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Abstract
Our ability to interact with the environment hinges on creating a stable visual world despite

the continuous changes in retinal input. To achieve visual stability, the brain must distin-

guish the retinal image shifts caused by eye movements and shifts due to movements of the

visual scene. This process appears not to be flawless: during saccades, we often fail to

detect whether visual objects remain stable or move, which is called saccadic suppression

of displacement (SSD). How does the brain evaluate the memorized information of the pre-

saccadic scene and the actual visual feedback of the postsaccadic visual scene in the

computations for visual stability? Using a SSD task, we test how participants localize the

presaccadic position of the fixation target, the saccade target or a peripheral non-foveated

target that was displaced parallel or orthogonal during a horizontal saccade, and subse-

quently viewed for three different durations. Results showed different localization errors of

the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial

separation from the presaccadic location. We modeled the data through a Bayesian causal

inference mechanism, in which at the trial level an optimal mixing of two possible strategies,

integration vs. separation of the presaccadic memory and the postsaccadic sensory signals,

is applied. Fits of this model generally outperformed other plausible decision strategies for

producing SSD. Our findings suggest that humans exploit a Bayesian inference process

with two causal structures to mediate visual stability.

Author Summary

During saccadic eye movements, the image on our retinas is, contrary to subjective experi-
ence, highly unstable. This study examines how the brain distinguishes the image pertur-
bations caused by saccades and those due to changes in the visual scene. We first show
that participants made severe errors in judging the presaccadic location of an object that
shifts during a saccade. We then show that these observations can be modeled based on
causal inference principles, evaluating whether presaccadic and postsaccadic object per-
cepts derive from a single stable object or not. On a single trial level, this evaluation is not
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“either/or” but a probability that also determines the weight by which pre- and postsacca-
dic signals are separated and integrated in judging object locations across saccades.

Introduction
During saccadic eye movements, the image of the world shifts across our retina. Despite these
shifts, we perceive targets as having world-stable positions, and have no problem to act upon
them whenever necessary. It has been suggested that a combination of predictive and feedback
mechanisms subserve this faculty, referred to as spatial constancy [1].

In the literature, spatial constancy has been studied by using motor and perceptual tasks.
Using motor tasks, it has been shown that we can look or reach accurately to the remembered
position of a target after an intervening saccade (see [1] for review). Using arm movements,
Vaziri et al. [2] recently tested the hypothesis that the brain computes the position of a reach
target after a saccade based on the optimal integration of predicted and actual sensory feed-
back. In their paradigm, participants first made a saccade after they briefly foveated a visual tar-
get in complete darkness. The brain is known to predict the new retinal position of this target
after the saccade by internally remapping its representation relative to gaze [1, 3, 4]. Next, the
target was postsaccadically viewed for a variable duration, slightly displaced relative to its initial
position, before the participant reached at it. Results show that reach endpoints had smaller
variance than was possible based on the predicted (i.e. remapped) estimate or the actual post-
saccadic estimate alone, consistent with integration. The authors further demonstrated that the
uncertainty of the postsaccadic target position, which was modulated by varying its viewing
time, affected its weight in the integration process.

From a perceptual perspective, it has been shown that the sensitivity to perceive the dis-
placement of a visual target severely drops during a saccade. In fact, target displacements up to
one third of the saccade amplitude typically go unnoticed, which is known under the term sac-
cadic suppression of displacement (SSD; e.g. [5]). Remarkably, blanking the target briefly after
the saccade, before it reappears at a displaced position, significantly improves the sensitivity to
the displacement [6], as does merely changing some characteristic of the saccade target, such as
its form or polarity [7, 8]. This has led to the notion that the visual system a priori assumes that
a target will not move or change during the saccade. If this assumption is broken, as with the
blank, form change, or with large displacements, it causally regards the postsaccadic target as a
new object, and computes the old position using retinal and extraretinal signals.

Niemeier et al. [9] formulated the SSD findings from an optimal integration perspective by
combining visuomotor signals with a prior that reflects the assumption that targets are not dis-
placed during the saccade. As predicted by their model, behavioral reports show that SSD has a
nonlinear relationship with the size of the target displacement. While with small displacements
the localization of the initial presaccadic target was strongly contracted to the postsaccadic tar-
get, this integration effect was reduced with larger displacements, making localization more
veridical.

But how does the brain know when to integrate signals and when to process them indepen-
dently in the computations to obtain spatial constancy? From a perceptual viewpoint, Vaziri
et al. [2] essentially used a blanking paradigm, thereby ignoring the possible assumption that
visual targets typically do not move during saccades. Despite the blank, which is assumed to
indicate that sources are unrelated, their results show optimal integration of the presaccadic
target information and actual postsaccadic target position. Also in the model of Niemeier et al.
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[9], the spatial constancy computations are unconditioned to causality: integration always
occurs even with large target displacements.

In the present study, we test the role of causal inference in the computations to obtain spa-
tial constancy. According to this framework, the brain has to estimate the causal relationship
between the presaccadic and postsaccadic signals to establish to what degree they can be inte-
grated or when they should be kept apart, which not only depends on the precision of these sig-
nals but also on their spatiotemporal difference [10, 11]. Based on the presaccadic input, it
could be hypothesized that initially foveated representations are less susceptible to SSD than
non-foveal representations because their remapped representations are more precise, triggering
a segregation strategy. Based on the postsaccadic input, it could be proposed that if the postsac-
cadic target is presented only briefly, its representation is too weak to infer a target displace-
ment, making the brain rely most heavily on an integration strategy in the later localization of
the target. But if the postsaccadic target is viewed longer, displacements may become better
detectable, triggering a segregation strategy, especially with large displacements.

Here, we test these hypotheses by varying the duration of the postsaccadic display in an SSD
task for displacements of the initial fixation target, the saccade target and a non-foveated
peripheral target. Because previous studies reported direction-specific SSD, (e.g.[12, 13]) we
test for both parallel and orthogonal displacements relative to the direction of the saccade.

