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 SUMMARY
 The common approach to the multiplicity problem calls for controlling the familywise
 error rate (FWER). This approach, though, has faults, and we point out a few. A different
 approach to problems of multiple significance testing is presented. It calls for controlling
 the expected proportion of falsely rejected hypotheses -the false discovery rate. This error
 rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. There-
 fore, in problems where the control of the false discovery rate rather than that of the
 FWER is desired, there is potential for a gain in power. A simple sequential Bonferroni-
 type procedure is proved to control the false discovery rate for independent test statistics,
 and a simulation study shows that the gain in power is substantial. The use of the new
 procedure and the appropriateness of the criterion are illustrated with examples.

 Keywords: BONFERRONI-TYPE PROCEDURES; FAMILYWISE ERROR RATE; MULTIPLE-
 COMPARISON PROCEDURES; p-VALUES

 1. INTRODUCTION

 When pursuing multiple inferences, researchers tend to select the (statistically) signif-
 icant ones for emphasis, discussion and support of conclusions. An unguarded use
 of single-inference procedures results in a greatly increased false positive (signif-
 icance) rate. To control this multiplicity (selection) effect, classical multiple-
 comparison procedures (MCPs) aim to control the probability of committing any
 type I error in families of comparisons under simultaneous consideration. The
 control of this familywise error rate (FWER) is usually required in a strong sense,
 i.e. under all configurations of the true and false hypotheses tested (see for example
 Hochberg and Tamhane (1987)).

 Even though MCPs have been in use since the early 1950s, and in spite of the
 advocacy for their use (e.g. being mandatory for some journals, as well as in some
 institutions such as the Food and Drug Administration of the USA), researchers
 have not yet widely adopted these procedures. In medical research, for example,
 Godfrey (1985), Pocock et al. (1987) and Smith et al. (1987) examined samples of
 reports of comparative studies from major medical journals. They found that
 researchers overlook various kinds of multiplicity, and as a result reporting tends
 to exaggerate treatment differences (Pocock et al., 1987).

 Some of the difficulties with classical MCPs which cause their underutilization
 in applied research are as follows.
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 (a) Much of the methodology of FWER controlling MCPs concerns compari-
 sons of multiple treatments and families whose test statistics are multivariate
 normal (or t). In practice, many of the problems encountered are not of the
 multiple-treatments type, and test statistics are not multivariate normal. In
 fact, families are often combined with statistics of different types.

 (b) Classical procedures that control the FWER in the strong sense, at levels
 conventional in single-comparison problems, tend to have substantially less
 power than the per comparison procedure of the same levels.

 (c) Often the control of the FWER is not quite needed. The control of the
 FWER is important when a conclusion from the various individual infer-
 ences is likely to be erroneous when at least one of them is. This may be
 the case, for example, when several new treatments are competing against
 a standard, and a single treatment is chosen from the set of treatments which
 are declared significantly better than the standard. However, a treatment
 group and a control group are often compared by testing various aspects
 of the effect (different end points in clinical trials terminology). The overall
 conclusion that the treatment is superior need not be erroneous even if some
 of the null hypotheses are falsely rejected.

 The first difficulty has been partially addressed by the recent line of research
 advancing Bonferroni-type procedures, which use the observed individual p-values,
 while remaining faithful to FWER control: Simes (1986), Hommel (1988), Hochberg
 (1988) and Rom (1990). The other two difficulties still present a serious problem.
 This is probably why a per comparison error rate (PCER) approach, which amounts
 to ignoring the multiplicity problem altogether, is still recommended by some (e.g.
 Saville (1990)).

