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Abstract

This paper outlines a philosophical and psycho-physiological basis for embodied perception, and develops a framework
for conceptual embodiment of vision-guided robots. We argue that categorisation is important in all stages of robot vision.
Further, that classical computer vision is unsuitable for this categorisation, however, through conceptual embodiment, active
perception can be effective. We present a methodology for developing vision-guided robots that applies embodiment, explicitly
and implicitly, in categorising visual data to facilitate efficient perception and action. Finally, we present systems developed
using this methodology, and demonstrate that embodied categorisation can make algorithms more efficient and robust.
Crown Copyright © 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society. All rights reserved.
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I suddenly see the solution of a puzzle-picture. Before
there were branches there; now there is a human shape.
My visual impression has changed and now I recog-
nize that it has not only shape and colour but also a
quite particular ‘organization’.

L. Wittgenstein [1]

1. Introduction

Many contemporary computer vision algorithms consider
the perceiver to be a passive entity that is given images, and
must process them to the best of its ability. Purposive vision,
animate vision, or active perception emphasises that the re-
lationship between perception and the perceiver’s physiol-
ogy, as well as the tasks performed, must be considered in
building intelligent visual systems [2]. By physiology we
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refer to fundamental aspects of vision and interaction, such
as being able to fixate, move the viewpoint, as well physi-
cally interact with the object. However, such research often
ignores categorisation and is mostly concerned with early
vision (e.g., optical flow and segmentation). To date, there
has been little consideration of the relationship between per-
ception and the perceiver’s physiology involving explicit
categorisation and high-level vision. In this paper, we are
concerned with developing effective computational vision
for physically embodied entities (robots). As such we in-
vestigate the role of categorisation in vision, and of the em-
bodiment of the perceiver in categorisation. We argue two
main points: that categorisation is useful in vision; and, that
for an entity that is physically embodied, its embodiment
can and should play an important role constructing categori-
sation systems for the entity. We argue that categorisation
is useful at all stages of vision for robot guidance and dis-
cuss philosophical aspects of what is required to apply cat-
egorisation and high-level vision when the perceiver has a
real body, e.g., an autonomous mobile robot. This approach
is supported by recent physiological and psycho-physical
findings.

In some approaches to computer vision, including the
classical approach exemplified by Marr [3], the conception
is of a general all-purpose vision. We present an argument
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from the philosophical literature that such an approach is
limited in what it can achieve due to an incorrect understand-
ing of categorisation. However, the philosophical concept of
embodied categorisation offers a way forward for computer
vision for robot guidance. Embodiment, for humans, is the
theory that abstract meaning, reason, and imagination have
a bodily basis [4]. We then examine categorisation in human
perception from a philosophical view point, and consider
recent physiological studies, finding that categorisation ap-
pears at all levels of human perception, and is fed back from
later to earlier stages of visual processing. We argue that
models are the means by which conceptual intervention can
be achieved at the earliest stages of computer vision pro-
cesses, and that these facilitate feedback from later stages to
earlier. However, we also note that contextual information
can be fed directly into early vision processes via models in
computer vision.

Embodied categorisation can yield advantages: robots
with embodied categorisation systems can act successfully
based on data that fundamentally underdetermines the
robot’s environment. Also, we are able to simplify com-
plex models, save unnecessary computation, and make the
system more robust by eliminating sources of error.

This paper introduces the relevant philosophical con-
cepts and considers classical vision as outlined by Marr,
arguing that the categorisation aspect of classical computer
vision is inconsistent with fundamental aspects of what is
known about human categorisation. We consider contem-
porary computer vision and conclude that although the
majority is not inconsistent in this manner, the categorisation
assumptions of classical vision are present in some work. We
then examine embodied categorisation for vision in humans
from both a philosophical and physiological perspective.
We define embodiment in mobile robots and a methodol-
ogy for developing embodied vision-guided mobile robots.
Finally, we present systems that were developed under this
methodology, and other work that illustrates benefits of an
embodied approach.

1.1. Embodiment

Embodiment, for humans, is the theory that abstract mean-
ing, reason and imagination have a bodily basis [5]. Embod-
iment is formed by the nature of our bodies, including per-
ception and motor movement, and of our physical and social
interactions with the world. Lakoff [4] considers categorisa-
tion to be the basic element of thought, perception, action
and speech. To see something as a kind of thing involves
categorisation. We reason about kinds of things, and per-
form kinds of actions.! The human conceptual system arises
from conceptual embodiment, and is a product of experi-

I'We do not argue that actions are discrete, just that there are
types of actions, such as grasping with a precision or a power grip
[6]. There may be a continuum of actions of grasping with a power
grip for different objects.

ence, both direct bodily experience, and indirect experience
through social interaction. If human thought, perception and
action are based on categorisation, and this categorisation is
embodied, then we should consider the proposition that em-
bodied categorisation may be a useful paradigm for robot
perception.

2. Marr’s classical computer vision paradigm

Marr’s approach [3], begins with images, which are trans-
formed by segmentation into a primal sketch, and then com-
posed into a 2% D sketch. From this, the system infers what
objects are in the real world (Fig. 1). The paradigm aims to
“capture some aspect of reality by making a description of it
using a symbol”. It describes a sequence of representations
that attempt to facilitate the “recovery of gradually more
objective, physical properties about an object’s shape” [3].

This approach assumes that the visible world can be
described from a raw image. We use Marr’s paradigm to
exemplify an approach aimed at producing a general vision.
This approach rejects any role for the system’s embodiment
or physiology: it must cater for all embodiments, purposes,
and environments. As such, there must be either a sin-
gle, uniquely correct categorisation for all objects in the
world, or vision must enumerate all possible descriptions
and categories of visible objects. This idea that computer
vision provides an objective description of the world that
agents can reason about can be seen within some groups
of the agents research community. While some aspects of
reasoning can be considered independently of embodiment,
our view is that embodied categorisation must be the ba-
sis for some aspects of agent reasoning when the agent is
connected to a physical world by computer vision.

