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PHYSICAL DETERMINANTS OF THE JUDGED
COMPLEXITY OF SHAPES!
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Many psychological tasks vary in
difficulty with the complexity of the
stimulus objects involved. Complex
visual objects are not only harder to
reproduce from memory than simple
ones (4, 6), but also harder to learn
by name (4, 7) and to match (11).
Complexity is an ill-defined variable,
however. No two of the experiments
referenced above employ exactly the
same operations of physical measure-
ment, and an essential communality
between them is not easy to specify
in objective terms.

In the study reported here, ratings
of the complexity of nonrepresenta-
tional shapes were obtained from a
large number of Ss and related to
measurable physical characteristics of
the shapes. The results not only
have interest in their own right, but
also serve to indicate the physical
variables most likely to be relevant to
other tasks, like those initially men-
tioned, on which data are typically

! This research was carried out at the Skill
Components Research Laboratory, Air Force
Personnel and Training Research Center, Lack-
land Air Force Base, San Antonio, Texas, in
support of Project 7706. Permission is granted
for reproduction, translation, publication, use,
and disposal in whole or in part by or for the
United States Government.

harder to get and less precise. The
relationship of judged complexity to
informational content, “degrees of
freedom,” compactness, and certain
other variables will be considered.

MEeTHOD

Materials—The stimuli were 72 “random”
shapes, each constructed by the following
general method. In a & X % matrix, » random
points were plotted, i.e., all coordinates of the
points were random numbers between 1 and £.
The points were then connected randomly into
a polygon of #n sides. This connecting process
involved two steps. First, peripheral points
were connected into a convex polygon which
enclosed all the points not included in its con-
tour (as if a pin were stuck into each point and
a rubber band snapped around the whole clus-
ter). Second, the unconnected points were
given a random order and each in turn was
“taken into” a randomly chosen segment of the
surrounding polygon (as if by hooking that
segment of the rubber band over the interior
pin). Since lines connecting the points were
not permitted to cross, the number of alternative
segments into which a given point might be
taken could either increase or decrease as the
process continued; hence the assignment of a
random sequence to the unconnected points.
Connections which placed certain points outside
the polygon were permitted, though in conse-
quence the ways in which such points could
themselves be connected were restricted.

Some of the polygons thus constructed were
further developed into curved figures by re-
placing angles with inscribed arcs of random
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curvature, If the shorter of the two segments
forming an angle was between d (an integer)
and 44 1 matrix units in length, a random
number between O and 4 was taken as the
distance from the vertex of the angle to the
point of tangency of the arc to be inscribed.
[An illustrated and more detailed description
of the construction methods outlined above is
presented in a methodological paper by Attneave
and Arnoult (5).]

A class of symmetrical figures was also con-
structed by the following operations. An asym-

metrical polygon was reflected about a vertical.

axis passed through the point farthest to the
right in the original polygon. This reflection
resulted in a figure consisting of two parts: the
original and its mirror-image, touching (ordi-
narily) at a single point—the point of reflection.
In order to tie the two halves together into a
single unified shape, a part of the area between
them was filled in—specifically, the area be-
tween that pair of touching symmetrical seg-
ments which had the greater vertical component.
Reflecting a shape resulted in a corresponding
increase in area.

THE 48 ASYMMETRICAL SHAPES .
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. 1. Plan by which the shapes were
systematically varied,
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In the construction of curved symmetrical
shapes, the figure was first reflected and then
curved—all curves being repeated symmetri-
cally—except in the unique case of thearc
associated with the point of reflection.

The following parameters of the shapes were
varied in a quasi-factorial design (see Fig. 1):

1. Matrix grain. Four different matrix
grains (8 X 8, 16 X 16, 32 X 32, and 64 X 64)
were used in plotting the random points from
which the shapes were constructed. Eighteen
shapes were made with each grain. This
variation in grain did not involve a concomitant
variation in size. Moreover, the matrix lines
did not appear when the shapes were displayed
to Ss. The amount of information required to
locate each point in the matrix (i.e., the amount
of information taken from the random number
table) was very nearly equal to 6, 8, 10, or 12
bits, depending upon the fineness of grain (these
values are a trifle too great, since the selection
of each point reduced by one the number of
alternative positions which the next point might
take).

2. CGurvedness. One-third of the shapes, or
24, were entirely angular, one-third were en-
tirely curved (i.e., all angles were replaced with
inscribed arcs), and the remaining third were
mixed. For each mixed shape, both the number
and the identity of angles to be replaced with
curves were randomly determined.

3. Symmetry. Two thirds of the shapes, or
48, were asymmetrical; the remaining third were
symmetrical. The reason for this unequal divi-
sion will be discussed in connection with the
next variable.

