Reprinted from Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988
© Macmillan Magazines Ltd., 1988

Early vision and texture perception
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Texture perception has frequently been sudied using textures
constructed by repeated placement of micropatterns or texture
elements. Theories have been developed to explain the discriminability
of such texturesin terms of specific features within the micropatterns
themselves. For example, Beck!? observed that a region filled with
vertical Tsisreadily distinguished from onefilled with tilted Ts but not
from one filled with vertical Ls. He attributed this to the different
distribution of oriented line segments preventing the former case but
not in the latter. However, Bergen and Julesz® found that a region of
randomly oriented Xs segregated from one filled with randomly
oriented Ls, in spite of the identical distribution of oriented line
segments in the two eases. They suggested that this discrimination
might be based on the density of such featuresas terminators, corners,
and intersections within the patterns. We note here that simpler,
lower -level mechanismstuned for size may be sufficient to explain this
discrimination. We tested this by varying the relative sizes of the Xs
and the Ls, when they produce equal responses in size-tuned
mechanisms they are hard to discriminate, and when they produce
different size-tuned responses they are easy to discriminate.

Figure 1a shows an example of a texture composed of Xs
within a texture composed of Ls, similar to the texture used by
Bergen and Julesz. The X and L micropatterns are each made
of two perpendicular bars, and the bars making the Xs have the
same length and thickness as the bars making the Ls. The tex-
tures are easily distinguished, and Bergen and Julesz suggested
that discrimination could be accomplished by mechanisms that
messured the differing densities of micropattern features; for
example the Xs have four terminators each, while the Ls only
have two; the Ls have a corner while the Xs do not; and so on.
This type of description was motivated by analysis of many
textures constructed of small micropatterns made up of line

Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%, and the intensity
adjusted for the same
mean luminance. Dis
criminabitity is enhanced.
¢, The bars of the Ls
have been shortened by
25%, and the intensity
adjusted for the same
mean luminance. Dis
criminabitity is impaired.
Bottom row: the responses
of a size-tuned mechan-
ism d, response to image
a; e, response to image b;
f; response to image c.

segments, dots or other discrete components.

One magjor difficulty with this approach is that it is based on
a verbal description of image features rather than on the raw in-
tensity values in the image itself. This makes it difficult to test
under more general conditions. In order to apply this analysis to
a more general class of images, it would first be necessary to
construct operators that extract the feature descriptions being
invoked—a task that has yet to be accomplished. Before em-
barking on such a difficult approach it is worth asking whether
simpler extracted properties, such as those derivable from linear
filters, will suffice (see refs. 4-7).

When inspecting this texture one may observe that the Xs
look smaller than the Ls, and that they break up the background
differently. This suggests that very simple size-tuned mechan-
isms, such as cells with center-surround receptive fields could
play an important role in the discrimination. We changed the
relative sizes of the Xs and the Ls to see whether we could
increase and decrease the discriminability of the patterns.

Figure 1b shows the result of lengthening the bars of the Ls
by 25%. The bar intensities have been compensated so that the
overall density of the micropatterns (that is, the equivalent
amount of ink in each) is unchanged. The discrimination
becomes easier. Thus, athough the micropatterns still have the
same number of terminators, corners, and so on, the manipula-
tion of size has a significant impact on the discriminability of
the texture.

Figure 1c shows the result of making the bars of the Ls 25%
shorter than in the original textures, again with compensation
in the intensity of the bars. Now the discrimination is more
difficult.

Figure 1 d—f shows the response of perhaps the simplest
size-tuned mechanism we can construct: a linear centre-
surround receptive field followed by full-wave rectification.
Figure 1d shows the response to the stimulus of Fig. 1a; the
mechanism responds more strongly to the patch in the centre.
Figure 1e shows the response to Fig. 1b; now the differences
are even more apparent. Figure 1f shows the response to Fig.
1c; in this case the size-tuned mechanism gives responses of
similar strength to the two textures.

For this particular set of textures, then, the discriminability
can be predicted fairly well from the activities of size-tuned
units, without reference to more feature-like properties of the mi-
cropatterns. We suggest that the visual system uses a two-stage
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cascade of local energy measures (similar to the cascade of
orientation measures discussed by Knuttson and Granlund®).
In the first stage, linear filters are followed by a rectifying
nonlinearity (asin fig. 1 d-f); spatial averaging provides pri-
mary energy measures. These responses are then treated as
image arrays for input to a further layer of linear filters, which
compute secondary energy measures that indicate the locations
of texture boundaries.

Models for texture perception that are based on concepts
such as 'terminators’ and 'corners’ have been important in
motivating research in early vision, but the models have proven
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difficult to formalize in such a way that they can be applied to
wide classes of textures. Although we do not present a full model
of texture perception here, the above demonstration indicates
that simple filtering processes operating directly on the image
intensities can sometimes have surprisingly good explanatory
power. The accompanying paper by Voorhees and Poggio®,
based on a computational investigation into texture analysis,
offers an example of a more fully elaborated theory and further
demon-strates the potential power of simple processes in early
vision.
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