3. Why a general computer vision is ill-suited to robot
guidance

The classical approach has been the basis of consider-
able development in computer vision. It offered a frame-
work for breaking up vision into a series of processes that
facilitated modular development with separate areas of re-
search. The usefulness of hierarchical layers of processing
has been demonstrated by numerous successful vision sys-
tems, and researchers continue to make valuable contribu-
tions in particular areas. Beyond acknowledging a valuable
contribution, we are not concerned with a full critique of this
approach. Marr’s classical conception is ill-suited to robot
guidance because it requires that objects in the world are
objectively subdivided into categories, thus a computer vi-
sion system should be able to image a scene, and produce
a list of its contents without any consideration of the pur-
pose of the classification. This is an issue not so much of
algorithms, but of how they are applied.
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Fig. 1. Marr’s model of computer vision.
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We do not question the value of vision algorithms that
attempt to be as successful as possible with minimal ass-
umptions. Nor do we object to purely data-driven vision
algorithms. However, there are limitations that are appar-
ent in tasks involving classification at all levels (e.g., object
recognition, interpretation of line drawings, colour classifi-
cation, etc.). Any general computer vision faces difficulties,
because there is no uniquely correct description of the world,
and the list of possible descriptions is infinite for practical
purposes.

Dupré [7] argues that there is no unique, natural cate-
gorisation. If a general vision program existed, then it must
be able to uniquely classify all living organisms. However,
Dupré details examples where two standard schemes of bio-
logical classification, biological classification of organisms
into taxa and everyday language, do not coincide. In tax-
onomy an organism is classified into a hierarchical series
of taxa, the narrowest of which is species. If an objective
classification of natural kinds existed, then there should be
only one unambiguously correct taxonomic theory, and this
should coincide with everyday language. One may allow
differences based on human eccentricities, but distinctions
made on the basis of functional necessity must coincide.
Similarly, a single general objective computer vision sys-
tem would have to serve the needs of everyday language
and scientific classification. Dupré argues that this is not
the case, that within the world there are countless legiti-
mate, objectively grounded ways of classifying objects in the
world. These often cross-classify one another in indefinitely
complex ways.

Dupré gives many examples. We outline just two. Tax-
onomically, several species of garlic and onions are in the
same genus, i.e., taxonomy makes no distinction between
them. However, clearly for cooking the difference is func-
tionally important, and therefore everyday language makes
a distinction. Secondly, the class angiosperms (flowering
plants) includes daisies, cacti and oak trees, but excludes
pine trees. The distinction as to whether the plant develops
its seeds in an ovary has little application outside biology.
Conversely the gross morphological feature of being a tree
has no place in scientific taxonomy. However, for an au-
tonomous car, the difference between a daisy and a large oak
tree is considerable, when it blocks the road in front of the
car. Dupré gives many other examples of cases where peo-
ple draw distinctions for pragmatic reasons, based on real
properties, that are not recognised by taxonomy. Naturally,
everyday use and scientific terms do correlate in many cir-
cumstances, but clearly this is frequently not the case. Note
that this does not mean there is no good way of classifying
biological organisms. Rather, there are many good methods

of classification, sometimes equally good, and which one is
useful in a particular case depends on the purpose of the
classification.

If there is no unique classification of living things, clearly
there is no unique classification of all things in the world.
Further, other types of objects suffer similar ambiguities.
Enumeration of the almost infinite number of possible clas-
sifications of an object is intractable. Consider an image
of “a computer”, including a monitor. For some purposes
the monitor will be a component, and for others it will
not, and the monitor may be classified as a television, elec-
tronic components, or even a chair, etc. With no unique
classification of objects, and a large number of possible
classifications, computer vision cannot practically classify
all objects that may appear in a scene without considering
the purpose of classification. This raises the question of how
objects should be categorised if there is no uniquely correct
method. The philosophy of the mind gives a possible solu-
tion for vision-guided robots: embodied categories. Objects
should be classified by the way the robot relates to them.

3.1. Difficulties in low-level computer vision

In this paper we are arguing not just that categorisation
of high-level objects is not unique, but that embodied cate-
gorisation is useful across all levels of vision. We will now
examine low-level vision, particularly human colour cate-
gorisation. There is a continuous range of visible colours
that can be described by hue, saturation, and brightness (or
other schemes). Underlying hue and saturation is the wave-
length of the light reflected from a surface. Valera et al. [8]
describe three different cone cells in the human eye, whose
overlapping photopigment absorption curves have peaks of
560, 530, and 440 nanometers. Excitory and inhibitory pro-
cesses in post-receptoral cells can add or subtract recep-
tor signals. Clearly there are physiologically real aspects to
colour. When we view colours in isolation there is a close
correspondence between the wavelength of light reflected
from visible surfaces and the colour that we perceive. How-
ever, in a complex scene, the light reflected locally is not suf-
ficient to predict perceived colour. There are two additional
phenomena: approximate colour constancy, where the per-
ceived colour remains constant despite large lighting inten-
sity changes; and, simultaneous colour contrast, where the
same reflected wavelength can be seen as different colours
depending on its surrounds [8]. Thus, we cannot consider
the colour of objects in isolation, but must consider visual
context.

Colour categorisation is also partially culturally specific.
Valera et al. [8] point to research by Berlin and Kaye [9]
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that found that when several languages contain a term for a
basic colour category, speakers virtually always agreed on
what was the best example of the category. However, bound-
aries between colour categories varied for different language
groups, and the perceptual distance between colours was
not uniform. The boundaries of colour are partly defined by
culture (a form of embodiment under Lakoff’s definition).
Thus, for a computer vision system to attempt to give hu-
man classifications for colour, different sets of classifications
would be required for different languages groups. While
computer vision can perform feedback and enumeration for
classification, this does demonstrate the presence of cate-
gorisation in low-level vision, and that this categorisation
may be embodied.