We show that spatial constancy is not based on the exclusive integration of presaccadic tar-
get information and actual postsaccadic sensory feedback nor does it follow from an a-priori
assumption that targets do not move during saccades. Our results suggest that spatial con-
stancy naturally follows from the principles of causal inference involving two possible causal
structures: one where the pre- and postsaccadic percepts represent the same stable object (i.e.
have a common cause), and one where two distinct objects are perceived (i.e. no common
cause).

Results
Participants were tested in a saccadic suppression of displacement task in which they had to
indicate the presaccadic position of either the fixation target, the saccade target or a peripheral
non-foveated target that was displaced parallel or orthogonal during a horizontal saccade
(Fig 1). The displaced target was subsequently viewed for three different durations (50, 300 or
~1000 ms).

Fig 2 shows the performance of a typical participant, plotting the localization errors (red
dots) of the three target positions (rows: FT, ST, NT) as a function of parallel and orthogonal
target displacement, respectively, separately for the three postsaccadic viewing times. Blue
shaded areas represent best-fit model predictions, and will be discussed below. Data points
should fall along the horizontal dashed line if the participant correctly remembered the presac-
cadic target location and ignored the target displacement after the saccade. In contrast, if the
position of the postsaccadic target (dashed diagonal line) interacts with memory for the presac-
cadic position of the target, the data should diverge from the horizontal line and linearly relate
to the size of the target displacement.

The localization responses of this participant indicate a mixture of these two patterns.
While localization errors become larger with increasing target displacements, beyond a certain
target displacement they transition back to smaller errors. Thus, with increasing target dis-
placement, there appears to be a shift in the proportion of responses that are contracted to the
postsaccadic target vs. the ones that are unaffected by it. This pattern can be seen in all panels.

Fig 3 depicts the localization errors, averaged across participants. The pattern of localization
errors is similar to the results of the single participant shown in Fig 2, particularly the bias
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toward the postsaccadic target for small displacements and the loss of this contraction for large
displacements. Below, this will be interpreted as the outcome of a mixture model balancing
integration and segregation processes, but this qualitative structure can already be confirmed
by standard statistical analysis. The distinction between small and large displacements is not a
sharp one, of course, and could, in a functional sense, depend on target position, viewing time
and direction of displacement. Therefore, we took for the following analyses the displacements
with absolute value strictly smaller than 2° (0, ±0.5, ±1°) as “small” and the displacements with
absolute values strictly greater than 2° (±3, ±5°) as “large”. (Replicating the analyses with the
±2° displacements added to either the “small” or “large” group turned out to yield very similar
results.)

An analysis including the three targets (FT, ST, NT), the three viewing times (50, 300,
~1000 ms), the two directions (parallel, orthogonal) and the “small” displacements (0, ±0.5,
±1°), showed a significant positive linear effect of displacement on localization error (F(1,10) =
28.7, p< .001). This effect was present across targets, viewing times and directions, but it was
moderated by these factors. For instance, post hoc comparisons revealed that the regression
slope of localization error on displacement was less steep for FT trials than for ST and NT tri-
als, the latter two not differing significantly. This is in line with the notion that because FT is
initially foveated, it is represented more precisely than ST and NT, and therefore less influenced
by its postsaccadic location. As for viewing time, the slope was generally less steep for 50 than
for 300 ms, with no significant difference between 300 and ~1000 ms. Overall, parallel displace-
ments produced a steeper slope than orthogonal ones. The moderating effects of viewing time
and direction, however, were not present for all targets (a 2nd order interaction). For the FT,
slopes were not significantly different across viewing times and directions, although they
tended to be steeper for parallel than orthogonal displacements (p = 0.06). For ST trials, there
was no moderating effect of time, but a very clear effect of direction (p< .001), with a steeper

Fig 1. Graphic representation of a trial. Each trial started with the presentation of three objects, of which the FT (here: triangle) was foveated. After an
auditory go cue, a horizontal saccade was initiated to the ST (here: circle). Upon detection of the saccade, two objects were removed from the screen while
the other was displaced (here: orthogonal). The displaced object remained visible for 50 ms, 300 ms or until the response was given (~1000 ms). The
remembered presaccadic location of this object was indicated using a computer mouse.

doi:10.1371/journal.pcbi.1004766.g001
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slope for parallel displacements. In contrast, the NT trials showed no moderation of the slope
by direction, but they did show a very clear effect of time: here the slope was significantly
steeper for ~1000 ms than for 300 ms (p = .018), as well as for 300 ms compared to 50 ms
(p = .025). All in all, this makes for a complicated collection of results, which have in common
across all conditions, however, a positive linear effect of small displacements on localization
error.

This linear relationship between displacement and localization error does not extend to the
large displacements. Choosing either the positive large displacements 3° and 5°, or the negative
displacements -3° and -5° revealed no effect of displacement on localization error (p = .87 and
p = .28, respectively) in an analysis including the target, viewing time, and direction factors.

Fig 2. Performance of a single participant. Red dots represent localization responses and blue shaded areas represent the response probabilities, p(s|
mv), according to the best-fit model predictions. Left three columns, localization errors for parallel target displacements; right three columns, errors for
orthogonal displacements. Horizontal dashed line represents veridical localization, i.e. the segregation strategy. Dashed diagonal line represents the
displacement of the postsaccadic target. With small displacements, errors deviate toward the diagonal line for the three targets; this pulling effect appears
stronger with longer viewing durations.

doi:10.1371/journal.pcbi.1004766.g002
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To explain these effects, we modeled the role of causal inference in the computations to
obtain spatial constancy. Our principal model involves a statistically optimal mixture at the
trial level of two possible causal structures on the signals available (see Methods). For each par-
ticipant, the model was fit to all localization errors simultaneously. For the participant in Fig 2,
the best-fit model is shown by the blue shaded curves. The shade intensity represents the

Displacement (deg)
Fig 3. Mean localization errors across participants.Mean responses are shown as dots (error bars, SEM) and meanmodel fits as continuous lines
(shaded areas, SEM). Format as in Fig 2.

doi:10.1371/journal.pcbi.1004766.g003
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model’s likelihood of localization errors (p(s|mv)). The model adequately predicts the positive
slope in the errors as observed with small but increasing target displacements. This positive
slope reflects the model’s weight on the assumption that the pre- and postsaccadic percepts
originate from the same stable target (i.e. have a common cause), so they can be integrated to
estimate a more precise but biased response (in the direction of the postsaccadic target). Along
the same lines, the model also accounts for the effects of postsaccadic viewing time, the increase
of which causes a more precise postsaccadic representation resulting here in a steeper slope in
the localization error (i.e. a stronger contraction or pull to the postsaccadic target). Finally, the
model infers that for large target displacements, the pre- and postsaccadic percepts likely stem
from different causes, for which it is optimal to not integrate but rather disregard the postsacca-
dic percept. As a result, the probability of a localization response toward the displaced target
decreases, which matches with the transition to smaller errors as observed in the data.

