
chairs, pens, or mittens, color is not diagnostic. The detection
of a yellow region might facilitate the perception of a banana,
but the detection of the color of a chair is unlikely to facilitdte
its identification, because chairs can be any color. If color was

contributing to primal access, then the former kinds of objects,
for which color is diagnostic, should have enjoyed a larger ad-
vantage when appearing in a color photograph, but this did not
happen. Objects with a diagnostic color did not enjoy any ad-
vantage when they wete displayed as color slides compared with
their line-drawitig versions. That is, showing color-diagnostic
objects such as a banana or a fork as 4 color slide did not confer
any advantage over the line-drawing version compared with ob-
jects suchi as a chair or mitten. Moreover, there was no color

'* An oft-cited study, Ryan and Schwartz (1956), did compate pho-
tography (black & white) against lifie and shaded drawings and car-
toons. But these investigators did niot study basic-level categorization of
an object. Subjects had io deternitie which one of four corfiguirations
of three objects (the positions of five double-thirow electrical krife swit-
ches, the cycles of a steam valve, and thie fingers of a hand) was being
depicted. The subjjects kriew which object was to be presented on a given
trial, For two of the three objects, the cartoons had lower thresholds than
the other modes. But stimulus sampling and drawings and procedural
specifications render interpretation of this experiment prahlematical;
for example, the determination of the switch positions was facilitated
in the cartoons by filling in the handles so they contrasted with the back-
ghouid coritacts. The variability was enormous: Thrg:sholds for a given
forixi of depiction for 4 sifigle object ranjied across the four configura-
tiotis fromn 50 to 2,000 mis. The cartoors did not have lower threshiolds
than the photographs for the hands, the stimulus exariple most fre-
quently shown in secondary soiltees (e.g., Neisser, 1967, Hochberg,
1978; Rock, 1984). Even without a ihask, threshold presertation duia-
tions were an order of magnitude longer than was required in the present
study.
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Figure 14. Mcan percent crror as a function of the number of components in the displayed object (abscissa)
and the number of components required for the object to appear complete {parameter). (Each point is the
mean for nine objects on the firsi occasion when a subject saw that particular object.)

diagnosticity advantage for the color slides on the verification
task, where the color of the to-be-verified object could be antici-
pated

This failure to find a color diagnosticity effect, when com-
bined with the finding that simple line drawings couid be identi-
ﬁed so rapidly as to approach the naming speed of fully de-
tailed, textured, colored photographic slides, supports the
premise that the earliest access to a mental representation of an
object can be modeled as a matching of an edge-based represen-
tation of a few simple components. Such edge-based descrip-
tions are thus sufficient for primal access.

The preceding account should not be interpreted as suggest-
ing that the perception of surface characteristics per se are de-
layed relative to the perception of the components but merely
that in most cases surface cues are generally less efficient routes
for primal access. That is, we may know that an image of a chair
has a particular color and texiure simultaneously with its volu-
metric description, but it is only the volumetric description that
provides efficient access to the mental representation of *“chair.”

1t should be noted that our failure to find a benefit from color
photography is likely restricted to the domain whereby the
edges are of high contrast. Under conditions where edge extrac-
tion is difficult, differences in color, texture, and luminance
might readily facilitate such extraction and result in an advan-
tage for color photography.

There is one surface characteristic that deserves special note:
the lumninance gradient. Such gradients can provide sullicient
information as to a region’s surface curvature (e.g., Besl & Jain,
1986) from which the surface’s convexity or concavity can be
determined. Qur outline drawings lacked those gradients. Con-
sider the cylinder and cone shown in the second and fifth rows,
respectively, of Figure 7. In the absence of luminance gradients,
the cylinder and cone are interpreted as convex (not hollow).

Yet when the cylinder is used to make a cup and a pail in Figure
3, or the cone used to make a wine glass in Figure 12, the vol-
umes are interpreted as concave (hullow). L would (hus seem to
be the case that the interpretation of hollowness—an interpreta-
tion that overrides the default value of solidity—of a volume

can be readily accomplished top-down once a representation is
elicited.

The Perception of Degraded Objects

RBC assumes that certain contours in the image are critical
for object recognition. Several experiments on the perception
of objects that have been degraded by deletion of their contour
(Biederman & Blickle, 1985) provide evidence that these con-
tours are necessary for object recognition {under conditions
where contextual inference is not possible).