Further, in classifying colour objects, we would ideally
like a computer vision system to take object colour into ac-
count. However, the system cannot perceive the colour of
the object, only of the reflected light, which also depends on
incident light. In computer vision, this is often managed by
colour calibration, with human intervention to label colours.
Certainly this mapping can be resolved from knowledge of
incident light properties, or the visual appearance of part of
the visible scene (e.g., a set of reference colours). However,
in order to discover the mapping between object colour re-
flectance properties and apparent colour, we require a priori
information. Thus, although the reflectance properties of ob-
jects are real, how the colours will appear depends on the
environment, and how they should be categorised is not sim-
ply defined. Embodied classification applies to early vision.

3.2. Phenomena and noumena

Another barrier to objective computer vision classifica-
tion is the perceptual process itself. Bennet [10] offers an
analysis of Kant’s [11] distinction between phenomena and
noumena. The word phenomena covers all the things, pro-
cesses and events that we can know about by means of
senses. Statements about phenomena are equivalent to state-
ments about sensory states, or the appearance of things.
From these, Kant distinguishes noumena as anything that
is not phenomenal, something which is not a sensory state,
and cannot be the subject of sensory encounter. Noumena
are sometimes equated with the “things in themselves”.

For this paper, the important distinction is that there are
objects, processes, events, etc., that exist in the world, but
as humans, we do not have access to objects themselves,
rather to sensory states pertaining to objects. We can see
implications of this above, although an object has reflectance
properties, what is perceived is only the reflected light, and
is dependent on lighting in the environment. For computer
vision, a system cannot perceive everything about an object,
as it does not have access to the object but only to its own
sensory states. Regardless of the quality of sensors, complete
information about an object can never be directly perceived.

Real sensor limitations restrict access to the environment
properties even further. For example, a laser range finder re-

turns an indication of the distance to the closest obstructed
point on its path, for a finite array of beams, each of fi-
nite size. If a number of neighbouring sensor values return
the same distance, many robotic systems will assume this
indicates the presence of an obstacle. Given an embodied
system and a purpose, this may be a reasonable assump-
tion. For example, for a large robot navigating to a goal it is
reasonable to assume that the path is blocked by some real
physical entity that lead to these perceptions.> However, if
we want a general objective scene description, we can as-
sume no such thing. For example, if the sensor reading was
caused by small tree branches that were aligned with the
beams, small robot may fit between the gaps.

To summarise, sensors do not describe what exists in the
world, only what they are able to perceive of it. Thus, we
can reasonably assess if a sensor system is adequate for a
purpose, but we cannot have a single all-purpose sensor.

We conclude that embodied categorisation is used at
multiple levels of human vision, and that there cannot be a
general vision system to handle all required categorisations.
This does not say that particular vision algorithms are in any
way deficient, just that the application of such algorithms
under the assumption of a general vision is unsuitable for
aspects of some problems, such as visual guidance of robots.

3.3. More recent computer vision

In this section, we examine three types of computer vision
that are relevant to robotic guidance: some that do take an
embodied framework; some research that is well-suited to
an embodied approach; and, some recent work that takes
the classical general vision approach. We do not attempt
to review vision for mobile robot guidance as an extensive
review has recently been published [13].

Active perception research emphasises the manipulation
of visual parameters to acquire useful data about a scene
[2]. For example, computation can be reduced by control-
ling the direction of gaze, which provides additional con-
straints, simplifying early vision [14]. Within active vision,
researchers have linked perception directly to action, such
as visual servoing, (e.g., [15]), where the control of robotic
actuators is connected in control loops directly with features
extracted from images.

Model-based methods match sets of features, which are
derived from an image, to candidate values or value ranges.
A match suggests that a particular structure or object is vis-
ible. In this way, the model specifies a description of an
object in terms of features it can recognise. This interpre-
tation of model-based representation does not assume there
is a uniquely correct description for the visible part of the
world. Model-based vision is often associated with tasks
that explicitly categorise (e.g., object recognition). How-
ever, model-based vision can also apply to early visual tasks

2 A tour group may pose as a wall specifically to confuse guide
robots [12].
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such as tracking. Drummond and Cipolla [16] render an ar-
ticulated 3D model into the scene, allowing quite precise
recovery of the world position of the tracked object. In con-
trast, Mansouri [17] examines a minimal model for tracking,
assuming only intensity consistency and shape consistency
(with deformation) in tracking the region of interest. Both
are sound algorithms, however, for the cost of a model of
the tracked object, Drummond and Cipolla gain accuracy
and robustness.

The geometric viewpoint [ 18] formalises projection-based
vision mathematically, including multiple view geometry
(e.g., [19]) and visual motion of curves and surfaces [20].
Some research combines the geometric approach with ro-
bust statistics (e.g., see [19]). Studies of general visual
geometry do not directly consider perceiver physiology.
However, research into fundamental properties of imaging
should not be regarded under the classical paradigm as there
is no commitment categorisation theories of objects. Indeed
such work supports a geometric approach to constrained
viewpoint analysis, and so is highly applicable for an
embodied approach.

Model-based computer vision is often disembodied.
For example, aspect graphs, as discussed in [21], repre-
sent a series of generic views of an object. The views are
geometrically derived, based on what theoretically may
appear, without explicit consideration of what actually can
be perceived. This can result in millions of views being
required to represent a complex object [22]. Matching may
be a lengthy process, even with hierarchical indexing [23].
This is generally referred to as the indexing problem [22].
In Artificial Intelligence the problem of determining what
knowledge is relevant to a particular situation is called the
knowledge access problem [24].

However, some aspects of classical vision still appear in
some recent papers. For instance, Shock Graphs [25] are
used for content-based image retrieval. The indexing method
gives more weight to larger and more complex parts, and
models objects by their silhouettes. While both these ideas
may be useful heuristics given no information about con-
straints for a particular image set, and may be particularly
good for certain image classes, they may also be a degener-
ate choice. It cannot be assumed that one set of classification
heuristics is suitable for all problems.