The continuous lines in Fig 3 depict the best-fit predictions from the model, averaged across
participants. As shown, these curves display a good correlation with the localization errors
(R2 = .65 ± .06 and R2 = .85 ± .03 for the parallel and orthogonal direction, respectively, across
participants; see the section Mixture Model for details about the fitting procedure).

The best-fit parameter values (see Table 1) give insight in the precision with which the target
positions are recovered from memory when computing the localization responses (σm; see Fig
4A). A two-way analysis on the σm values revealed significant effects of both target (F(2,9) =
31.9, p< .001) and displacement direction (F(1,10) = 5.2, p = .045), as well as a significant
interaction effect (F(2,9) = 25.9, p< .001). The interaction is expressed by the finding that this
effect is mostly driven by the orthogonal displacements (see Fig 4A). Post hoc comparisons
revealed that NT is memorized with a lower precision than FT and ST. Thus, while both ST
and NT are viewed in the periphery before the saccade, ST is memorized with higher precision
than NT. No significant difference was found between the estimated parameters for FT and ST.

Fig 4B depicts the model’s prediction of the precision of the postsaccadic target (σv) for the
three viewing times. Here the effect of viewing time is significant (F(2,9) = 7.5, p = .012) and, as
expected, post hoc comparisons reveal precision to improve (lower sigma values) both from 50
to 300 ms viewing (p = .004) and from 300 to ~1000 ms viewing (p = .008).

As the mean data show, there are also errors in the absence of any target displacement. The
model explains this by the combined effect of the foveal prior (σf = 4.6° ± 0.27°, mean ± SEM)
and the allocentric prior π. The location and precision of the allocentric prior are plotted in Fig
4C, showing that it is centered in between the three target locations, and has a substantial
width (~12°) compared to the inferred precision vales of both the remapped, presaccadic target
representations (Fig 4A) and postsaccadic information (Fig 4B).

Finally, in the model, the general degree by which participants’ localization responses were
influenced by the displaced target is captured by parameter pc, which represents the prior prob-
ability that the target remains stable. Its value was on average 0.45 ± 0.1 (mean ± SEM), but
Table 1 shows that this parameter varied substantially among the 11 participants. This prior in
combination with the information ofm and v, results in a posterior probability that the target
has not moved, p(C|mv), as a function of target displacement.

Fig 5 shows that the average p(C|mv) is close to one for small displacements, suggesting inte-
gration of pre- and postsaccadic targets. For larger target displacements, the curves fall off, sug-
gesting more evidence that pre- and postsaccadic representations stem from different sources.
The curves also illustrate the effect of viewing time: when the postsaccadic target is viewed only
briefly, inferring causality becomes more difficult, resulting in a more gentle decline of p(C|mv)
with increasing displacements.

The above results follow from fits of a mixture model that assumes a causal inference pro-
cess that is fully statistically optimal. For comparison, we also fitted two variants of this model,
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model selection and probability matching (see Methods). The models differ by the response
rule applied (see Methods). Across our participants, on average the log-likelihood differences
of these models with the mixture model were 344 ± 124 and 125 ± 49, respectively, indicating
that the mixture model (average log-likelihood -17262) outperforms its variants. Since the

Table 1. Best-fit parameter values for all eleven participants. All values are in degrees except probability PC. Position of π is expressed relative to FT.

σmx σmy σv

FT ST NT FT ST NT 50 300 1000 σf σπx σπy πx πy pc

1.56 1.65 2.49 1.08 1.32 2.86 3.11 2.25 1.42 4.76 16.56 12.56 12.62 15.92 0.57

1.22 1.6 1.14 0.41 0.53 1.67 3.51 3.35 3.33 3.38 5.55 4.86 12.84 20.53 0.02

0.85 0.88 0.9 0.46 0.46 1.25 3.12 3.11 3.06 3.92 9.86 16.04 4.77 -0.53 0.78

0.9 1.05 1.24 0.88 0.69 1.45 1.39 1.17 0.07 4.29 19.36 11.12 9.22 0.5 0.09

1.3 1.04 1.16 0.78 0.81 1.78 1.53 1.35 0.14 3.66 17.82 11.28 1.11 12.23 0.21

0.87 0.98 1.16 0.49 0.38 1.27 3.39 3.23 3.1 4.57 3.61 20.3 7.65 2.43 0.62

1.68 0.83 1.02 0.62 0.48 2.27 0.9 0.47 0.26 6.65 23.93 14.29 6.1 -0.34 0.02

2.46 1.86 1.79 2.3 1.26 2.93 1.96 1.34 0.18 5.15 7.75 2.98 3.11 3.12 0.53

1.79 1.29 1.73 1.22 1.1 2.64 1.81 1.61 1.48 5.09 7.82 7.71 2.05 1.03 0.39

1.46 1.84 2.26 0.75 0.77 2.31 2.49 2.31 1.87 4.63 9.04 10.76 13.64 10.15 0.73

1.37 2.04 2.9 0.68 0.57 1.69 3.99 3.9 3.83 4.39 14.35 10.62 0.76 3.93 0.96

doi:10.1371/journal.pcbi.1004766.t001

Fig 4. Mean parameters of best-fits. (A) Average σm across participants (error bars, SEM). The orthogonal
component of the memorized positions appears to be more precise than the parallel component for FT and
ST, but not for NT. (B) Average σvacross participants. Variability of the postsaccadic-target representation
decreases as a function of viewing duration. (C) Prior π, positioned relative to FT, representing where objects
are generally expected to appear. All values are in degrees.

doi:10.1371/journal.pcbi.1004766.g004
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three models share the same parameters, using an AIC or BIC instead of the log-likelihood cri-
terion in the model comparison would not change this conclusion. For one participant (num-
ber 6) no clear difference between the mixture model and model selection was found (log-
likelihood difference< 3); for two other participants (number 9 and 11), a probability match-
ing strategy was ranked before the mixture model.