RBC holds that parsing of an object into components is per-
formed at regions of concavity. The nonaccidental relations of
collinearity and curvilinearity allow filling-in: They extend bro-
ken contours that are collinear or smoothly curvilinear. In con-
cert, the two assumptions of (a) parsing at concavities and (b)
filling-in through collinearity or smooth curvature lead to a
prediction as to what should be a particularly disruptive form
of degradation: If contours were deleted at regions of concavity
in such a manner that their endpoints, when extended through
collinearity or curvilinearity, bridge the concavity, then the
vomponents would be lost and recognition should be impossi-
ble. The cup in the right column of the top row of Figure 16
provides an example. The curve of the handle of the cup is
drawn so that it is continuous with the curve of the cylinder
forming the back rim of the cup. This form of degradation, in
which the components cannot be recovered from the input
through the nonaccidental properties, is referred to as nonrecov-
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erable degradation and is illustrated for the objects in the right
colurnn of Figure 16,

An equivalent amoint of deleted contour in a midsection of
a curve or line should prove to be less disriptive as the compo-
netits could then be restored through collineatity of curvature.
In this case the components shiould be recoverable. Example
of recoverable forms of degradation are shown in the middle
colurnri of Figure 16.

Ii addition to the procedurs for deleting and bridging con-
civities, two other applications of nonaccidental properiies
wete used to prevent determination of the components: vertex
alteration dnd inisleading symmetry or parallclism.

Vertex Alteration

When 1wo or more edges terminate at the same point in the
image, the visual system assumes that they are terminating at
the same point in depth and a vertex is present at that point,
Vertices are important for determining the nature of a compo-
‘nent (see Figure 5). As noted previously, volumetric compo-
nents will display at least one three-pronged vertex.

There are two ways to alter vertices. One way is by deleting a
segment of an existing vertex. For example, the ‘f-vertex pro-
duced by the occlusion of one blade of the scissors by the other

has been converted into an L-vertex, suggesting that the bound-’

aries of the region in the image are the bouridaties of that region
of the object. In the cup, the curved-T-vertex produced by the
joining of a discontinuous edge of the front rim of the cup with
the occlusional edge of the sides and back rim has been altered

to an L-vertex by deleting the discontinuous edge. With only L-

vertices, objects typically lose their volumetric character and
appear planar.

The other way to alter vertices is to prodiice them through
misleading extension of contours. Just as approximate Jjoins of
interrupted contours might be accepted to produce continuous
edges, if three or more contours appear to meet at a comitnion
poitit whet extended then 4 misledding vertex caii be siuggested.
For example, i the watering can is the fight colimn of Figure
11, the extensions of the contoiir frofi the spout attachimierit
and sprinkler appear to iiieet the cortours of the handle and
tim, suggesting a false vertex of five edges. (Such a niultivettex
is nofidiagnostic to 4 voluie’s threé-dimensional identity [e.g.,
Guzinan, 1968; Sugihara, 1984].)

Misleading Symmetry or Parallelism

Noiirecoverability of cotponents can also be produced by
contour déletion that produces sydimetry or parallelism not
characteristic of the original object. For example, the symmetry
of oval region in the opening of the watering can suggests a pla-
nar componéent with that shape.

Event with these techniques, it was difficult to remove con-
tours siipporting all the components of an object, and some re-
mained in nominally nonrecoverable versioss, as with the han-
dle of the scissofs.

Subjects viewed 35 objects, in both recoverable atid notire-
coverable versions. Priot to the experiment, all siibjects were
showii several exdinples of the varicus forms of degradation for
several objects that were not used in the experiment. In addi-
tion, familiarization with the experimental objects was maiipu-
lated between subjects. Prior to the start of the experimental
trials, different groups of six subjects (a) viewed a 3-sec slide of
the intact version of the objects, for example, the objects in the
left column of Figure 16, which they named; (b) were provided
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with the names of the objects on their terminal; or (c) were given
no familiarization. As in the prior experiment, the subject’s
task was to name the objects.

A glance at the second and third columns in Figure 16 is
sufficient to reveal that one does not need an experiment to
show that the nonrecoverable objects would be more difficult to
identify than the recoverable versions. But we wanted to deter-
mine if the nonrecoverable versions would be identifiable at ex-
iremely long exposure durations (5 s) and whether the prior ex-
posure to the intact version of the object would overcome the
effects of the contour deletion. The effects of contour deletion
in the recoverable condition was also of considerable interest
when compared with the comparable conditions from: the par-
tial object experiments.