4. Applying embodied concepts in human vision
4.1. A philosophical viewpoint

There is a distinction that can be drawn between viewing
a scene and perceiving something about the scene. Wittgen-
stein [1] uses the phrase noticing an aspect to describe the
experience of noticing something about a scene for the first
time, e.g., viewing a face and seeing (noticing) a likeness
to another face. After noticing an aspect, the face does not
change, but we see it differently. Noticing an aspect is not

Fig. 2. Wittgenstein’s line-drawing could be described as: a glass
cube; an inverted open box; a wire frame in a box shape; or, three
boards forming a solid angle.

Fig. 3. The Necker cube. Is the top horizontal line or the bottom
horizontal line actually on the front face of the cube?

interpretation in a high-level sense as there is no conscious
falsifiable hypothesis as to object identity made at this stage,
although it may be made subsequently. Consider Fig. 2 from
[1], and the four descriptions in the caption: each provides
a different suggestion of what the same diagram may be. By
considering each one separately, we are able to see the di-
agram as one thing or another. This is not an interpretation
about what the diagram represents. In seeing the diagram as
an inverted open box we perceive the diagram in a particu-
lar way, but do not necessarily consciously hypothesise that
it is as such, although we may do so subsequently.

There are two ways to view Fig. 3. After seeing one as-
pect, a mental effort is needed to see the other. In seeing one
aspect, we are not necessarily saying this object is a cube
with the top line on the front face. Wittgenstein notes that in
seeing something as something for the first time, the object
appears to have changed. We may have noticed an organ-
isation in what we see that suggests a structure of what is
being looked at. For instance, we may determine that two
lines previously considered to be separate are actually a sin-
gle line. A way of understanding seeing-as is to consider
what a group of lines or features may be a picture of. For
instance, Fig. 2 could be a picture of any of the things that
are described in the captions.

This type of seeing is conceptual. Human vision does
not simply provide a list of objects to which reason can
apply concepts and draw interpretations. Some form of cat-
egorisation may occur at multiple levels at an early stage
in the visual process, such as identifying basic features,
such as edges, and identifying grouping of features as
described above. Perceptual mechanisms may classify
underlying structures using concepts before a conscious
hypothesis about object identity is formed.

4.2. A physiological viewpoint

Jeannerod [6] examines neuroscientific evidence pertain-
ing to visual action, particularly reaching and grasping, tasks
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that are often considered to rely largely on early vision.
Reaching and grasping are fundamental to human action and
so may offer an insight into how some aspects of human cat-
egorisation have arisen, and thus may be useful in develop-
ing algorithms for robotic interaction. Jeannerod examines
prehesion, preshaping of the hand in preparation to grasp
while reaching. While the hand moves towards the object,
the fingers and thumb shape based on factors including ob-
ject size and the type of grip required. The grip required can
be classified as either a “precision” or “power” grip. In the
precision grip, generally, the thumb and one or more fingers
are in opposition, whereas in the power grip the fingers are
flexed to clamp against the palm. The precision grip is for
activities requiring fine motor control such as writing with a
pen, while the power grip is stronger and not well-suited to
fine motion interaction, but is used for tasks requiring force
(e.g., hammering). Both grips can be used alternatively for
almost every object. The intended task determines the type
of grip used. What we consider important here is that ba-
sic visuo-motor tasks such as grasping that might not be
thought to be categoric, require a categorisation of the task
for which the object is to be used.

Further, Jeannerod presents a subject who, due to brain
injury, is unable to shape her hand to reflect object size when
reaching for unfamiliar objects. However, if the object is fa-
miliar, the subject is able to preshape with a level of accuracy
typical of unimpaired subjects. Here categoric data from ob-
ject recognition is assisting in basic reaching tasks. Specific
biological evidence suggesting feedback from higher areas
of visual processing to lower has been noted in the visual
system also [26].

Another subject has difficulty naming objects. In seeing
an iron, the subject is unable to say what it is, and mistakes
what it is used for, but is able to indicate that it is used by
moving it back and forth horizontally. Jeannerod comments
that although identification of the object’s attributes is pre-
served, such as attributes that are relevant to object use, the
subject could not identify the object. They were unable to
bind the perceptual attributes together in a way that allowed
them to access its semantic properties. We see here multiple
levels of categorisation.

In binocular rivalry [27] conflicting stimuli are presented
to each eye. Frequently, subjects report being aware of one
perception, then the other, in a slowly alternating sequence.
A number of neurons in the early stages of the visual
cortex that were generally active in association with one of
the stimuli were active when that stimulus is consciously
perceived. However, a similar number were excited when the
stimulus was visible, but not perceived. At the inferior tem-
poral cortex, after the information has moved through other
stages of the visual cortex, almost all neurons responded
vigorously to their preferred stimulus, but are inhibited when
the stimulus was not experienced. This suggests that the in-
formation from each eye moves through early stages of the
cortex, before being suppressed in later stages. Here we see
neural processes relating to multiple levels of categorisation,

and some form of categorisation occurring early in the
visual cortex.

The physiological evidence and Wittgenstien’s insight
show that there are multiple levels of processing and cat-
egorisation involved in perception, and that categorisation
can be used early in the visual process. The process of cat-
egorisation is certainly not entirely bottom up, with some
level of feedback evident. It also shows that high-level clas-
sification can assist in what might be considered to be early
vision tasks.

4.3. Models play an analogous role in computer vision

In computer object recognition, categorisation can occur
at multiple stages. Take a classical example: interpreting
a line drawing image. There must be working hypothesis
(model) as to what constitutes an edge pixel. Extracting edge
pixels often leads to a set of broken edges. The line drawing
of Fig. 2 may be just one way of filling in the gaps. We may
then decide on a working hypothesis that the edges corre-
spond to a box where the concavity is below the two larger
surfaces. Data driven algorithms for interpreting line draw-
ings (e.g., [28]) cannot resolve such ambiguous structures,
some form of model is required. Finally, after a model has
been used to interpret the basic structure there may be many
possible classifications that are consistent with that struc-
ture. A hypothesis must be made about object category. We
may now decide that our box is consistent with a battery
charger or a shoe box. Other evidence, such as “we are in a
shoe shop” may lead us to decide that it is a shoe box. Also,
there may be feedback from categorisation at a higher level
to lower levels. Here we see that multiple levels of classifi-
cation are required within computational vision systems, in
a manner analogous to the human visual system.