 In this work we suggest a new point of view on the problem of multiplicity. In
 many multiplicity problems the number of erroneous rejections should be taken into
 account and not only the question whether any error was made. Yet, at the same
 time, the seriousness of the loss incurred by erroneous rejections is inversely related
 to the number of hypotheses rejected. From this point of view, a desirable error
 rate to control may be the expected proportion of errors among the rejected
 hypotheses, which we term the false discovery rate (FDR). This criterion integrates
 Spj0tvoll's (1972) concern about the number of errors committed in multiple-
 comparison problems, with Soric's (1989) concern about the probability of a false
 rejection given a rejection. We use the term FDR after Soris (1989), who identified
 a rejected hypothesis with a 'statistical discovery'.

 After some preliminaries, we present in Section 2.1 a formal definition of the
 FDR. Two immediate but important consequences of controlling this error rate are
 given: it implies weak control of FWER and it admits more powerful procedures.
 In Section 2.2 we present some examples where the control of the FDR is desirable.
 In Section 3 we present a simple Bonferroni-type FDR controlling procedure and
 the rest of the section is devoted to a discussion and demonstration of its properties.
 Section 4 presents a simulation study of the power of the procedure.

 2. FALSE DISCOVERY RATE

 Consider the problem of testing simultaneously m (null) hypotheses, of which
 mo are true. R is the number of hypotheses rejected. Table 1 summarizes the
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 TABLE 1

 Number of errors committed when testing m null hypotheses

 Declared Declared Total
 non-significant significant

 True null hypotheses U V mO
 Non-true null hypotheses T S m -mO

 m-R R m

 situation in a traditional form. The specific m hypotheses are assumed to be known
 in advance. R is an observable random variable; U, V, S and T are unobservable
 random variables. If each individual null hypothesis is tested separately at level a,
 then R = R(a) is increasing in a. We use the equivalent lower case letters for their
 realized values.

 In terms of these random variables, the PCER is E(V/m) and the FWER is
 P(V > 1). Testing individually each hypothesis at level a guarantees that E(V/m) S a.
 Testing individually each hypothesis at level a/lm guarantees that P(V > 1) < a.

 2.1. Definition of False Discovery Rate
 The proportion of errors committed by falsely rejecting null hypotheses can be

 viewed through the random variable Q = V/(V + S)-the proportion of the rejected
 null hypotheses which are erroneously rejected. Naturally, we define Q = 0 when
 V + S = 0, as no error of false rejection can be committed. Q is an unobserved
 (unknown) random variable, as we do not know v or s, and thus q = v/(v + s),
 even after experimentation and data analysis. We define the FDR Qe to be the
 expectation of Q,

 Qe = E(Q) = E{V/(V + S)} = E(V/R).

 Two properties of this error rate are easily shown, yet are very important.

 (a) If all null hypotheses are true, the FDR is equivalent to the FWER: in this
 case s = 0 and v = r, so if v = 0 then Q = 0, and if v> 0 then Q = 1,
 leading to P(V > 1) = E(Q) = Qe. Therefore control of the FDR implies
 control of the FWER in the weak sense.

 (b) When mo < m, the FDR is smaller than or equal to the FWER: in this
 case, if v > 0 then vir < 1, leading to X(v > l) > Q. Taking expectations on
 both sides we obtain P(V > 1) > Qe, and the two can be quite different. As
 a result, any procedure that controls the FWER also controls the FDR.
 However, if a procedure controls the FDR only, it can be less stringent, and
 a gain in power may be expected. In particular, the larger the number of
 the non-true null hypotheses is, the larger S tends to be, and so is the
 difference between the error rates. As a result, the potential for increase in
 power is larger when more of the hypotheses are non-true.
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 2.2. Examples

 The following examples show the relevance of FDR control in some typical situa-
 tions. In addition they indicate the desirability of a large number of rejections (dis-
 coveries). Both aspects are addressed by the procedure given later in Section 3.