4, Number of turns. Either 4, 6, 8, or 12
random points were initially plotted for the
construction of each shape. The asymmetrical
shapes were evenly distributed over these four
classes with 12 in each class. The 24 sym-
metrical shapes, however, were equally divided
between the 4- and 6-point classes. They were
thus equivalent to the 4- and 6-point asym-
metrical shapes with respect to number of
independent sides or contour turns, and approxi-
mately equivalent to the 8- and 12-point asym-~
metrical shapes with respect to total number of
sides or turns. (In referring to the present
variable, we shall hereafter use the term turns
in preference to “points,” “angles,” or “sides,”
since it applies equally well to curved and an-
gular figures.) In the process of joining points
into polygons, a point was occasionally “lost”
when the two lines meeting at the point them-
selves formed a straight line; hence it was pos-
sible for a 12-point figure, for example, to have
only 11 or even fewer turns in its contour. The
actual number of turns, rather than the original
number of points, was considered to be the
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important variable in the subsequent analysis
of data.

The four variables just enumerated were
orthogonally related, as indicated in Fig, 1, and
each possible combination of values on these
variables was represented in one and only one
of the 72 shapes, except as otherwise noted in
connection with Symmetry and Number of
Turns. Six of the shapes are reproduced in
Fig. 2 to give the reader a general idea of their
appearance, It should be understood that
every shape was constructed from a completely
independent selection of random points; e.g.,
the same shape never appeared in an angular
and a curved version, nor in an asymmetrical
and a symmetrical version.

In addition to these systematically varied
parameters, the following two physical measures
were taken after the shapes were constructed:

5. P2/A. The square of perimeter, divided
by area, was obtained for each shape. Thisisa
size-invariant measure of dispersion, or non-
compactness; see Attneave and Arnoult (5).

6. Angular variability. This measure repre-
sents the average difference between adjacent
angles in a polygon. More precisely, it is the
arithmetic mean (sign ignored) of the algebraic
differences in degrees of slope-change (sign
observed) between all successive or adjacent
angles taken in overlapping pairs about the
contour, convex angles being considered positive
and concave ones negative. For example:
suppose that the slope-changes associated with
the angles of a four-sided figure are 150, 130,
— 90 (a concave angle), and 170 degrees. The
differences between adjacent angles will be 20,
220, 260, and 20 degrees. Angular Variability
is the mean of these four differences, or 130.
In the case of curved figures, measurement was
made upon the polygons from which the curved
shapes were constructed. Something like “good
continuation” is quantified in this measure; a
value of zero means that all angles of the polygon
are equal, whereas high values are associated
with jagged, irregular figures. As one might
expect, this is correlated with the preceding
measure, P2/A: r = 48 over the 72 shapes.

Subjects,~One hundred and sixty-eight air-
men basic trainees at Lackland Air Force Base
rated the shapes for complexity.

Procedure.~The shapes were displayed, in a
white-on-black figure-ground relationship, by
projecting them individually to the front wall
of the room in which Ss were seated. Each S
was provided with a seven-category rating form
containing a line for each shape and columns
headed “Extremely Simple,” “Very Simple,”
“Simple,” “Medium,” “Complex,” “Very Com-
plex,” and “Extremely Complex.” The in-
structions given contained no definition, either
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Fic. 2. Six of the 72 shapes used in the study.

explicit or implicit, of the terms “Simple” and
“Complex.”

Before actually making their ratings, the Ss
were shown all 72 shapes in rapid succession
(2-sec. exposure each) in order that they might,
from the beginning, adapt their rating behavior
to the range of stimuli with which they were to
deal. In displaying the shapes for rating, each
was exposed for 10 sec. with a negligible interval
between stimuli.

The Ss served in four approximately equal
groups which differed only in the ordering or
sequence of stimulus presentation. The first
sequence was a random permutation of the 72
stimuli, the second was an ‘‘inside-out” re-
ordering of the first, and the third and fourth
were reversals of the first two.

REesurts

Ratings were scaled by the method
of graded dichotomies (1)? in order to
render them comparable to paired-
comparison scale values. It turned
out that mean ratings might as well
have been used, since a plot of means-
versus-scaled ratings showed little or
none of the usual curvilinearity. The
linearity of this relationship implies
that the “widths” of the various scale
categories were very nearly equal in
terms of the dispersion of response
distributions, though Ss had no special
instructions to regard them as equal.
Mean ratings ranged from .82 to 5.24

2 This method, or the method of successive
intervals, has been independently discovered
and rediscovered, with minor variations, by
Urban, Guilford, Thurstone, and me [see
Guilford (8, Ch. 10)]. I continue to use my
own version simply because it is the one most
familiar to me.
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(with “Extremely Simple” scored as
zero and “Extremely Complex” as 6).
Scaled ratings covered a range of 4.17
SD units with an arbitrary zero point.

The effect upon judged complexity
of each of the six physical variables
described in the previous section will
now be considered.