This forms an analogy with the process of “seeing as”
as described by Wittgenstein. There may be ambiguity at
some stage of visual processing about how image struc-
ture should be perceived. Ambiguity can be resolved by
applying models set by feedback from later stages of visual
processing, or directly by applying a model of the situa-
tion immediately based on known contextual information.
In either case a model is a means by which conceptual in-
tervention can be applied at any stage of visual process. In
a similar manner the physiological studies described earlier
showed that object identification could resolve difficulties
in grasping. Conceptual intervention may be necessary at
the earliest stages of computer vision and can be applied
through models.

Categorisation is also necessary for a vision system to
guide a robot through a non-trivial environment. Simple cat-
egories like “free-space” and “obstacle” may be sufficient in
some cases. Brooks [29] noted that a robot has its own per-
ceptual world that is different from other robots and humans.
The perceptual world is defined by embodiment. Robots may
need embodied categories that are different from human cat-
egories to deal with their sensory world.
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5. Embodiment of vision-guided robots

We may select categories and features to be used in a
robot vision model from the many possible categories and
features using the constraints of the robot’s embodiment.
Brooks [30] considers that the key idea of embodiment is
to ground regress of abstract symbols. Being grounded is
essential for real-world interaction, however, a robot’s em-
bodiment also constrains the relationships that it will have
with objects and the environment. Thus, representations,
both symbolic and non-symbolic are not only grounded,
they can also be defined structurally in terms of robot em-
bodiment and the impact of embodiment on environment
interaction. A vision-guided mobile robot acts upon the
world in a causal manner, and can perceive results of its ac-
tions. It is embodied in that it has a particular physical exis-
tence which constrains its interaction and perception. Some
of these constraints are outlined in Fig. 4.

It could be argued that a robot is also embodied in its
software, for instance, if a vision-guided robot uses only
edges, then it will be unable to distinguish objects that
have similar basic structure with differing surface shape.
This has been deliberately excluded here as it blurs the
distinction between embodiment of entities that physically
interact with the real world, and agents that exist only in
a virtual world. This paper specifically addresses physical
entities.

5.1. Embodiment, task and environment

Dreyfus argues that context is crucial to the way hu-
man intelligence handles the knowledge access problem. A
global anticipation is required which is characteristic of our
embodiment [24]. Searle [31] describes this as the back-
ground. The background is the enormous collection of
common-sense knowledge, ways of doing things, etc., that
are required for us to perform basic tasks. The background
cannot be made explicit as there is no limit to the number
of additions required to prevent possible misinterpretations,
and each addition would, in turn, be subject to interpre-
tation. With respect to different backgrounds, any visual
scene has an almost infinite number of true descriptions. For
example, a house could be “my house”, “a charming Cal-
ifornian bungalow”, or as in Fig. 5. The fact that the robot
has physical embodiment means that it has an associated
context, which incorporates purpose (task), spatial con-
text (environment), and naturally, a temporal context. This
context can apply to mobile robots in the same way as for
humans.

5.1.1. The role of the task

Situation theory can be seen as anchoring parameters,
such as how entities are categorised in the situation in which
they occur [32]. In robotics research, the term “situated”
has often been used in the sense that entities in the world
can be seen by a robot in terms of their relationship with

(1) Robot movement is constrained by its physical bulk. A particular robot’s struc-
ture restricts its ability to fit into places, to bring its sensors close to objects, and
constrains the operations it may perform.

(2) Robot movement is constrained by kinematics and a movement control system.
Although some robots are omni-directional, many have finite turning circles, and
are only able to move in certain ways. In cluttered environments this leads to the
piano movers problem.

(3) The types of surfaces and environments a robot can traverse are restricted. Many
robots, due to lack of ground clearance, structural robustness, or motor strength,
are restricted to indoor operations, and even may have difficulties with rough floor
surfaces, inclines, and stairs. For outdoor robots, much of the earth’s surface is not
traversable by wheeled vehicles. Although, legged robots can travel on a greater
range of surfaces, they have other limitations.

(4) Most robots travel on the ground, and hence never perceive objects from some
viewpoints, or act upon them from certain angles. Also, depending a robot’s size,
small obstacles can sometimes be ignored. Similarly, overhead shelves do not
obstruct robots that are shorter than them.

(5) Robot perception is constrained by sensor limitations. For instance, cameras re-
quire sufficient light (e.g., visible, infra-red), and contrast to distinguish an edge
between two objects. Digital cameras only perceive features at a particular scale.
Features smaller than one pixel are indiscernible, while objects larger than the
pixel array cannot be perceived from a single viewpoint. The effect of camera
resolution on scale depends on the robot-to-object distance and camera zoom.
Further, odometry always has errors, so position is seldom precise.

Fig. 4. Embodied constraints on a robot.
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Fig. 5. Different tasks may require different categorisations for the same object. (a) Task: move to goal position. Description: an obstacle.

(b) Task: Find “Uncle Bill’s house”. Description: “Uncle Bill’s house”.

the robot [30]. For example, objects may be classified as
“the-object-I-am-tracking” or “everything-else” [33] rather
than having a category that has meaning beyond the robot’s
interaction. In terms of conceptual embodiment, the task de-
fines a particular perspective and helps designate the facts
that are relevant and those that can be ignored. For a robot
viewing the house mentioned above, different categories
may be appropriate given different tasks. For example, in
Fig. 5, the same house may be categorised as an obstacle,
or “Uncle Bill’s House” depending on the task. If it is an
obstacle, a path around it may be all that is important, how-
ever, if it is a house that the robot needs to enter, it may
need to know more, such as where the door is.