 One type of multiple-comparison problem involves an overall decision (conclu-
 sion, recommendation, etc.) which is based on multiple inferences. An example of
 this type of problems is the 'multiple end points problem', which was used earlier
 to show that FWER control is not always needed. In this example the overall
 decision problem is whether to recommend a new treatment over a standard
 treatment. Discoveries here are rejections of null hypotheses claiming that treatment
 is no better than standard on specified end points. These conclusions about different
 aspects of the benefit of the new treatment are of interest per se, but the set of
 discoveries will be used to reach an overall decision regarding the new treatment.
 We wish therefore to make as many discoveries as possible (which will enhance a
 decision in favour of the new treatment), subject to control of the FDR. Control
 of the probability of any error is unnecessarily stringent, as a small proportion of
 errors will not change the overall validity of the conclusion.

 Another type of problems involves multiple separate decisions without an overall
 decision being required. An example of this type is the multiple-subgroups problem,
 where two treatments are compared in multiple subgroups, and separate recommen-
 dations on the preferred treatments must be made for all subgroups. As usual
 we wish to discover as many as possible significant differences, thereby reaching
 operational decisions, but would be willing to admit a prespecified proportion of
 misses, i.e. willing to use an FDR controlling procedure.

 The third type involves screening problems, where multiple potential effects are
 screened to weed out the null effects. One example is screening of various chemicals
 for potential drug development. Another example is testing multiple factors in
 an experimental (2k say) design. In such examples we want to obtain as many as
 possible discoveries (candidates for drug developments, factors that affect the
 quality of a product) but again wish to control the FDR, because too large a fraction
 of false leads would burden the second phase of the confirmatory analysis.

 2.3. Alternative Formulations
 We have suggested to capture the error rate vaguely described as 'the proportion

 of false discoveries' using the FDR. At this point it might be illuminating to discuss
 alternative formulations of this concept, and thus to motivate our choice of FDR
 further.

 Undoubtedly, controlling the random variable Q at each realization is most desir-
 able. This is impossible, for if mO = m and even if a single hypothesis is rejected
 v/r = 1 and Q cannot then be controlled. Controlling (V/R IR > 0) has the same
 problem - it is identically 1 in the above configuration. Therefore E(V/R IR > 0)
 cannot be controlled. The FDR, instead, is P(R > 0) E(V/R IR > 0), and, as will
 be shown later, this is possible to control.

 Second, consider the formulation that Soric (1989) gave to 'the proportion of
 false discoveries among the discoveries' as Q' = E(V)/r. This quotient is neither
 the random variable Q nor its expectation but is a mixture of expectations and
 realizations. It is not even the conditional expectation of Q, namely E(Q I R = r)
 = E(V I R = r)/r, which has again the problem of control for mO = m.
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 Third, consider E(V)/E(R). When all hypotheses are true it is identically 1, and
 again impossible to control. A remedy may be given by either adding 1 to the
 denominator, a somewhat artificial solution, or by changing the denominator to

 E(R IR > 0). Modifying both numerator and denominator in the same way will
 again run into problems of control when mo = m.

 3. FALSE DISCOVERY RATE CONTROLLING PROCEDURE

 3.1. The Procedure
 Consider testing H1, H2, . . ., Hm based on the corresponding p-values P1,

 P2, ..., Pm. Let P(l) < P(2) < ... < P(m) be the ordered p-values, and denote by
 H(i) the null hypothesis corresponding to P(i). Define the following Bonferroni-
 type multiple-testing procedure:

 let k be the largest i for which P(i) < m q

 then reject all H(i) i = 1, 2, ..., k. (1)

 Theorem 1. For independent test statistics and for any configuration of false
 null hypotheses, the above procedure controls the FDR at q*.

 Proof. The theorem follows from the following lemma, whose proof is given
 in Appendix A.

 Lemma. For any 0 < mO < m independent p-values corresponding to true null
 hypotheses, and for any values that the ml = m - mO p-values corresponding to
 the false null hypotheses can take, the multiple-testing procedure defined by
 procedure (1) above satisfies the inequality

 E(Q I Pmo+ 1 = Pi, * * Pm = pml) P mOq*. (2) m

 Now, suppose that ml = m - mO of the hypotheses are false. Whatever the joint
 distribution of P1I', ..., Pm', which corresponds to these false hypotheses is,
 integrating inequality (2) above we obtain

 E(Q) < MOq* < q*'
 m

 and the FDR is controlled.