Results

The error data are shown in Figure 17. Identifiability of the
nonrecoverable stimuli was virtually impossibie: The median
error rate for those slides was 100%. Subjects rarely guessed
wrong objects in this condition; most often they merely said
that they “didn’t know.” When nonrecoverable objects could be
identified, it was primarily for those instances where some of
the components were not removed, as with the circular rings of
the handie of the scissors. When this happened, subjects could
name the object at 200-ms exposure duration. For the majority
of the objects, however, error rates were well over 50% with no
gain in performance even with 5 s of exposure duration. Objects
in the recoverable condition were named at high accuracy at the
longer exposure durations, '

As in the previous experiments, familiarizing the subjects
with the names of the objects had no effect compared with the
condition in which the subjects were given no information
about the objects. There was some benefit, however, in provid-
ing intact versions of the pictures of the objects. Even with this
familiarity, performance in the nonrecoverable condition was
extraordinarily poor, with error rates exceeding 60% when sub-
jectshad a full 5 sto decipher the stimulus. As noted previously,
even this value underestimated the difficulty of identifying ob-
jects in the nonrecoverable condition, in that identification was
possible only when the contour deletion allowed some of the
components to remain recoverable.

The emphasis on the poor performance in the nonrecovera-
ble condition should not obscure the extensive interference that
was evident at the brief exposure durations in the recoverable
condition. The previous experiments had established that intact
objects, without picture familiarization, could be identified at
near perfect accuracy at 100 ms. At this exposure duration in
the present experiment, error rates for the recoverable stimuli,
whose contours could be restored through collinearity and cur-
vature, averaged 65%. These high error rates at 100-ms expo-
sure duration suggest that the filling-in processes require an im-
age (retinal or iconic)—not merely a memory representation—
and sufficient time (on the order of 200 ms) to be successfully
executed.

A Parametric Investigation of Contour Deletion

The dependence of componential recovery on the availability
and locus of contour and time was explored parametrically by
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Figure 16. Example of five stimulus objects in the experiment on the
perception of degraded objects. (The left column shows the original in-
tact versions. The middle column shows the recoverable versions. The
contours have been deleted in regions where they can be replaced
through collinearity or smooth curvature. The right column shows the
nonrecoverable versions. The contours have been deleted at regions of
cencavity so that collinearity or smooth curvature of the segments brid-
ges the concavity. In addition, vertices have been altered. for example,
from Ys to Ls, and misleading symmetry and parallelism have been
introduced.)

Biederman and Blickle (1983). In the previous experiment, it
was necessary ¢ delete or modify the vertices in order to pro-
duce the nonrecoverable versions of the objects. The recovera-
ble versions of the objects tended to have their contours deleted
in midsegment. It is possible that some of the interference in
the nonrecoverable condition was a consequence of the removal
of vertices per se, rather than the production of inappropriate
components. Contour deletion was performed either at the ver-
tices or at midsegments for 18 objects, but without the acciden-
tal bridging of components through collincarity or curvature
that was characteristic of the nonrecoverable condition. The
amount of contour removed varied from 25%, 45%, and 63%,
and the objects were shown for 100, 200, or 750 ms. Other as-
pects of the procedure were identical to the previous experi-
ments with only name familiarization provided. Figure 18
shows an example for a single object.
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Figure 17. Mean percent errors in object naming as a function of expo-
sure duration, nature of contour deletion (recoverable vs. nonrecovera-
ble components), and familiarization (zone, name, or picturc). {No
differences were apparernit between the none and name pretraining con-
ditions, so they have been combised irito a single fiinctioi.)