5.1.2. The role of the environment

The simple categorisation mentioned above is based on a
blob segmented from a uniform background. This may be
adequate for the environment the system inhabits, but may
not be for others. The environment constrains a robot’s pos-
sible experience of the world, the events that can occur, and
the scenes and objects that may appear. It is known that hu-
mans recognise objects more quickly and accurately in their
typical contexts than when viewed in an unusual context
(e.g., fire-hydrant in a kitchen) [34]. The most appropriate
conceptual model varies with the environment. Note that al-
though a robot needs to take the environment into account
it does not mean that a system is restricted to a single envi-
ronment. It is easy to imagine a mechanism for recognising
a change of environment, e.g., moving from an office envi-
ronment through a door into the outdoor world. The robot
could then change to a different perceptual model, different
behaviours, even different sensors.

5.1.3. Bringing embodiment, task and environment
together

All three aspects of embodiment interact to determine
classifications. Consider the interaction in Fig. 8. Here, the
task defines that a particular object is the object of interest,
however, whether the other objects in the scene are obsta-
cles, or can be put in the category of objects that can be
ignored (“everything-else”) is more complex. It depends on
the physical embodiment of the robot (i.e., are the objects

large enough to block the robot’s path, and are they high
enough above the ground for the robot to pass safely un-
derneath them). It also depends on the task, as to whether
the robot will be required to move close enough to the ob-
ject that it could block the robot’s task. The physical em-
bodiment of the robot defines what may be an obstacle, and
then, if the object blocks the path that the robot must take
to complete the task, it can be considered to be an obstacle.

5.2. Where do categories come from?

Embodiment places constraints on the categories that a
particular robot may have, but there are still many (maybe
infinite) categorisation systems that would be equally good
for the embodiment. For the purpose of the methodology
described in this paper, the designer of the system chooses
the categories. In the case of humans, categories must be
learned from embodiment: physical, environmental, social
and cultural. Robot category learning is difficult. There
are examples of learning in robots that are non-categorical
(e.g., visuo-motor control [35]) and implicitly categorical
(e.g., systems that learn to avoid obstacles [36]). Further,
localisation and navigation systems can be trained to asso-
ciate features with locations (e.g., [37]). However, it could
be argued that this is only mapping features to categories in
a categorisation system that the robot was given, and falls
well short of human-style high-level classification. We do
not further proceed into this area in this paper.

6. A methodology of embodiment for visually guided
mobile robots

We now propose a methodology for applying embodied
concepts to develop model-based visual systems for mobile
robot guidance. The focus is on classification and percep-
tion, considering how a robot with a specific structure can
perform effectively in the context of an environment and
task. The aim is to show how the form and content of a con-
ceptual model for a system can be constructed to take ad-
vantage of a robot’s embodiment. We present vision-guided
robot systems that have been constructed by the authors un-
der the methodology of embodied categories, and highlight
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to discriminate the categories.

robot.

(1) The task(s) defines what categories, and actions/motions are required.
(2) Inthe environment(s) of robot operation, some set of features must be adequate

(3) The required actions/motions of the robot and the features which the robot needs
to discriminate categories place constraints on the physical embodiment of the

(4) Once the robot’s physical embodiment is determined, it can be considered
along with the task(s) to define which views of the environment and objects in
it that the robot may encounter and need to identify.

(5) Finally, to find which features are adequate to discriminate categories, consider
their appearance from the views encountered in the robot’s environment(s).

Fig. 6. Analysing robot embodied categories.

some other systems in the literature that have applied simi-
lar principles.

This methodology suggests how researchers can go about
constructing categorisation for visual guidance systems. This
is not intended to be a definitive way of proceeding: there
may be many other equally good or better ways. However,
the methodology elucidates a general approach, describes a
possible process, and serves to aid the reader in understand-
ing the role of embodiment in mobile robot categorisation.
The first part directs analysis to the appropriate aspects of
embodiment in constructing a useful categorisation for the
system, and can be seen in Fig. 6.

Note that other interactions are possible, such as that suit-
able discriminating features may not be available, leading
to a different system of classification, or even redefining
the task based on what is possible rather than desirable.
Also, changes to the physical embodiment may be necessary.
For example, adding new sensor modalities that can bet-
ter exploit differentiating features, modifying the robot itself
(e.g., making it smaller) so that it can perceive more de-
tail about objects of interest, or even simplifying the sensors
if the required views simplify object discrimination. With
these points noted, our suggested methodology is as shown
in Fig. 7.

Consideration of issues across stages, and iteration be-
tween stages is also necessary. For example, one may con-
sider different possible feature sets given the difficulty of
constructing the necessary hardware. Also, the task(s) and
environment(s ) may underconstrain the embodiment, allow-
ing introduction of constraints on embodiment to simplify
interaction, and/or the views and thereby the requirements
for stage 5 (see Fig. 8).

Note that this methodology contains an implicit partial
commitment to view-based representation.> There is some
psychophysical evidence to support the theory that humans
make use of view-based object representations. Bulthoff and

3 Not necessarily appearance-based such as [38], e.g., Section
6.1 coming up.

Edelman [39] found that if two views of unfamiliar objects
were learned, recognition performance was better for views
spanned by the training views than for other views.

The remainder of this paper attempts to clarify how the
methodology may work in practice, and clarify the princi-
ples. We present three systems developed using the method-
ology, and other systems that exemplify the principles of
embodied concepts.

6.1. Object recognition for robot circumnavigation

In [40,21], we presented a system where an embodied
approach was used to redefine traditional viewer-centred
representations. This enabled a robot system to identify
and navigate around known objects, and gain specific com-
putational and recognition advantages. The embodiment of
the robot allowed model-based representations to be simpli-
fied and optimised for the task, environment, and physical
embodiment, and hence made more practical. Fig. 9 shows
images taken by the robot as it navigates around a power
supply, with a cluttered background.

Stage 1: Defining categories. Three categories are im-
portant for this task: the object of interest, obstacles, and
free space. The robot is required to move around the object
on the ground plane, continuous fixation on the object is
important so that searching is not required.

Stage 2: Identify features. Edge features were adequate
to discriminate the required objects for this system in the
required environments. However, edge features may be un-
ambiguous for a particular view, but identification will be
more certain after examining a number of views around the
object. To recognise obstacles, a simple method of detecting
edges on the floor was used, with any strong edges assumed
to be an obstacle, similar to the method of [41].