 Remark. Note that the independence of the test statistics corresponding to the
 false null hypotheses is not needed for the proof of the theorem.

 This procedure was mentioned by Simes (1986) as an exploratory extension to
 his procedure for rejection of the intersection hypothesis that all null hypotheses
 are true if, for some i, P(i) < ia/m. Whereas Simes (1986) showed that his proce-
 dure controls the FWER under the intersection null hypothesis, Hommel (1988)
 showed that the extended procedure for inference on individual hypotheses does not
 control the FWER in the strong sense: for some configuration of the false null
 hypotheses, the probability of an erroneous rejection is greater than a.

 Hochberg (1988) has suggested a different way to utilize Simes's procedure so that
 it does control the FWER in the strong sense, by offering the following procedure:
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 let k be the largest i for which P(i) < m + 1 - i ;

 then reject all H(i) i = 1, 2, . . ., k.

 Note the relationship between Hochberg's procedure and the FDR controlling
 procedure when q* is chosen to equal a. Both Hochberg's procedure and the FDR
 controlling procedure are step-down procedures, which start by comparing P(m)
 with ax, and if smaller all hypotheses are rejected -as if a PCER approach had been
 taken. If P(m) > a, proceed to smaller p-values until one satisfies the condition.
 The procedures end, if not terminated earlier, by comparing P(1) with a/rm, as in
 a pure Bonferroni comparison. At the two ends the procedures are similar, but, in
 between, the sequence of p(i)s is compared with {1 - (i - 1)/m}a in the current
 procedure, rather than with { 1/(m + 1 - i)}a in Hochberg's procedure. The series
 of linearly decreasing constants of the FDR controlling method is always larger than
 the hyperbolically decreasing constants of Hochberg, and the extreme ratio is as
 large as 4m/(m + 1)2 at i = (m + 1)/2. This shows that the suggested procedure
 rejects samplewise at least as many hypotheses as Hochberg's method and therefore
 has also greater power than other FWER controlling methods such as Holm's
 (1979).

 3.2. Example of False Discovery Rate Controlling Procedure
 Thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) and

 anisoylated plasminogen streptokinase activator (APSAC) in myocardial infarction
 has been proved to reduce mortality. Neuhaus et al. (1992) investigated the effects
 of a new front-loaded administration of rt-PA versus those obtained with a standard
 regimen of APSAC, in a randomized multicentre trial in 421 patients with acute
 myocardial infarction. Four families of hypotheses can be identified in the study:

 (a) base-line comparisons (11 hypotheses), where the problem is of showing
 equivalence;

 (b) patency of infarct-related artery (eight hypotheses);
 (c) reocclusion rates of patent infarct-related artery (six hypotheses);
 (d) cardiac and other events after the start of thrombolitic treatment (15

 hypotheses).

 In this last family FDR control may be desired: we do not wish to conclude that the
 front-loaded treatment is better if it is merely equivalent to the previous treatment
 in all respects.

 In the paper, however, there is no attention to the problem of multiplicity (the
 only exception being the division of the end points into primary and secondary).
 The individual p-values are reported as they are, with no word of warning regarding
 their interpretation. The authors conclude that

 'Compared to APSAC treatment, despite more early reocclusions, the clinical course with
 rt-PA treatment is more favorable with fewer bleeding complications and a substantially
 lower in-hospital mortality rate, presumably due to improved early patency of the infarct-
 related artery'.
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 1995] CONTROLLING FALSE DISCOVERY RATE 295

 The statement about the mortality is based on a p-value of 0.0095.
 Consider now the fourth family, which contains the comparison of mortality and

 14 other comparisons. The ordered p(i)s for the 15 comparisons made are

 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344,

 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.000.