The mean percent errors are shown in Figure 19, At the brief-
est exposure duration and the most contour deletion (100-ms
exposure duration and 63% contour deletion), removat of the
vertices resulted in considerably higher error rates than the
midsegment removal, 54% and 31% errors, respectively. With
less contour deletion or longer exposures, the locus of the con-
tour deletion had only a slight effect on naming accuracy. Both
types of loci showed a consistent improvernent with longer ex-
posure durations, with error rates below 10% at the 750-ms du-
ration. By contrast, the error rates in the rionrecoverable condi-
‘tion ini the prior expetiment exceeded 75%, even after 5 s. Al-
though accuracy was less affected by the locus of the cortour
deletion at the longer exposure durations and the lower deletion
proportiotis, there was a consistent advantage on naming laten-

cies of the midsegment removal, as shown in Figure 20, (The

lack of an effect at thie 100-ms exposure duration with 65% dele-
tion is likely a consequence of the high error rates for the vertex
deletion stimuili.} This result shows that if contours are deleted
at a vertex they can be restored, as long as there is no accidental
filling-in. The greater disruption from vertex deletion is ex-
pected on the basis of their irhportance as didgnostic image fea-
tures for the components. Overall, bothi the error and RT data
document a striking dependence of object identification on

what RBC assumes to be a prior and necessary stage of compo-
nential determination. )

We conclude that the filling-in of contours, whether at mid-
segiment or vertex, is a process that can be completed within 1 s.
But the suggestion of a misleading component that bridges a
concavity through collinearity or curvature produces an image
that cannot index the original object, no matter how much time
there is to view the image. Figure 21 compares a2 nonrecoverable
version of an object (on the left) with a recoverable version, with
considerably less contour available in the latter case. That the
recoverable version is still identifiable shows that the recovera-
ble ohjects would retain an advantage even if they had less con-
tour than the nonrecoverable objects. Note that only four of the
components in the recoverable version can be restored by the
contours in the image, yet this is sufficient for recognition (al-
though with considerable costs in time and effort). The recover-
able version can be recognized despite the extreme distortion
in the bounding contour and the loss of all the vertices from the
right side of the object.

Perceiving Degraded Versus Partial Objects

Consider Figure 22 (hat shows, for sume sample objects, one
version in which whole components are deleted so that only
three (of six or nine) of the components remain and another
version in which the samie amount of contour is removed, but
in midsegmerit distribitited over all of the object’s components.
With objects with whole components deleted, it is unlikely that
the missing components are added imaginally, prior to recogni-
tion. Logically, one would have to know what object was being
recognized to know what parts to add. Instead, the activation

Locus of Deletion

Péopgrﬁon At Midsegment At Vertex
ontour
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Figure 18. lllustration for a sihgle object of 25, 45, and 65% contour
removal ceiitered at eithier midsegiment or vertex. (Unlike the nonrecov-
erable objects illustrated in Figiire 16, vertex deletion does not prevent
identification of the object.)
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Figure 19. Mean percent object naming errors as a function of locus of contour remgval
(midsegment or vertex), percent removal, and cxposure duration.

of a representation most likely proceeds in the absence of the
parts, with weaker activation the comsequence of the missing
parts. The two methods for removing contour may thus be
affecting different stages. Deleting contour in midsegment
‘affects processes prior to and including those involved in the
determination of the components {see Figure 2). The removal
of whole components (the partial object procedure) is assumed
1o affect the maiching stage, reducing the number of common
components between the image and the representation and in-
creasing the number of distinctive components in the represen-
tation. Contour filling-in is typically reparded as a fast, low level
process. We (Biederman, Beiring, Ju, & Blickle, 1985) studied
the naming speed and accuracy of six- and nine-component ob-

jects undergoing these two types of contour deletion. At brief .

exposure durations (e.g., 65 ms) performance with partial ob-
jects was betier than objects with the same amount of contour
removed in midsegment both for errors (Figure 23) and RTs
{Figure 24). At longer exposure durations (200 ms), the RTs
reversed, with the midsegment deletion now faster than the par-
tial objects. ' '

Our interpretation of this resuit is that although a diagnostic

subset of a few components (a partial object) can provide a
sufficient input for recognition, the activation of that represen-
tation is not optimal compared with a complete object. Thus, in
the partial ohject experiment descrihed previously, recognition
RTs were shortened with the addition of components to an al-
ready recognizable object, If all of an object’s components were
degraded (but recoverable), recognition would be delayed unti
contour restoration was completed. Once the filling-in was
completed and the complete complement of an object’s geons
was activated, a better maich to the object’s representation
would be possible (or the elicitation of its name) than with a
partial object that had only a few of its components, The inter-
action can be modeled as a cascade in which the component-
deletion condition results in more rapid activation of the geons
but to a lower asymptote (because some geons never get acti-
vated) than the midsegment-deletion condition.