Stage 3: Determine physical embodiment. A ground-
based robot is adequate for the motions required, a pan/tilt
platform is necessary for independent fixation. Given that
the camera is not looking where the robot is going, a second
forward-looking camera is required for obstacle avoidance.
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(1)
2)

Analyse the task(s) to identify the required perceptual categories, and ac-
tions/motions.

Analyse the robot operating environment(s) to identify possible sets of features
that differentiate the required categories.

Analyse required actions/motions, the physical positions from which the robot
may observe discriminating features, and the sensors required to detect these, to
determine appropriate physical robot embodiment.

Analyse possible interactions the robot may have, examining both physical em-
bodiment and task(s) to identify the views from which the robot will be re-
quired to discriminate the required perceptual categories.

Analyse the instances of the categories of stage 1, from the views found in stage 4,
and find a set of features, and representations for those features, that are effective
and efficient in recovering the required information in the environment(s) where
the task(s) is to occur.

Analyse interactions that emerge to look for category changes that may be re-

quired, and restart at stage 1 if new categories are found.

Fig. 7. A methology for developing embodied categories.
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Fig. 9. Images taken while circumnavigating a power supply showing white lines representing the match. Reprinted with permission from
Barnes and Liu [40] (p. 200, Fig. 9). © Physica-Verlag Heidelberg, 2002. All rights reserved.

Stage 4: Identify views. The robot is ground-based, and
has fixed camera height, thus, if the object sits on the ground,
all views of the object are within a plane. Objects of similar
size to the robot are unlikely to be viewed from underneath or
above. Further, finite camera resolution, combined with the
fact that the robot body may overhang the camera lens will
prevent the robot from viewing the object from very close
proximity. If the task is to navigate around the object, only

a coarse model is needed. If task is to interact/dock, detailed
models of some surfaces may be required. The views from
which the robot will observe the object were determined
by a combination of projective geometry and images taken
from the possible paths.

Stage 5: Build models. We chose to use view-based edge
models of objects. As the possible viewspace of the object
is restricted, the storage of a full 3D model is redundant.
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The scale problem [22], at which scale features should be
modelled, is problematic when viewspace is unconstrained.
The constrained viewspace as discussed above leads to a
finite range of scales over which features can be observed.
Combining this with the finite camera resolution the scale is
effectively defined in building object models for this system.
The level of detail required can be directly quantified by the
robot taking images of the object from the required path.

The path of the robot is continuous, and so can be in-
dexed by order of appearance. Once an object is recognised,
the robot knows which view to expect next. Given that the
object is stationary, the robot’s next view is caused by the
robot’s action (with associated uncertainty). We refer to this
as causal indexing, that is indexing our representation by
the interactions that the robot has with the object. Thus for
the particular case of robot navigation, we have a solution
to the indexing problem.

Stage 6: Look at interactions. In a cluttered scene, a
unique match is difficult to guarantee (consider the possi-
bility of a mirror in the background). However, as the robot
is moving around the object, the system exploited several
views of different surfaces, fusing the matches with odomet-
ric information, which makes mismatches less likely. This
is facilitated by causal indexing.

A brief description of the matching process will help to
clarify benefits of embodied classification. To match the ob-
ject, we take the previous match position, and subsequent
odometry information, and estimate which view is most
likely to appear. The predicted view has a set of edges with
restricted orientations due to the constrained viewpoints, so
only edges in this range need to be extracted initially. We
then find possible candidate edge matches based on orienta-
tion, pre-sorting to reduce the total number of match candi-
dates. Binary features (involving two edges) are then used
to find candidate view matches. Finally, we evaluate the
small number of remaining candidate matches, partly based
on geometric verification. A candidate match is back pro-
jected into the scene to obtain an estimate of relative object
position and orientation. This is compared to the position es-
timated from odometry and the previous match. Combining
motion information into matching in this manner reduces
the number of mismatches, and reduces the effect of mis-
matches. If the previous match was correct and the current
match is incorrect, the object position estimate cannot be far
from the true location. This gives graceful degradation.

Finally for interactions, we may decide that an environ-
ment is particularly cluttered and so mismatches will be
frequent. Thus, we may consider using a robot with high
odometric accuracy to facilitate narrow tolerances on the
geometric verification.

6.2. Using log-polar optical flow and fixation for docking
In [42,43], we presented an algorithm that is able to

control robot heading direction to dock at a fixated point.
Fixation may be independent of heading direction control,

and joint angle information is not required, only log-polar
optical flow is required. This approach is different to the
previous as, other than some constraints, the environ-
ment is unknown, and so the robot embodiment is only
partially constrained. Also, the visual processing used is
low-level.

Stage 1: The only categories necessary are whether the
current heading direction is left-of or right-of the fixated tar-
get. This information is used directly to control adjustments
to heading direction in a perception/action loop.

Stage 2: No particular environment is considered a pri-
ori. Independent fixation was assumed. Fixation may require
environmental constraints, but this can be considered inde-
pendently.

Stage 3: The robot is required to move on the
ground-plane and maintain fixation on the object. The
robot’s method of locomotion is not constrained, but the
robot must have a means for pan and tilt to allow fixation
independent of motion.

Stage 4: The ground-based robot motion (physical) and
fixation on the object (task) place constraints on the optical
flow field which simplify its interpretation.

Stage 5: Given these constraints, the log-polar sensor sep-
arates the motion field such that the component due to mo-
tion along the fixation direction only appears in the radial
flow. The rotational flow is due entirely to motion perpen-
dicular to the fixation direction. Thus, rotational flow can
be used directly to infer the direction of the required adjust-
ment to heading direction. See [43] for a full derivation. This
type of action categorisation is typical of active perceptual
systems (e.g. [44]).