 Controlling the FWER at 0.05, the Bonferroni approach, using 0.05/15 = 0.0033,
 rejects the three hypotheses corresponding to the smallest p-values. These hy-
 potheses correspond to reduced allergic reaction, and to two different aspects of
 bleeding; they do not include the comparison of mortality. Using Hochberg's
 procedure leaves us with the same three hypotheses rejected. Thus the statement
 about a significant reduction in mortality is unjustified from the classical point
 of view.

 Using the FDR controlling procedure with q* = 0.05, we now compare sequen-
 tially each P(i) with 0.05i/15, starting with P(15). The first p-value to satisfy the
 constraint is P(4) as

 P(4) = 0.0095 < - 0.05 = 0.013. P(4) ~~15
 Thus we reject the four hypotheses having p-values which are less than or equal
 to 0.013. We may support now with appropriate confidence the statements about
 mortality decrease, of which we did not have sufficiently strong evidence before.

 3.3. Another Look at False Discovery Rate Controlling Procedure
 The above FDR controlling procedure can be viewed as a post hoc maximizing

 procedure, as the following theorem suggests.

 Theorem 2. The FDR controlling procedure given by expression (1) is the
 solution of the following constrained maximization problem:

 choose a that maximizes the number of rejections at this level, r(a),

 subject to the constraint am/r(a) < q*. (3)

 Proof. Observe that, for each a, if P(i) < a <P(i+ 1), then r(a) = i. Further-
 more, as the ratio on the left-hand side of constraint (3) increases in a over the range
 on which r(a) is constant, it is enough to investigate cas which are equal to one of
 the p(i)s. This a = P(k) satisfies the constraint because a/r(a) = P(k)/k < q*/m.
 By considering the largest potential as (largest p(i)s) first, the procedure yields the
 a with the largest r(a) satisfying the constraint.

 Thus the procedure has also the appearance of a simultaneous maximization of
 R and FDR control being attempted after experimentation. When each hypothesis
 is tested individually at level a, the expected number of wrong rejections satisfies
 E(V) < am. So, after observing the outcome of the experiment, an upper bound
 estimate of Qe is am/r(a). In view of the observed p-values, the level a can now
 be chosen, by maximizing the observed number of rejections r(a) subject to the
 constraint on the implied FDR-like bound. As noted in the examples of Section 2.2
 this aspect of the procedure is desirable.
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 4. SOME POWER COMPARISONS

 We compare the power of our FDR controlling procedure with some other
 Bonferroni-type procedures which control the FWER. Under the overall null
 hypothesis the proposed method controls the FWER at level q*. We take the FWER
 controlling methods and the FDR controlling method to control the FWER weakly
 at the same level, using q* = a, and compare the power of the methods from the
 two different approaches under different configurations. It is clear from the
 comment in Section 2.1, property (b), that a method which controls the FDR is
 generally more powerful than its counterpart which controls the FWER (in the
 strong sense). The magnitude of the difference remains to be investigated.

 4.1. The Setting
 We studied this question by using a large simulation study, where the family of

 hypotheses is the expectations of m independent normally distributed random
 variables being equal to 0. Each individual hypothesis is tested by a z-test, and the
 test statistics are independent. We use q* = a = 0.05. The configurations of the
 hypotheses involve m = 4, 8, 16, 32 and 64 hypotheses, and the number of truly
 null hypotheses being 3m/4, m/2, m/4 and 0. The non-zero expectations were
 divided into four groups and placed at L/4, L/2, 3L/4 and L in the following three
 ways:

 (a) linearly decreasing (D) number of hypotheses away from 0 in each group;
 (b) equal (E) number of hypotheses in each group;
 (c) linearly increasing (I) number of hypotheses away from 0 in each group.