Fig 5. Inferred probability of a common cause p(C|mv) as a function of target displacement.
Probabilities are based on the best-fit parameters, separated by target location (rows: FT, ST, NT),
displacement directions (columns: parallel/orthogonal) and postsaccadic viewing duration(in color). Shown
are the mean values across participants and standard error (shaded areas). This probability, which can be
interpreted as the complementary probability of perceiving the displacement, optimally weights the
integration and segregation strategy.

doi:10.1371/journal.pcbi.1004766.g005
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Discussion
In the current study we modeled and tested the role of causal inference in the computations for
spatial constancy across saccades. According to our model, the brain has to estimate whether
presaccadic and postsaccadic signals reflect a stable or an unstable visual world, which depends
on the spatiotemporal difference between these signals and on their precision. We operationa-
lized the problem experimentally by using the saccadic suppression of displacement paradigm.
Participants viewed three targets, with one of them the fixation point, the other the saccade tar-
get and the third a peripheral target. After the saccade, one of these three remained for different
viewing durations, but often at a slightly displaced position, and participants had to indicate
which location it had prior to the saccade. Our results show that: 1. the integration of the pre-
and postsaccadic target positions declines as a function of their spatial separation, 2. different
targets show different strengths of SSD, and 3. viewing time of the postsaccadic target changes
the strength of SSD. Our model could account for all these findings, which will now be dis-
cussed in more detail.

We replicated the non-linear localization response pattern previously reported by Niemeier
and colleagues [9], but modeled it in a different way. Sensory signals are inherently noisy. This
means that even in the case of a completely stable world the pre- and postsaccadic percepts
may show some false discrepancy which should be ignored by the brain. In the model of Nie-
meier and colleagues a spatial window of stability is created by integrating a displacement vec-
tor (i.e. the visual discrepancy) with a prior centered at zero displacement. This predicts that
localization is pulled to the postsaccadic target, irrespective of the size of the displacement. The
present model goes a step further, and considers this pulling effect from a causal inference per-
spective, stating that presaccadic and postsaccadic percepts should be integrated when their
discrepancy is relatively small but should be segregated when the displacement increases. More
specifically, it infers the probability that a common cause underlies the pre- and postsaccadic
percepts. The model dealt with these considerations in an optimal manner, i.e. on any trial it
applied a mix of both integration and segregation, each weighted by its respective probability
as based on the precision of both percepts, thereby minimizing quadratic error in the long run.
Of course, there are alternative forms by which the brain could process the inference about the
common cause (see [10]). For example, the brain could also select per trial which causal struc-
ture is most likely, and accordingly process the trial in a binary fashion either by integration or
by segregation. In most participants, we found that our weighted averaging model better
described the data than a model involving binary selection or a model based on the principle of
probability matching.

In the comparison of the fits of the three models described, Wozny et al. [10] found the last
and least optimal variant, probability matching, the clear winner in a multisensory perception
experiment. It must be noted, however, that our experimental setting differs principally from
that of Wozny et al. and of other applications of the mixture model known to us [11, 14]. They
deal with multisensory perception, where bimodal cues (typically auditory and visual) are
available to be combined if there is evidence they belong to the same object, even though each
unimodal cue is in itself sufficient to solve the task (e.g., localize an object). Data for either
unimodal condition (just the auditory cue or just the visual cue) can be obtained without
changing the task. In our case, there are two complementary representations in one modality
(vision) and a division in an experiment with “just the presaccadic remapped memory infor-
mation” and one with “just the postsaccadic visual information” is not sensible. Consequently,
the outcome of the model comparison might well be different for our case.

As predicted by our model, we found strong integration when the target displacements were
small, characterized by low response variability but large biases toward the postsaccadic target.
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Increasing the size of the displacement lowers the probability of a common cause (Fig 5) which
results in smaller localization errors (Fig 3). The inferred probability of a common cause can
directly be interpreted as the strength of SSD. As shown previously (e.g. [15]), displacements
up to one third of the saccade amplitude typically show strong SSD. However, we have found
differences in the strength of SSD between targets and displacement directions.

We showed that the differences in strength of SSD between targets reflect differences in the
precision of the presaccadic target representations upon recall. The regression analysis suggests
that FT is represented more precisely than ST and NT, while the model fits showed that both
FT and ST were represented more precisely than NT. We lack a clear explanation for this dif-
ference, but as shown in Fig 3, the model generally underestimates the pulling effect of ST and
overestimates this for FT. For both FT and ST, localization is better with orthogonal than paral-
lel target displacements, which can be explained by the anisotropy in the precision of their
memories. This anisotropy may result from the noisy eye position signals that are used to
remap the target representation across saccades [9]. Indeed, our participants showed about
twice as much scatter in the saccade end points in the direction of the saccade than orthogonal
to it (1.27 ± 0.05° and 0.73 ± 0.03°, respectively, mean standard deviation ± SEM). The esti-
mated parameters of the mixture model indicate that memory precision of FT and ST is also
about two times worse parallel than orthogonal (see Table 1), which suggests that noise sources
related to eye position sense play a role in the coding of these representations [9]. The memory
of NT, which we found to be less precise than ST and FT, appears to be more variable in the
orthogonal than along the saccade direction. Although we cannot explain all the differences in
the strength of SSD among the three targets, an important factor may relate to how the brain
has coded the visual scene in memory, which we will discuss next.