More generally, the finding that partial complex objects-—
wilh oply three of their six or nine components present—can
be recognized more readily than objects whose contours can
be restored through filling-in documents the efficiency of a few
components for accessing a representation.
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Contour Deletion by Occlusion

The degraded recoverable objects it the right column of Fig-
ure 16 have the appearance of flat drawings of objects with in-
terrupted coritours, Biederiiian and Blickle (1985) designed a
demonstration of the dependence of object recognition on com-
ponential ideritification by aligning afi occliditig stirface so that
it appeared to produce the deletions. If the componerts were
responsible for an identifiable volumetric representation of the
object, we would expect that with the recoverdble stimiuli the
objject would complete itself under the oocluding surface and
gssuine a three-dimensional chiaracter. This effect shoiild hot
occur in the nonrecoverable condition. This expectation was
met, as shown in Figures 25 and 26. These stimuli also provide
a demonstration of the time (and effort?) requirenients for con-
tour restoration through colliniearity or curvatiire. We have not
yet obiained objective data on this effect, which thay be compli-
cated by masking effects from the presence of the occluding sur-
face, but we invite the redader to share otir subjective itipres-
sionis, When looking &t a nonrecoverable version of an object

in Figure 25, no object becoties apparent. In the recoverable
version in Figure 26, an object does pop into a three-dimen-
sionial appearance, but most observers report a delay (our own
estimate is approxiriately 500 ms) from the mortient the stini-
1uis is first fixated to when it appears as an identifiable three-
dimerisional entity. .

This demwisstralion of ikic elects ol an vesluding surface Lo
produce contoiir interriiption also provides a control for the
possibiility that the difficiiliy in the nonrecoverable condition
was 4 conSediterice of ifappropriate figlire—ground groupings,
as with the stool in Figire 16. With the stool, the ground that
was apparent throtigh the rungs of the stool became figure in
the nionrecoverable condition. (In getieral, However, only a few
of thc objects had Holes iiz thein whicre this cotild have been a
factor) Figiite-grouiid amibigity wotild not itvalidate the
RBC hypothesis but would complicate the intefpretation of the
effects of the nohrecoverable fioisé, i that somie of the effect
would derive from inapproptiate grouping of contoiirs irto
components and some of the effect would derive from indppro-
priate figiure—grouiid grouping, That the objects i the nicnre-
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Figure 2]. A comparison of a nonrecoverable version of an object {on the left) with a recoverable version
(on the right) with half the contour of the nonrecoverable. Despite the reduction of contour the recoverable
version still enjoys an advantage over the nonrecoverable.
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Figure 22, Sample stimuli with equivalent proportion of coﬁtours
removed either at midsegments or as whole components.

coverable condiiion remain unidentifiable when the contour in-
terruption is attributable to an occluding surface suggests that
figurc—ground grouping cannot be the primary cause of the in-
terference from the nenrecoverable deletions.

Summary and Implications of the Experimental Results

The sufficiency of a component representation for primal ac-
cess 1o the mental representation of an object was supported by
two results: (a) that partial objects with two or three compo-
nents could be readily identified under brief exposures, and (b)
that line drawings and color photography produced compara-
ble identification performance. The experiments with degraded
stimuli established that the components are necessary for object
perception. These results suggest an underlying principle by
which objects are identified.

Principle of Componential Recovery

The results and phenomena associated with the effects of deg-
radation and partial objects can be understood as the workings
of a single Principle of Componential Recovery: If the compo-
nents in their specified arrangement can be readily identified,
object identification will be fast and accurate. In addition to
those aspects of object perception for which experimental re-
search was described above, the principle of componential re-
covery might encompass at least four additional phenomena in
object perception: (a) objects can be more readily recognized
from some orientations than from others (orientation variabil-
ity); (b) objects can be fecog_nize.d from orientations not pre-
viously experienced (object transfer); (c) articulated (or de-
formable) objects, with variable componential arrangements,
can be recognized even whesn the specific configuration might
not have been experienced previously (deformable object in-
variance); and (d) novel instances of a category can be rapidly
classified (perceptual basis of basic-level categories).
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Figure 23. Meari percent errors of object naming as a function of the nature of contour
removal (deletion of midsegments or components) and exposure duration.