 These expectations were fixed (per configuration) throughout the experiment.
 The variance of all variables was set to 1, and L was chosen at two levels-5 and

 10-thereby varying the signal-to-noise ratio.
 Each simulation involved 20000 repetitions. The estimated standard errors of the

 power are about 0.0008-0.0016. As the same normal deviates were used in a single
 repetition across all configurations with the same number of hypotheses, and the
 alternatives in different configurations were monotonically related, a positive
 correlation was induced. This correlation reduces the variance of a comparison
 between two methods or two configurations to below twice the variance of a single
 method.

 4.2. Results
 Fig. 1 presents the estimates of the average power (the proportion of the false

 hypotheses which are correctly rejected) for three methods. The two FWER
 controlling methods, the Bonferroni (dotted curves) and Hochberg's (1988) method
 (broken curves), are compared with the new FDR controlling procedure (full
 curves). The following observations can be made from the results displayed.

 (a) The power of all the methods decreases when the number of hypotheses
 tested increases-this is the cost of multiplicity control.

 (b) The power is smallest for the D-configuration, where the non-null hypoth-
 eses are closer to the null, and is largest for I (which is obvious but
 mentioned for completeness).
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 Fig. 1. Simulation-based estimates of the average power (the proportion of the false null hypotheses
 which are correctly rejected) for two FWER controlling methods, the Bonferroni ( . ) and
 Hochberg's (1988) (?) methods, and the FDR controlling procedure ( ): (a) decreasing;
 (b) equally spread; (c) increasing

 (c) The power of the FDR controlling method is uniformly larger than that of
 the other methods.

 (d) The advantage increases with the number of non-null hypotheses.
 (e) The advantage increases in m. Therefore, the loss of power as m increases

 is relatively small for the FDR controlling method in the E- and
 1-configurations.
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 (f) The advantage in some situations is extremely large. For example, testing
 32 hypotheses, equally spread in four clusters from 1.25 to 5 so that none
 is true, the power of the Bonferroni method is 0.42. The procedure suggested
 increases the power to 0.65; testing as few as four hypotheses, half of which
 are true, the values are 0.62 and 0.70 respectively.

 (g) It is known that Hochberg's method offers a more powerful alternative to
 the traditional Bonferroni method. Nevertheless, it is important to note that
 the gain in power due to the control of the FDR rather than the FWER is
 much larger than the gain of the FWER controlling method over the Bonfer-
 roni method.

 Casting these results into a different form, it may be seen that in some configura-
 tions up to half the non-null hypotheses which were not rejected by the Bonferroni
 procedure are now rejected by the FDR controlling method, when at least half of
 the tested hypotheses are non-null. Even when only 25% of the hypotheses are non-
 null, the gain in power is such that about a quarter of the equally spaced hypotheses
 which were not rejected before are now rejected.

 Fig. 1 allows us also to answer a question raised by a referee, about how
 E(V/mo) is controlled by the FDR controlling method. This error rate is 0 when
 mo = 0 and otherwise can be approximated by the average level crave at which the
 individual hypotheses are tested. Obviously aave is always less than q*, but for mo
 away from m more can be said: let Rave be the average number of rejections and
 fave be the average power (displayed in Fig. 1). It follows that maxave < Raveq*
 (mOotave + m1fave)q*, so

 aave < favem + m( -

 Therefore E(V/mo) looks as in Fig. 1 but is smaller by a factor of q* or even less.
 For m = mo the error is much closer to q*/mo than to q*: 0.0132, 0.0063, 0.0033,
 0.0017 and 0.0009 for the four, eight, 16, 32 and 64 hypotheses tested respectively.

 5. CONCLUSION

 The approach to multiple significance testing in this paper is philosophically
 different from the classical approaches. The classical approach requires the control
 of the FWER in the strong sense, a conservative type I error rate control against
 any configuration of the hypotheses tested. The new approach calls for the control
 of the FDR instead, and thereby also the control of the FWER in the weak sense.
 In many applications this is the desirable control against errors originating from
 multiplicity.