It has been suggested that across saccades the brain stores a structural description of the tar-
get display in memory (e.g. [16]). For example, in a task where participants have to remember
a pattern of dots, it was shown that the relative positions of the dots could be recalled indepen-
dent of absolute spatial information [17]. After a saccade, the saccade target could serve as an
anchor to which the structural description is related [15, 18, 19]. Connecting this finding to the
present experiment suggests that participants encoded the equilateral triangle constituted by
the three targets. In our experiment, however, the majority of trials had no ST present after the
saccade. If the structural description of the target display would then be anchored to the eyes’
landing position instead, it would predict a positive relationship between the saccade landing
error and localization error. Indeed, we found a small but significant correlation for ST in
almost all participants (mean r = .18). In the same vein, this notion could also explain why the
ST was recovered with higher precision from memory than NT although both were presaccadi-
cally presented at equal eccentricities. If participants indeed stored a structural description as
an equilateral triangle, there may be some variability in the size of the triangle from trial to
trial. This variability would bear out in more response variability in the orthogonal direction of
NT, as we have found. Furthermore, previous work has shown that a group of random static
dots are typically remembered closer to each other than they actually were [20, 21], like our
participants did. Our model explains this observation using an allocentric prior, positioned at
about the center of the target display, albeit with some variability among participants This is
consistent with current models of efficient coding in visuospatial memory, which propose
that people code a display in terms of summary characteristics, such as its center of mass (e.g.
[22, 23]).

Despite relative coding accounts, as described above, there is also ample evidence that the
brain keeps target representations in a dynamic register (for a review see [4]). These represen-
tations, coded in eye-centered coordinates, must be updated when the eyes move. In support,
several brain regions have been identified that contain neurons with visual receptive fields
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(RFs) that are normally fixed to one position of the retina but briefly shift in anticipation of a
planned saccade to the position the RF will occupy after the saccade (e.g. [3, 24, 25]). Although
it is currently unknown how the brain transfers object information across shifts of the RFs, it
could be an important mechanism in order to achieve space constancy (e.g. [26]). In our
experiment, the three target representations would be shifted in the opposite direction of the
upcoming saccade. After the saccade a one-to-one comparison can be made between the post-
saccadic retinal input and the predicted input to assess visual stability. It could be hypothe-
sized that in anticipation of a saccade a given receptive field shifts in the accurate direction
but with a less accurate amplitude. This seems plausible given that saccades to a target typi-
cally show more variability in amplitude than direction. While this would be consistent with
the observed SSD differences for FT and ST, this is not the case for the NT. VanRullen [27]
has argued that while the visual world translates homogeneously during a saccade, its cortical
representation does not because the amount of cortex dedicated to a certain sized patch of the
retina varies, especially as a function of retinal eccentricity. One possibility is that these non-
homogenous shift of RFs introduces noise orthogonal to the saccade in the periphery, which
may explain our results for the NT. A precise mapping of shifting RFs would be needed to test
this hypothesis.

Alternatively, one could speculate that the observed differences between target locations
reflect distortions due to RFs that shift not in parallel but towards the ST in anticipation of a
saccade [28, 29]. Although it has been suggested that this anticipatory transient increase in
density of receptive fields around the saccade target underlies the boost in attention around the
ST area, and thus is beneficial for space constancy for that target, it may be that the encoding of
peripheral targets becomes distorted because of these RF shifts. The representation of a target
like NT may become stretched or displaced towards the ST, resulting in a compressed memory.
Future research should investigate whether these RFs do indeed distort perception.

In our experiment, we not only displaced the target but also manipulated the postsaccadic
viewing time. In general, longer viewing increases its pulling effect on the localization response.
Recently, Zimmerman et al. [30] performed a SSD task in which the viewing time of the presac-
cadic target was varied. They showed that when the presaccadic target is briefly viewed, i.e.
< 0.5 s, displacement detection performance is low. Here, we modeled viewing time as a factor
that changes the precision of the target representation. Indeed, the longer the target was visible,
the higher its precision. In terms of our model, the viewing time manipulation by Zimmerman
and colleagues would affect σm which in turn affects the probability of perceiving a common
cause p(C|mv). In other words, the system is generally more likely to integrate when the repre-
sentation of the presaccadic target is noisy, hence displacement detection performance is low.
In our experiment, decreasing the viewing time of the postsaccadic target did generally lower
the detection performance as well (i.e., increase p(C|mv)). The latter may not be directly obvi-
ous from the localization responses which show the strongest pulling effect with the longest
viewing duration. The explanation is as follows. Although the integration strategy receives less
weight with long viewing, the postsaccadic target representation is more precise, which has an
opposite effect and ultimately pulls localization towards it.

A final point of discussion relates to model parameter p(C), which represents the a priori
probability that the world remains stable. We found a considerable variability among partici-
pants for this parameter. In most participants, the p(C) estimates can be regarded low, given
that in daily life objects rarely jump while we scan the world. We consider it plausible that the
experimental context and task instruction, which explicitly mentions the possibility of displace-
ments, alters p(C). For example, if you know beforehand that a certain scene will contain a lot
of instability, it seems logical to lower p(C) and thus become more skeptical regarding the feasi-
bility to integrate percepts.
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Taken together, we showed that integration of the pre- and postsaccadic target representa-
tions can be modeled using principles of causal inference. When representations follow from
spatially close target locations, integration is strong. In contrast, when targets are further apart,
integration weakens, depending on precision of involved representations.

Materials and Methods

Ethics statement
The study was part of a research program approved by the local ethics committee of the Social
Sciences Faculty of Radboud University (ECG2012-1304-030).

Participants
Twelve naïve participants (eight females, average age 25.7 ± 0.6 years, mean ± SEM) partici-
pated in the experiment, all with normal or corrected-to-normal vision. Each participant par-
ticipated in four experimental sessions of approximately 1 h each and informed consent was
given beforehand. One participant did not complete all sessions because the eye-tracker helmet
felt uncomfortable. We discarded her data.