Orientation Variability

Objects can be more readily identified from some orienta-
tions compared with others (Paltner, Rosch, & Chase, 1981).
According to the RBC hypothesis, difficult views will be those
in which the componerts extracted from the image are not the
componerits (and their relations) in the representation of the
object. Often such mismatches will arise from dn “accident” of
viewpoint where an image property is not correlated with the
property in the three-dimensional world. For example, when
the viewpoint in the image is along the axis of the major compo-
nents of the object, the resultant foreshortening converts one or
some of the components into sutface components, such as disks
and rectangles in Figure 27, which are not included in the com-
ponential description of the object. In addition, as illustrated in
Figure 27, the surfaces imay occlude otherwise diagnostic com-
ponents. Conscquently, the components extracted from the im-
age will niot readily match the mental representation of the ob-
ject and identificationi will be much more difficult compared to
an orientation, such as that shown in Figure 28, which does
convey the components.

A second condition under which viewpoint affects identifiability

of 4 specific object arises when the orientation is simply unfamil-
iar, as when d soft is viewed from below or whien the top-bottoni
relations among the components are pertuibed as when a nor-
mally upright object is inverted. Jolicoeur (1985} recetitly reported
that naming RT5 were lengthened as a function of an object’s rota-
tion awdy from its riormally upright position. He concluded that
mental rotation was required for the identification of such objects,
as the effect of X-Y rotatioh on RTs was similar for naming arnd

mental rotation. It may be that mental rotation—or a more gen-
eral imaginal transformation capacity stressing working mem-
ory—is required only under the (relalively rare) conditions where
the relations among the components have to be rearranged. Thus,
we might expect to find the equivalent of mental paper folding if
the parts of an object were rearranged and the subject’s task was
to determine if a given object could be made out of the displayed
components. RBC would hold that the lengthening of naming RIS
in Jolicoeur’s (1985) experiment is better interpreted as an effect
that arises not from the use of orientation dependent features but
from the perturbation of the “top-of * relations among the compo-
nents.

Palmer et al. (1981) conducted an extensive study of the per-
ceptibility of various objects when presented at a number of
different orientations. Generally, a thiree-quarters front view
was most effeciive for recognition, and their subjects showed a
clear preference for such views. Palmer et al. (1981) termed this
effective and preferred orientation of the object its canonical
orientation. The canonical orientation would be, from the per-
spective of RB(C, a special case of the arientation that would
ihaximize the match of the components in the image to the rep-
resenitation of the object.

Transfer Between Different Viewpoints

When an object is seen at one viewpoint or orientation it can
often be recognized as the same object when subsequently seen
at some other orientation in depth, even though there can be
extensive differences in the retinal projections of the two views,
The principle of compenential recovery would hold that trans-
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Figure 24. Mean correct reaclion lime (in milliseconds) in object naming as a function of the nature
of contour removal {deletion at midsegments or components) and exposure duration.

fer between two viewpoints would be a function of the compo-
nential similarity between the views, as long as the relations
among the components were not altered. This could be experi-
mentally tested through priming studies with the degrec of
priming predicied to be a function of the similarity (viz., com-
mon minus distinctive components) of the two views. If two
different views of an object contained the same components,
RBC would predict that, aside from effects attributable to varia-
tions in aspect ratio, there should be as much priming as when
the object was presented at an identical view. An alternative
possibility to componential recovery is that a presented object
would be mentally rotated (Shepard & Metzler, 1971) to corre-
spond to the original representation. But mental rotation rates
appear to be too slow and effortful to account for the ease and
speed with which transfer occurs between different orientations
in depth of the same object.

There may be a restriction on whether a similarity function
for priming effects will be observed. Although unlamiliar ob-
jects (or nonsense objects) should reveal a componential simi-
larity effect, the recognition of a familiar object, whatever its
orientation, may be too rapid to allow an appreciable experi-
mental priming effect. Such objects may have a representation
for each orientation that provides a different componential de-
scription. Bartram’s (1974) results support this expectation
thal priming effects might not be found across different views
of familiar objects. Bartram performed a series of studies in
which subjects named 20 pictures of objects over eight blocks