 Within the framework suggested, other procedures may be developed, including
 procedures which utilize the structure of specific problems such as pairwise com-
 parisons in analysis of variance. A different direction, which we have already
 pursued, is to develop an adaptive method which incorporates the ideas of Hochberg
 and Benjamini (1990). In this paper, however, we have only focused on presenting
 and motivating the new approach that calls for controlling the FDR, and we have
 demonstrated that it can be developed into a simple and powerful procedure. Thus
 the cost paid for the control of multiplicity need not be large. This might contribute
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 considerably to the proliferation of a greater awareness of multiple-comparison
 problems, and of cases where something is done about it.
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 APPENDIX A: PROOF OF LEMMA

 The proof of the lemma is by induction on m. As the case m = 1 is immediate, we proceed
 by assuming that the lemma is true for any m' < m, and showing it to hold for m + 1.

 If mo = 0, all null hypotheses are false, Q is identically 0 and

 E(QIPi =PI * Pm = Pm) =0( m + I q*.

 If mo > 0, denote by P, = 1, 2,..., mo, the p-values corresponding to the true null
 hypotheses, and the largest of these by P'mo). These are U(0, 1) independent random vari-
 ables. For ease of notation assume that the ml p-values that the false null hypotheses take
 are ordered Pi < P2 6. . .S PM,. Finally, define jo to be the largest 0 < j < ml satisfying

 MO0+ j
 pi < + q* (4)

 and denote the right-hand side of inequality (4) at jo by p ".
 Conditioning on P'mo) = p

 E(QIPmo+i =Pi .. . Pm Pm) =lE(Q IPIo) Pmo+1 =Pi . ,

 Pm = Pm)fA(mo)(P) dp

 +P E(Q I PI PM Pmo+1 =Pig s. *

 Pm = Pml)f1(mO)(P) dp (5)

 with fP(mO)(P) = MOP (MO - 1).
 In the first partp S p". Thus all mo + jo hypotheses are rejected, and Q mo/(mo + jo).

 Evaluating the integral first, and then using inequality (4), we obtain

 MO_ in0 inO +IO*pMO~ -__
 ____+__-(P_ 6)MO + _ Jo q*_p_ )mOi - nO q*(p )l)mO04 (6) MO +ioiMO+j0imn+1 i+ 1

 In the second part of equation (5), consider separately each pj0 < pj < P'mo) = P < Pj+ I,
 along with pj0 < p" < P'mo) = P <Pjo + l. It is important to note that, because of the
 way by which jo and p" are defined, no hypothesis can be rejected as a result of the
 values of P, Pj+1i Pj+2, . . , Pml Therefore, when all hypotheses-true and false-are
 considered together, and their p-values thus ordered, a hypothesis H(i) can be rejected
 only if there exists k, i 6 k < mO + j - 1, for which P(k) < {k/(m + 1)} q*, or equivalently
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 P(k) k mO +j - 1 * (7)
 p mO+j-1 (m+l)p

 When conditioning on Pmo) = p, the P /p for i = 1, 2, . . ., mo - 1 are distributed as
 mo - 1 independent U(O, 1) random variables, and the pi/p for i = 1, 2, ..., j are
 numbers corresponding to false null hypotheses between 0 and 1. Using inequality (7) to

 test the mo + j - 1 = m' < m hypotheses is equivalent to using procedure (1), with the
 constant {(mo + j - 1)/(m + I)p}q* taking the role of q*. Applying now the induction
 hypothesis, we have

 E(QIPImo)PP MO m-1 M m+j-1I q* M m-1q
 = P. Pmo+1 = P1. PM =Pml) mO +j I (m + 1)p (m + I)p

 (8).

 The bound in inequality (8) depends on p, but not on the segment pj < p < Pj+ I for which
 it was evaluated, so

 |E(Q I P'(mo) p, Pmo+ I = P I. . PM = PM l)f(mO) (P)dP < J (m +4 q*mop(m0l) dp

 =m+ q* (MO l)p(mo-2)dp mO q*fl, pt(mO -1) (9)

 Adding inequalities (6) and (9) completes the proof of the lemma.
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