Experimental setup
Participants sat in a dimly lit room with their head supported by a chin rest. They operated a
two-button computer mouse. Stimuli were controlled using a custom-written program in Del-
phi (Embarcadero) software. Visual stimuli were displayed on a 19 inch CRT monitor (Philips
109B) using a vertical refresh rate of 100 Hz and a resolution of 1024 x 768 pixels. The monitor
was positioned about 30 cm in front of the participant’s eyes, encompassing 61° x 46° (HxV) of
the visual field. A photodiode was placed over the bottom-left corner to determine the precise
onset and displacement of the visual stimuli with respect to eye movements. Binocular eye
position was recorded at 500 Hz using a head-mounted eye tracker (EyeLink II; SR Research).
The eye tracker was calibrated using a 9-point grid. A saccade was detected online using a posi-
tion threshold of 1.5°. Participants were allowed to take breaks every 400 trials. After each
break the eye tracker was recalibrated and as needed during testing, for example when the pro-
gram failed to detect a fixation at the start of a trial.

Experimental protocol
We tested participants in an SSD task with three target positions, each of which contained a
gray shape (circle, square, or triangle, all 1° size). Fig 1 presents a graphical depiction of a trial.
At the start of the trial, the three target shapes appeared 15° apart at equilateral triangular posi-
tions against a light-grey background. The shapes designated the fixation target (FT), the sac-
cade target (ST), and a peripheral non-target (NT). The specific shape of each target was held
constant for each participant (e.g. the triangle was always the FT), but counterbalanced across
participants. The participant was instructed to first foveate the FT, i.e. the triangular target in
Fig 1. After the participant had kept fixation for a random duration of 200–500 ms (discourag-
ing anticipatory saccades), an auditory signal (1kHz sine-wave beep, 60 ms) instructed the par-
ticipant to saccade to the ST. The saccade was always in horizontal direction, either leftward or
rightward in randomized order. The NT appeared midway between the ST and FT, above or
below (randomized). The exact position of these targets relative to the screen’s center was var-
ied (over a range of 27° horizontally and 20.6° vertically, flat distributions) in order to deter
learning the exact location of the targets on the monitor. During the saccade, at on average
36 ± 8.3 ms (mean ± std) after saccade onset, one of the three targets was displaced, while the
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other two were removed from the display. The target displacement (-5, -3, -2, -1, -½, 0, ½, 1, 2,
3, or 5 degrees) was parallel or orthogonal to the saccade. The displaced target remained visible
for 50 ms, 300 ms, or for about 1000 ms until a response was given, the ‘1000 ms’ condition.
The time between saccade offset and the response was kept constant such that memory decay
of the presaccadic scene was similar for the three viewing conditions. Together, this defined
792 trial types (i.e. 2 saccade directions, 3 targets, 2 NT locations, 11 displacement sizes, 2 dis-
placement directions (parallel vs. orthogonal), and 3 viewing durations). For our first six par-
ticipants, the 50 ms and 300 ms condition were randomly presented in the first three
experimental sessions; the 1000 ms condition was tested in a separate session. For the other
group of participants, the three viewing time conditions were fully mixed in all four sessions.
No significant differences between both groups were found.

Participants gave their response using a mouse cursor (small crosshair) indicating the pre-
saccadic position of the displaced target, which they confirmed by clicking the left mouse
button. The cursor appeared always 300 ms after the displacement occurred. Participants per-
formed each trial type 4 or 5 times. In case the saccade endpoint deviated more than 5° from
the ST location, a red screen was shown for 1000 ms after a response was given. Eye blinks that
triggered the target to jump were also followed with a red screen. If the participant did not
know about which of the three targets to report, he or she had to shift the cursor to the left bor-
der of the display, before clicking the mouse button. Before the actual experiment started the
participant completed a series of practice trials until s/he felt comfortable with the task.

Data analysis
We performed offline data analyses in Matlab (The Mathworks, Nattick, MA). Trials in which
the target displacement did not occur during the saccade (eye velocity< 50°/s for offline analy-
sis) were discarded (14.6 ± 2.0%; mean ± SEM). Trials in which the postsaccadic target was not
perceived (2.7 ± 0.7%) and trials with localization responses that were closest to a target other
than the original position of the postsaccadic target were also discarded (3.7 ± 1.4%). We also
discarded trials with a red screen (2.7± 0.6%). As a result, each participant completed on aver-
age 2427 ± 111 correct trials. Across participants, saccade duration was 50.7 ± 1.1 ms and
saccade amplitude 14.0 ± 0.2°. There was no instruction on saccade reaction time. Average sac-
cade latency, 273.7 ± 45.4 ms (mean ± SEM), was higher than usual, probably because of the
memorization of the presaccadic positions (cf. [30]). The total duration that the targets were
displayed before the saccade was on average 1200 ± 60 ms.

Data of four experimental configurations, that is a left/rightward saccade and NT above/
below, were pooled by transforming them toward the single configuration shown Fig 1A,
reducing the number of unique trial types to 198. Localization error was defined relative to the
presaccadic target location, and was signed positive into the horizontal saccade direction and
vertically upwards (see Fig 1A).

Mixture model
Wemodeled the role of causal inference in the computations to obtain spatial constancy. The
model has to explain the observed responses of each participant. Our principal model involves
a statistically optimal mixture at the trial level of two possible causal structures on the signals
available. This 2D model is developed here, formulated along the lines proposed in Körding
et al. [11], to which we will frequently refer for further information. In the subsection ‘Alterna-
tive Models’ below we will introduce two variants of this model, also considered by Wozny
et al.[10], involving at the trial level not a mixture of, but a choice between the two possible
causal structures.
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By estimating the causal relations between the various sources of information the brain
attempts to determine whether two percepts belong together or need to be processed indepen-
dently. More specifically, on each trial the task of the system is to estimate the presaccadic tar-
get position on the screen, denoted s, based on two sources of information, the memory-based
remapped presaccadic position percept, denotedm, and the position percept of the postsacca-
dic visual stimulus, denoted v. Both entities are available with finite precision only (having
some amount of noise) and are represented by probability distributions, which constitute the
input to the causal inference model expounded below. First, we briefly describe how we mod-
eled these probability distributions of the single source perceptsm and v.