There is one final ambiguity: given the same heading,
world points further from the robot than the fixation point
result in rotational flow in the opposite direction than for
points that are closer. This can be resolved using environ-
mental constraints, e.g., if the target is on the floor, then all
points below it in the image are closer to the robot than the
target. Thus, the robot can estimate heading direction based
on the sign of the rotational flow, and control its direction
for docking in a closed perception/action loop without cam-
era calibration or knowledge of joint angles.

6.3. Docking based on fixation and joint angles

We developed a docking system for legged robots that
was applied in the four-legged league of robocup [45].
This system fixated on the object of interest, and controlled
two variables: heading direction and approach speed. The
robot should move to be close to the target and stop when
it arrives. Whatever interactions are required can then be
performed.

Stage 1: There are four action categories: turn left, or turn
right to head towards the target, move forward (has not yet
reached the target), or stop (at the target).

Stage 2: The target object is on the ground plane, other-
wise same as the previous algorithm.
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Fig. 10. Action categories for the joint angle-based docking system.

Stage 3: Same as previous algorithm. However, the robot
camera must be higher than the fixated object to facilitate
control from joint angles.

Stage 4: Again the task involves fixating on the target
object. This time, however, we make explicit use of the joint
angles. We also make use of the fact that the robot’s head is
elevated above the ground, and assume that it is somewhat
higher than the fixated target, which is assumed to lie on the
ground. Note that, by definition, the fixated object lies on
the optical axis of the camera.

Stage 5: If the robot turns to reduce the camera pan angle
to zero it will be heading directly towards the object. Also,
the tilt angle is proportional to the distance from the target
(related by tan 0), see Fig. 10. For large distances this re-
lation will not be accurate, however, when the robot moves
close to the fixation object, the measure will allow discrim-
ination of at-target and not-at-target categories.

Our motion model permits rotation and translation to be
treated independently from a control point of view. Above
we have two independent perceptual variables for the control
of rotation and translation. Thus, control can be implemented
simply as two interpolated lookup tables, one of pan angle,
and one of tilt angle.

Consider the alternative (non-embodied) approach. Cal-
culate the distance to the target by modelling the ball size,
calibrating the camera, and using an inverse perspective
transform. Fixation arises out of robot embodiment, without
it the target may not be centred in the image, so we must also
consider image position to estimate the ball position. Then
we need to transform to body coordinates, and calculate con-
trol parameters for required motion. This clearly requires far
more computation time than image based fixation and two
table look-ups, and is less robust. We may introduce errors
in the transforms, and due to these errors, and the increased
computation time, we may loose the ball from camera view.
We believe that the embodied approach has lead to a system
that is more computationally efficient, robust, and simpler
to construct. The approach here is simple and intuitive, and
demonstrates a point which is central to the argument of this
paper. Constructing robotic perceptuo-motor interaction that
is categoric through use of an embodied methodology can

naturally lead to solutions that are superior in computation
and robustness when compared to disembodied systems.

6.4. Extraction of shape

The final example is a shape module used with circum-
navigation system discussed above. This was not developed
under the methodology, but illustrates the benefits of feed-
ing back hypothetical classifications to gain better results in
early vision processing. The module [46] combines knowl-
edge about the basic object structure (given that we have
a hypothetical object classification) with knowledge from
edge matching. This knowledge is applied in order to add
constraints and simplify tasks in shape-from-shading, mak-
ing tasks solvable that are ill-posed otherwise. Also, compu-
tation time advantages can be gained through environment
(or task domain) knowledge by better initialisation of sur-
face models for an iterative fitting process.

6.4.1. Other active vision systems

Finally, some active vision algorithms from other re-
searchers also illustrate the benefits of explicitly considering
embodiment. Most methods for detecting obstacles consider
the image projection of the ground plane and map the image
position of detected obstacles directly to robot body centred
coordinates. This is not possible unless the specific geome-
try of the robot is considered. However, in an embodied ap-
proach where the robot’s view geometry is considered and
the ground is largely planar, this projection is quite robust.

The methods exploit the visual appearance of their
environment. Some methods assume a floor with a constant
textureless surface (e.g., [41]), possibly using higher-level
interpretation to deal with exceptions. Other methods as-
sume sufficient texture for optical flow (e.g., [47]) or stereo
(e.g., [48]). Obstacles distort the flow pattern that would
be expected to arise from the relative motion of the ground
plane.

Techniques based on constrained projective geometry
determined by robotic embodiment are common in active
perceptual-based systems, such as divergent stereo and
other systems for docking (e.g., [49]). In divergent stereo,
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robots navigate along corridors remaining centred between
textured walls. Using the fact that the robot is moving
along the ground, and has cameras pointing sideways at
the walls, the system can move to equalise the optical flow
[44,50], which centres it in the environment. The actual ap-
pearance of optical flow in this type of situation is different
for particular robots, however the method can be effective
for a variety of different robots, with control parameters
particular to the robot.

7. Conclusion

Philosophical, physiological and psycho-physical re-
search shows that human vision is reliant on categorisation,
and that this categorisation is embodied categorisation.
We have explored the role of categorisation in robotic vi-
sion and the role of embodiment in this categorisation. A
physically embodied robot is present in an environment,
and typically engaged in tasks. The physical embodiment
of a robot, and its tasks and environment constrains the
relationship that the robot has with entities in the world.
Specifically, it constrains how the robot can perceive and
interact with other entities. These constraints can be used as
a basis for robot classification and object models. The con-
struction of classification and models based on embodiment
is referred to here as conceptual embodiment. As discussed,
the classical general formulation of computer vision is in-
adequate for guiding mobile robots. By the application of
conceptual embodiment, low-level vision techniques can be
made more efficient and robust, and high-level model-based
vision techniques can be made effective for robot guidance.
Consideration of embodiment can lead to the development
of algorithms for problems that are otherwise ill-posed, and
can produce systems that are more computationally efficient
and more robust.

This paper makes two principal recommendations: that
categorisation is useful at all stages of visual processing;
and, that for vision guided robots, categorisation should be
embodied. We have presented a methodology for develop-
ing embodied systems, and presented several systems that
have been developed based on this methodology, as well
as examining other research that has demonstrated benefits
from taking embodiment into account.
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