Matrix grain.—This variable had
no measurable effect on the ratings.
In the original data there was a slight,
nonsignificant suggestion of a trend
toward greater complexity for finer
grains, but even this failed to appear
in the residuals from subsequent
variables (vide infra).

Curvedness.—Likewise, whether the
shapes were angular, curved, or mixed
made no significant difference in
judged complexity. After the re-
moval of variance attributable to the
important variables Symmetry, Num-
ber of Turns, and Angular Variability,
a simple analysis of variance for
effects of Curvedness was performed
on the residuals. This yielded an F
of 1.73 with df = 2/69, which is far
short of the 3.13 required for the 5%
level of significance. The mean rating
obtained for curved shapes was lower
by about .15 scale unit (i.e., SD units)
than the means for angular and mixed
shapes, which were almost exactly
equal. Even if this difference were
reliable, it would account for less than
half of one per cent of the total vari-
ance of the ratings.

Symmetry.—Symmetrical  shapes
were judged more complex than asym-
metrical shapes with the same number
of independent turns by a mean of
about .41 unit (P = .001, ¢ = 3.99,
df = 69). They were judged Iless
complex than asymmetrical shapes
with the same total number of turns
by a somewhat greater amount, i.e.,
about .9 or 1.0 units. Reflecting a
shape symmetrically is equivalent to
an increase of about 199, in number
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of independent turns, in terms of
effect on judged complexity (see
Equation 1, below).

Number of turns.—This was by far
the most important variable, Plots
of rated complexity vs. number of
independent turns showed appreciable
curvilinearity, which was rectified
when the logarithm of the number of
independent turns was used instead.
Regression lines relating complexity
to log turns were found, by the least-
squares method, for symmetrical and
asymmetrical shapes separately. As-
sociated with the former was a cor-
relation coefficient of .75; with the
latter, a coeficient of .93. This dif-
ference is attributable chiefly to the
restricted range of the symmetrical
shapes. It was possible to adjust the
lines to equality of slope, by the use
of a weighted average, with negligible
impairment of goodness of fit; the
resulting parallel lines were separated
by the .41 units mentioned above.

The relationships thus far were
combined into the following equation:

J =546logi T + 418 — 230 (1)

in which [ is judged complexity (on a
scale in which the simplest figure is
arbitrarily assigned a value of zero),
T is number of independent turns, and
S is a variable on which symmetry has
a value of 1 and asymmetry a value of
0. This equation accounts for 82.59
of the total variance of the complexity
ratings (see Table 1). For purposes
of further analysis, a table of actual
residuals from Equation 1 was made
up by subtracting the predicted rating
of each shape from the obtained
rating.

P2/ 4 and Angular Variability.—It
will be recalled that these two physical
measures were intercorrelated to the
extent of .48. Each was now cor-
related with the residuals from Equa-
tion 1. Angular Variability showed
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TABLE 1

CoNTRIBUTIONS OF THE INDIVIDUAL PuysicaL
VAR1ABLES TO JUuDnGED COMPLEXITY

Percentage Variance
of Complexity Ratings

Physical Variable Explained

Matrix Grain
Curvedness
Symmetry
Number of Turns 7
P2/A

Angular Variability

Total 9

—~oNw: -
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* P3/A actually explains 4.5% of the variance of
the ratings, but of this 3.6%, is shared with Angular
Variability, The shared 3.6% is arbitrarily included
in the 7,19, attributed to Angular Variability,

the higher relationship, r = .64, as
compared with » = .51 for P%/A.
One may question whether P%/A
accounts for any variance not also
accounted for by Angular Variability.
The answer is probably affirmative,
since the partial correlation between
P?/A and the residuals, with Angular
Variability held constant, is equal to
.30, which is on the borderline of
significance at the 59, level. Bearing
in mind that the residuals from Equa-
tion 1 themselves represent only
17.59, of the total variance of the
ratings, we may calculate that 3.5%,
of the total variance is uniquely pre-
dicted by Angular Variability, that
9%, is uniquely predicted by P%/A
and that a further 3.6, is predictable
from either Angular Variability or
P2/A, or common to the two predictor
variables.

The relationship between Angular
Variability and the residuals from
Equation 1 was also considered for
symmetrical and asymmetrical shapes
separately. The correlation coefli-
cient was .77 for the former and .57
for the latter. After equating the
regression lines in slope, the line for
asymmetrical shapes was about .13
unit higher than that for symmetrical
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shapes (this constant is accordingly
added to the coefficient of S in Equa-
tion 2 below). However, the gain in
predictive efficiency which results
from treating symmetrical and asym-
metrical shapes separately at this
stage is scarcely worth bothering
about; it amounts to only about .6%,
of the total variance of the ratings.