of trials. (In another experiment [Bartram, 1976}, essentially
the same results were found with a same-different name-
matching task in which pairs of pictures were presented.) In the
identical condition, the picturcs were identical across the trial
blocks. In the different view condition, the same objects were
depicted from one block to the next but in different orienta-
tions. In the different exemplar condition, different exemplars,
for example, different instances of a chair, were presented, all
of which required the same response. Bartram found that the
naming RTs for the identical and different view conditions were
equivalent and both were shorter than conirol conditions, de-
scribed below, for concept and response priming effects. Bar-
tram theorized that observers automatically compute and ac-
cess all possible three-dimensional viewpoints when viewing a
given object. Alternatively, it is possible that there was high
componential similarity across the different views and the ex-
periment was insufficiently sensitive to detect slight differences
from one viewpoint to another. However, in four experiments
with colored slides, we (Biederman & Lioyd, 1985) failed to ob-
tain any effect of variation in viewing angle and have thus replj-
cated Bartram’s basic effect (or lack of effect). At this point,
our inclination is to agree with Bartram's interpretation, with
somewhat different language, but restrict its scope to familiar
objects. It should be noted that both Bartram’s and our results
are inconsistent with 2 model that assigned heavy weight to the
aspect ratio of the image of the object or postulated an underly-
ing mental rotation function.
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Figure 25. Nonrecoverable version of an object where the contour deletion
is produced by an occluding suiface,

Different Exemplars Within an Object Class

Just ds we might be able to gaisge the {ransfer between two
different views of the samie object based on a comipotiential-
based similarity metric, we miight be able to predict transfer
between different éxemplars of 4 cormmon object, such as iwo
different instances of a lamp or chiair. _

As ticted in the previotis section, Bartram (1974) alsc in-
cluded a different exemplar condition, in which different ob-
jects with the same namie—differetit cars, for example—were
depicted from block to block. Under the assiifption that
different exemplars would be less likely to have cothriion corri-
poneiits, RBC would predict that this condition woiild be slower
than the identical and different view coriditions biit fister thar
a different object control cordition with 4 new set of objects
that reduired different names for every {rial block. This was
confirtied by Bartram. _ -

For both different views of the same object as well as differenit
exemplars (subordinates) withiti a basic-level category, RBC pre-
dicts that transfer woiild be based on the ovérlap in the comipo-
nefits between thie two views. The strong prediction woiild be thai
the sattié siiilarity function that predicted transfer between
different orieritations of the sariie object wotild also predict the
trafisfer between different exemplars with the samie fiamhe.

The Perceptual Basis of Basic Level Catepories

Consideration of the similarity relations among different ex-
emplars with the same name raises the issue as to whether ob-

jects are imost readily identified 4t a bdsic, as opp‘oéed to a subor-
dinate or superordinate, level of description. The componential
representatioiis desctibed here are representations of specific,

" subordinate objects, although their identificition was often

measiited with 4 basic-level name. Much of the research sug-
gesting that objects dre recognized 4t a basic level have used
stiimuli, often natural, in which the subordinate-level exemiplars
had coniponentiat descriptions that were highly similar to those
for a basic-level prototype for that class of objects. Ouly small
comipotiential differefices; or color or texture, distinguished the
suibordinate-ievel objects. Thus distinguishing Asian elephants
froiti African elephants or Biticks from Oldsmobiles reduires
fine discriminatioti for their verification. The structural de-
sctiptions for thé latpest components would be ideritical. It is
tiot at all surprising that in these cases basic-level identification
wotild be inost rapid. On the other hand, many humarn-made
categbri_es, stich ds lamps, or some natural cdtegories, sich as
dogs (whichi liave beeni bred by humiziis), hive members that
hdve componeritial descriptionis that differ considerably from
onie exemplar to atiother, as withi a pole lainp versiis a ginger jat
table lditip, for exdriple. The same is true of objects that differ
from their basic-level prototype, as penguins or sport cars. With
such instarices, which uncoiifound the similarity between basic-
level and subordinate-level objects, perceptual access should be
at the subordinate (or instatice) level, a resiilt supported by a
tecent report by Jolicosui, Gluck, and Kosslyni (1984), In gen-
eral, then, recogiiition will be at the subordivate level but will
appear to be at the basic level when the componeiitial descrip-
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Figure 26. Recoverable version of an object where the contour deletion is produced by an occluding surface,
(The object, a flashlight, is the same as that shown in Figure 25. The reader may note that the three-
dimensional pereept in this figure docs not occur instantancously.)

tions are the same at the two levels. However, the ease of percep-
tual recognition of nonprototypxcal exemplars, such as pen-
guins, makes it clear that recognition will be at the level of the
exemplar.