The distributions of bothm and v are assumed to be independent 2D Gaussians. It can be
expected that the variance ofm has several sources, such as retinal noise during target encoding,
remapping noise related to target updating, and noise due to memory decay. Some of the noise
sources may be anisotropic (e.g. [9]). For simplicity, we do not model these sources but use a
combined estimate s2

m for each target position and allow anisotropy. Thus, s2
m is estimated per

target position, both for the parallel and orthogonal direction, resulting in 3x2 free parameters
form. For v we assume its variance to be isotropic, primarily determined by encoding noise.
Intuitively, the shorter an object is viewed, the more noisy the position percept. Thus, s2

v is esti-
mated per viewing time condition (irrespective of target), resulting in 3 free parameters for v.

It has further been suggested that participants localize visual targets towards the fovea (e.g.
[31–33]). We modeled this foveal bias by including a prior, specified as an independent isotro-
pic 2D Gaussian with variance s2

f , centered at FT form and at the saccadic landing point for v

(see Fig 6A), and by interpreting the perceptsm and v as the results of an optimal Bayesian
integration process of accurate sensory signals ~m and ~v , respectively, with this prior. As a con-
sequence, the center ofm is not at the true target position, but shifted in the direction of FT by

the fraction s2m
s2
f
of the distance between these points (see Fig 6B). Similarly, the center of v shifts

from the true target position in the direction of the saccade landing point by the fraction s2v
s2
f
of

the distance between these two points.
These single source distributions play an essential role in the mixture model, in which the

evidence for target position s given memory informationm and visual information v takes the
form of a probability density function p(s|mv). Thus, p(s|mv) is the localization response, given
estimatesm and v. In order to determine this p(s|mv) in an optimal way, the system has to pro-
cess correctly the probabilistic information available inm and v. That is, the system has to
acknowledge that, while there is a direct relationship betweenm and s on each trial, this is not
the case for v and s. Depending on the discrepancy between the two sources of information the
system may either see no evidence for a displacement and consider the information v as relevant
for the presaccadic position s to be reported (Fig 6C; integration), or it may take v to refer to a
new visual object without a clear relationship with s (Fig 6C; segregation). In short, the system
may distinguish two kinds of trials, requiring different forms of p(s|mv). In this probabilistic set-
ting the optimal procedure for the system is not to choose per trial one of these forms, but to
apply on any trial a mix of both, with the weight for each form equal to the estimated probability
of it being the correct one given sources of informationm and v (Fig 6D). Denoting the situation
of a trial where bothm and v derive directly from the presaccadic position s by C (common
cause form and v) and one where v derives from a different object (the displacement) by �C(no
common cause form and v), this leads to a mixture model of the representation of p(s|mv)[11]:

pðsjmvÞ ¼ pðsjmvCÞ � pðCjmvÞ þ pðsjmv�CÞ � pð�CjmvÞ ð1Þ
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This model consists of three components: (i) p(s|mvC), the distribution of s givenm and v
when v is the sensory representation of the true position; (ii) pðsjmv�CÞ, the distribution of s
givenm and v when v does not represent the true position, but a displaced version of it; and
(iii) p(C|mv), the probability that the currentm and v are from a trial with common source,
with pð�C jmvÞ ¼ 1� pðC jmvÞ the complementary probability of a trial withm and v refer-
ring to different positions. We will now discuss the specification of these three components in
turn.

(i) The distribution of s under the assumption of no displacement. In this situation
bothm and v are directly informative about the true position s and this is a case for the stan-
dard optimal integration model. By the laws of probability (“Bayes rule”) and assuming thatm
and v constitute two independent sources of information of a specific position s we obtain:

pðsjmvCÞ ¼ pðmvjsCÞ � pðsjCÞ
pðmvjCÞ ¼ pðmjsCÞ � pðvjsCÞ � pðsjCÞ

pðmvjCÞ ð2Þ

Here, the denominator is a normalizing constant, independent of s, while the three factors
of the numerator represent, respectively, the likelihoods of remapped positionm and visual
sensory information v given s, and the prior probability of s, the probability of s being at a cer-
tain spot of the screen independent of any sensory trial information, all of this in trials without

Fig 6. Mixture model. The presaccadic location of the NT (square) is reported after a transsaccadic displacement of 10° to the right. Objects in red represent
visible targets; the white objects depict the veridical target locations. Representations of location estimates, modeled as 2DGaussians, are shown as dark
ellipses. (A) Before the saccade, all three objects are encoded with the foveal prior f (light grey blob) being centered at the triangle, the FT. After the saccade, the
displaced target’s position and identity (NT here) are encoded with f now being centered at the saccade landing position. (B) Based on the NT’s presaccadic (m)
and postsaccadic (v) representations, both biased by f, the probability of a single stable object, p(C|mv), is computed. In casem and v are unrelated the best
solution is to segregate and ignore v. Ifm and v derive from the same object, the best solution is to integration all signals. (D) The two solutions in (C) are
weighted according to the probability thatm and v are related. The localization response follows from pðsjmvÞ ¼ pðsjmvCÞ � pðCjmvÞ þ pðsjmvCÞ � pðCjmvÞ.
doi:10.1371/journal.pcbi.1004766.g006
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a displacement. The first two are the independent 2D Gaussianm and v distributions described
above, and the prior for s is taken to be of the same kind, centered at some point π of the screen
and having anisotropic variance (s2

px and s
2
py)

(ii) The distribution of s under the assumption of a displacement. In this case,m still
derives directly from the true position s, but v refers to a different position. Without any sys-
tematic relationship between this new position and s it is unclear how v can contribute to the
estimation of s. The optimal procedure is then to not integrate and disregard v. In terms of
probability distributions:

pðsjmv�CÞ ¼ pðsjm�CÞ ¼ pðmjs�CÞ � pðsj�CÞ
pðmj�CÞ ð3Þ

Actually, the distinction between C and �C trials has only to do with the role of the informa-
tion v and there is no reason why the likelihood ofm or the prior for s would be different for
the two kinds of trials. That is, these distributions can be taken identical to their counterparts
in the C trials described in (i) above and the consequence is that the specification of pðsjmv�CÞ
coincides with that of p(s|mvC) apart from deleting the contribution made by v.