Adding Angular Variability as a
predictor variable:

J=3546log T + .54 S
+ .005 47 — 2.91. (2)

A second table of residuals from this
equation was prepared and examined
for possible minute effects of Matrix
Grain and Curvedness, with the
negative results mentioned earlier.
It may be noted that although
Curvedness per se has no demon-
strable effect on the ratings, Curved-
ness is nevertheless represented in the
variable P2/A (i.e., the curving of any
shape by the method used necessarily
decreases its P?2/A value), and the
component of P?/A which is affected
by Curvedness does attain a marginal
level of significance (see above).

Discussion

The lack of effect of Matrix Grain on
the judgments, though not intuitively
surprising, does serve to demonstrate
how the amount of information con-
tained in a stimulus (from the experi-
menter’s point of view) may be varied
greatly without changing the apparent
complexity of the stimulus. The amount
of information gained by § in viewing a
shape may very well be independent,
within broad limits, of the amount of
information used in this way by E in
constructing the shape.

More interesting is the discovery that
curved shapes are judged no more com-
plex than angular shapes. One might
reasonably expect that apparent com-
plexity would depend upon the number
of dimensions or degrees of freedom
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associated with a stimulus, i.e., upon the
number of numbers necessary to de-
scribe it in some coordinate system [this
is essentially what MacKay (9) has called
“logon content,” and Pollack and Klem-
mer (10) have called “coordinality”].
This hypothesis correctly predicts the
effect of Number of Turns upon judged
complexity, since the number of co-
ordinates per turn is a constant for either
angular or curved shapes, considered
separately. But whereas only two num-
bers are necessary to describe each turn
in an angular shape (i.e., the # and y
coordinates of the turning point), an
additional number (i.e., radius of curva-
ture) is necessary at each turn in a curved
shape. Thus, curved shapes not only
contain more information, but also
require more dimensions for their speci-
fication; nevertheless they appear no
more complex than angular ones. An-
other hypothesis which would predict
higher values for the curved shapes is
that complexity is a function of the total
number of individually homogeneous
parts, e.g., lines of constant slope, or
curves of constant curvature, in the
contour [cf. the measure of complexity
used by Fehrer (6)7].

The finding that symmetrical figures
are intermediate between asymmetrical
figures with the same number of inde-
pendent turns and those with the same
total number of turns is consistent with
results previously obtained in a group
of learning studies (4) in which dot
patterns were used as stimuli.

The Angular Variability measure, no
less than Symmetry, has to do with
repetitiveness or similarity between parts
of a contour; e.g., to state the limiting
case, any polygon which is regular in
the sense that all angles are equal will
have a value of zero on this variable.

The Number of Turns variable, which
accounted for nearly four-fifths of the
variance of the judgments, may be
described as the number of maxima
(regardless of sign) in one cycle of the
function relating curvature to distance
along the contour., This function is a
series of spikes for any angular shape,
and a step-function for any curved shape
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constructed by the present method (5).
In the case of the latter function, in-
formation is concentrated in the vertical
transition lines; i.e., in points on the
contour at which arcs are tangent to
straight lines. This is true from the
point of view of a hypothetical observer
who is in some sense capable of extra-
polating curvature. From the point of
view of an observer incapable of extra-
polating curvature, however, but capable
of extrapolating slope, information is
associated simply with the maxima of the
curvature function; i.e., information, or
unceftainty, is concentrated in the arcs
of the contour, but uniformly distributed
within any given arc (though by some
“averaging” process the observer might
associate the information more specifi-
cally with the midpoint of the arc).

In an earlier study (2), §s tended to
choose maxima of curvature when asked
to select the points most representative
of a given contour. It may be that an
observer’s primary impression of com-
plexity depends upon the number of such
maxima in a shape and that this first
estimate is then reduced more or less by
the presence of certain types of re-
dundancy or repetitiveness to which he
is sensitive. The possibility of devising
a single physical measure which would
predict apparent complexity as effi-
ciently as the combination of predictor
variables which we have considered is
not to be dismissed, but appears unlikely.

SumMmarY

Judgments of the complexity of 72 shapes
were obtained from 168 Ss. The shapes were
constructed by a method in which certain
physical characteristics were systematically
varied and the remainder randomly determined.
About 909, of the variance of ratings was ex-
plained by (s) the number of independent turns
(angles or curves) in the contour, (b) symmetry
(symmetrical shapes were judged more complex
than asymmetrical with number of independent
turns constant, but less complex with total num-
ber of turns constant), and (c) the arithmetic
mean of algebraic differences, in degrees, between
successive turns in the contour. Angular and
curved shapes were judged about equally com-
plex, though the latter involved additional
degrees of freedom (radii of curvature), Also



COMPLEXITY OF SHAPES

immaterial, within broad limits, was the grain
of the matrix from which critical points were
chosen to construct the shapes.
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