The kinds of dcscnptlons postulated by RBC may play a cen-
tral role in children’s capacity to acquire names for objects.
They may be predlsposed to employ different labels for objects
that have different geon descriptions. When the perceptuai Sys-
tem presents a new description for an arrangement of large
geons, the absence of activation might readily result in the ques-
tion ““What’s that?”

For some categories, such as chairs, one can conceive of an
extraordinarily large number of instances. Do we have a priori
structural descriptions for all these cases? Obviously not. Al-
though we can re'c'og‘nize many visual configurations as chairs,
it is likely that only those for which there exists a close structural
description in memory will recognition be rapid. The same ca-
veat that was raised about the Marr and Nishihara (1978) dem-
onstrations of pipe-cleaner animals in an earlier section must
be voiced here. With casual viewing, particularly when sup-
ported by a scene context or when embedded in an array of
other chairs, it is often i:noSmblc to identify unusual instapces as
chairs without much subjective difficulty. But when presented
asan isolated object without benefit of such contextual support,
we have found that recognition of unfamiliar exemplars re-

quires markedly longer exposure durations than those required

~ for familiar instances of a category.
It takes but a modest extension of the principle of componen-

tial recovery to handle the similarity of objects. Simply put,
similar ob_;ects will be those that have a high degree of overlap
in their components and in the relations among these compo-
nents. A similarity measure reflecting common and distinctive
cuinpunents (Tversky, 1977) may be ddcqudtc for describing the
similarity among a pair of obJects or between a given instance
and its stored or expected representation, whatever their basic-
or subordinate-level designation.

The Perception of Nonrigid Objects

Many objects and creatures, such as people and telephones,
have articulated joints that allow extension, rotation, and even
separation of their components. There are two ways in which
such objects can be accommodated by RBC. One possibility,
as described in the previous section on the representation for-
variation within a basic-level category, is that independent
structural descriptions are necessary for each sizable alteration
in the arrangement of an object’s components. For example, it
may be necessary 1o establish a different structural description
for the left-most pose in Figure 29 than in the nght~most pose.
Ir this was Lhe case, then 4 priming paradigm might not reveal
any priming bctwc:en the two stimuli. Another possibility is that
the relations among the components can include a range of pos-
sible values (Marr & Nishihara, 1978). For a relation that al-
lowed complete freedom for movement, the relation might sim-
ply be “joined.” Even that might be relaxed in the case of ob-
jects with separable parts, as with the handset and base of a
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Figure 29. Four configurations of a nonrigid object.

telephone, In that case, it might be either that the relation is
“nearby” or else different structural descriptions are necessary
for attached and separable configurations. Empirical research
needs to be done to determine if less restrictive relations, such
as “join” or “nearby,” have measurable perceptual consc-
quences. It may be the case that the less restrictive the relation,
the more difficult the identifiability of the object. Just as there
appear to be canonical views of rigid objects (Paimer et al.,
1981), there may be a canonical “configuration” for a noarigid
object. Thus, the poses on the right in Figure 29 might be identi-
fied as a woman more slowly than would the poses on the left.

Conclusion

To return to the analogy with speech perception, the charac-
terization of object perception provided by RBC bears a close
resemblance to some current views as to how speech is per-
ceived. In both cases, the ease with which we are able to code
tens of thousands of words or objects is solved by mapping that
input onto a modest number of primitives—55 phonemes or
36 components—and then using a representational system that
can code and access free combinations of these primitives. In
both cases, the specific set of primitives is derived from dichoto-
mous (or trichotomous) contrasts of a small number (less than
ten) of independent characteristics of the input. The ease with
which we are able {0 code 50 many words or objecis may thus
derive less from a capacity for coding continuous physical varia-
tion than it does from a perceptual system designed to represent
the free combination of a modest number of categorized primi-
tives based on simple perceptual contrasts, .

In object perception, the primitive components may have
their origins in the fundamental principles by which inferences

about a three-dimensional world can be made from the edges
in a two-dimensional image. These principles constitute a sig-
nificant portion of the corpus of Gestalt organizational con-
straints. Given that the primitives are fitting simple parsed parts
of an objcct, the constraints toward regularization characterize
not the complete object but the object’s components. RBC thus
provides, for the first time, an account of the heretofore unde-
cided relation between these principles of perceptual organiza-
tion and human pattern recognition.
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