(iii) The probability of the trial having vs. not having a displacement. The datam and v
on a specific trial are also informative for assigning optimal relative weights to the estimate for
s obtained under the assumption of no displacement (case (i) above) and the estimate under
the assumption of a displacement (case (ii) above). Intuitively, the larger the discrepancy
betweenm and v of a given trial, the more evidence that they are not emanating from the same
source, i.e., the more evidence for a displacement trial. This can again be made precise by the
laws of probability, including Bayes rule:

pðCjmvÞ ¼ pðmvjCÞ � pðCÞ
pðmvÞ ¼ pðmvjCÞ � pðCÞ

pðmvjCÞ � pðCÞ þ pðmvj�CÞ � pð�CÞ ð4Þ

The latter equation expresses how the probability of the trial outcomesm and v having a
common source (no displacement) depends on a prior probability, independent of trial infor-
mation, for common source trials, p(C), and on the likelihoods of the obtainedm-v combina-
tion for no-displacement (common source) and displacement trials, p(mv|C) and pðmvj�CÞ,
respectively. The first of these, the prior common source probability p(C) is simply taken as a
free parameter pc in the model, with pð�CÞ ¼ 1� pC .

As for them-v likelihood in no-displacement trials, this can be mathematically obtained as
the weighted average across all possible s positions [11]. Assuming independence, this can be
done for two orthogonal directions separately. For the parallel (i.e. horizontal) direction,
indexed by x, it follows:

pðmxvxjCÞ ¼
R
pðmxvxjsxÞpðsxÞdsx ¼

R
pðmxjsxÞpðvxjsxÞpðsxÞdsx ð5Þ

Given the Gaussian assumptions for p(mx|sx), p(vx|sx), and p(sx), this integral has an analytic
solution (see [11]):

pðmxvxjCÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
mxs2

v þ s2
mxs2

px þ s2
vs2

px

p

� exp � 1

2

ðmx � vxÞ2s2
px þ ðmx � pxÞ2s2

v þ ðvx � pxÞ2s2
mx

s2
mxs2

v þ s2
mxs2

px þ s2
vs2

px

� �� �
ð6Þ

Causal Inference for Spatial Constancy across Saccades

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004766 March 11, 2016 17 / 20



An analogous equation can be derived for them-v likelihood in the orthogonal (i.e.vertical)
direction (y), yielding p(myvy|C). The 2-D likelihood p(mv|C) is then obtained as the product
of these horizontal and vertical likelihoods.

As to them-v likelihood in displacement trials, we note thatm and v are regarded indepen-
dent, not connected by a common s, and thus their weighted averages across s positions have to
be computed independently [11]. This amounts to

pðmxvxj�CÞ ¼ pðmxj�CÞ � pðvxj�CÞ ¼
R
pðmxjsxÞpðsxÞdsx �

R
pðvxjsxÞpðsxÞdsx ð7Þ

which given our Gaussian assumptions has again an analytical solution, now as a product of
two Gaussians [11]:

pðmxvxj�CÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2

mx þ s2
pxÞðs2

v þ s2
pxÞ

p exp � 1

2

ðmx � pxÞ2
s2
mx þ s2

px

þ ðvx � pxÞ2
s2
v þ s2

px

� �� �
ð8Þ

In combination with the analogous expression for the vertical direction, we achieve
pðmv j�CÞ ¼ pðmxvx j�CÞ � pðmyvy j�CÞ.

Model fitting and evaluation
The model contains 15 free parameters to fit 2D localization data from 198 different condi-
tions: 3 target positions (FT, ST, NT) x 11 displacement sizes (-5° to 5°) x 2 displacement direc-
tions (parallel, orthogonal) x 3 viewing times (50, 300, 1000 ms). Six parameters are used to
estimatem; three parameters are used for v (see Mixure Model). The remaining six parameters
describe the priors: one for the foveal bias (s2

f ), four for the x,y position (allocentric) and aniso-

tropic variance of π, and finally one for the general expectation of perceiving a common source
(pc). These parameters were fit to all localization responses simultaneously for each participant
(mean: 2589 data points) using Matlab’s fminsearch with 1000 searches (random initial param-
eter values) per participant. In every iteration of the search process, each condition was simu-
lated 10000 times. These distributions were then compared (using 0.1° bins) to the actual
localization data in order to estimate the likelihood of the data given the model. Across itera-
tions, the parameters were adjusted until an optimal fit was reached, i.e., the loglikelihood was
maximized.

Alternative models
The above mixture model assumes a causal inference process that is fully statistically optimal.
Of course, it is questionable whether the brain can attain such absolute optimality. To test for
this, we additionally fitted two variants of the mixture model, suboptimal in the statistical
sense, following proposals by Wozny et al. [10]. These two alternative models use the same
ingredients as the mixture model, but differ by the response rule applied. On each trial, given
an estimate of p(C|mv), the common-cause probability of the trial, this probability is not used
for weighting the common-cause, p(s|mvC), and no-common-cause, pðsjmv�CÞ; distributions
of the target as in Eq (1), but for choosing one of these. While making such a forced choice is
not optimal, the choice itself can be made in an optimal way and this constitutes the first alter-
native model (referred to as model selection): per trial just choose the more likely causal struc-
ture, i.e., if p(C|mv)>0.5, choose p(s|mvC), otherwise choose pðsjmv�CÞ. The second alternative
model (referred to as probability matching) amounts to one more step away from optimality:
here the choice between the two causal structures is again guided by the common-cause proba-
bility of the trial, but now according to the principle of probability matching: with probability
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equal to p(C|mv) choose p(s|mvC) and with complementary probability pð�CjmvÞ choose
pðsjmv�CÞ.

The model fitting procedure for the two alternative models is identical to the one for the
mixture model described above (e.g. same number of free parameters) and log-likelihoods are
compared to determine which model describes the data best for each individual participant.
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