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Analyzing single trial brain activity remains a challenging problem in the neurosciences. We gain purchase on
this problem by focusing on globally synchronous fields in within-trial evoked brain activity, rather than on
localized peaks in the trial-averaged evoked response (ER). We analyzed data from three measurement mo-
dalities, each with different spatial resolutions: magnetoencephalogram (MEG), electroencephalogram (EEG)
and electrocorticogram (ECoG). We first characterized the ER in terms of summation of phase and amplitude
components over trials. Both contributed to the ER, as expected, but the ER topography was dominated by the
phase component. This means the observed topography of cross-trial phase will not necessarily reflect the
phase topography within trials. To assess the organization of within-trial phase, traveling wave (TW) compo-
nents were quantified by computing the phase gradient. TWs were intermittent but ubiquitous in the
within-trial evoked brain activity. At most task-relevant times and frequencies, the within-trial phase topog-
raphy was described better by a TW than by the trial-average of phase. The trial-average of the TW compo-
nents also reproduced the topography of the ER; we suggest that the ER topography arises, in large part, as an
average over TW behaviors. These findings were consistent across the three measurement modalities. We
conclude that, while phase is critical to understanding the topography of event-related activity, the prelimi-
nary step of collating cortical signals across trials can obscure the TW components in brain activity and lead to
an underestimation of the coherent motion of cortical fields.

© 2013 Elsevier Inc.Open access under CC BY-NC-ND license.
Introduction

A wealth of evidence links cross-trial averaged, evoked response
(ER) measures to various stages of perception, cognition and action.
However, themechanisms responsible for the ER are poorly understood.
Here we relate ERs to cortical traveling waves (TWs). The functional
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significance of TWs, at the columnar scale (Eckhorn et al., 2004;
Nauhaus et al., 2009), Brodmann area (Freeman and Barrie, 2000;
Prechtl et al., 1997; Rubino et al., 2006; Takahashi et al., 2011) and
in large scale cortex (Alexander et al., 2006b; Ito et al., 2007;
Klimesch et al., 2007; Massimini et al., 2004) is the subject of a grow-
ing literature. The goal of this study is to analyze the composition of
the ER, considered as a large-scale pattern of TW activity.

The ER is the trial-average of the measured time-series. ER measure-
ments across the entire scalp are typically used in source localization tech-
niques, for both event-related potentials and event-relatedfields (Liu et al.,
1998; Pascual-Marqui et al., 1994). An underlying assumption is that ERs
reflect the magnitude and location of brain activity and its time-course.
Areas or intervals with low ER magnitude therefore tend to be ignored.
The ER, along with other cross-trial measures such as coherence (Hipp et
al., 2011; Lachaux et al., 1999), targets brain activity that consistently sum-
mates across trials. Brain activity that does not consistently summate
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across trials is not considered functionally important; sites of low phase
consistency are generally considered to reflect activation uncorrelated
with the task. This activity is assumed to behave randomly across trials
(Britten et al., 1992; Ray and Maunsell, 2011).

Though technically challenging, it is possible to fit the equivalent
current dipole to individual trial data and then compute the average
source location, or range of locations, indicated by these single trial
fits (Liu and Ioannides, 1996). The resulting evidence suggests that
the sequence of activations in the trial-averaged signal does not accu-
rately reflect the sequence of activations within individual trials. In
the present research we consider the sequence of activations in the
cortex by analyzing TWs within trials.

The issue of trial-averaging also arises in discussions of the relative
importance of amplitude and phase to the ER. Two alternative ideas of
ER generation have emerged in the literature. In the evoked model,
changes in amplitude contribute to the ER, both directly and by selec-
tively enhancing the amplitude of some phase components (Mäkinen
et al., 2005; Shah et al., 2004). In the phase resetting model, only the
phase of the signal will affect the ER, via changes in cross-trial phase
locking initiated by experimental events (Gruber et al., 2005; Makeig
et al., 2002). In this discussion of ER generation, the relative effects of
phase and amplitude on evoked responses are often considered only
for a limited number of recording sites (Barry et al., 2004; Gruber et
al., 2005; Fell, 2007 cf. Makeig et al., 2002). Consistent with this ap-
proach, oscillatory components that have been isolated using inde-
pendent components analysis also summate in a manner that
suggests a topography of activity arising from localized cortical
sources (Makeig et al., 2002). However, if there are large-scale topo-
graphical relationships in the way phase and amplitude interact,
they may be missed when only sites with maximum ER magnitude
are considered. In particular, in the trial averaged signals, TWs are
often not clearly in evidence. However, this does not preclude TWs
from being prominent in the unaveraged signal. This we investigate
here. The topography of phase might be explained better by TWs at the
single trial level than by any component of the trial-averaged signal.

An alternative to cross-trial measurement is to characterize the
amplitude and phase prior to collation of signals across trials. This
may be achieved by considering the topography of these components
at the single-trial level. Useful information can be extracted from sin-
gle trials even without analyzing the Fourier components of the sig-
nal, for example, Arieli et al. (1996) considered the topography of
local field potentials in cat visual cortex. They found that the spatial
pattern of within trial activity dominated the signal; the ER was
merely a relatively small component. The preceding within-trial ac-
tivity was an excellent predictor for within-trial activity at the latency
of the ER; a much better predictor than was the trial-averaged ER
topography. Thus the within trials topography of activity is highly
structured, not simply noise on top of an ER (Arieli et al., 1996).

Within trials topographical information has also been critical for
detecting TWs, either by amplitude deflections or by phase estimates
(Alexander et al., 2006b; Eckhorn et al., 2004; Massimini et al., 2004;
Rubino et al., 2006). The present research tested the prevalence of
TWs as an instance of highly structured activity patterns within trials,
also in order to assess the strength of such patterns against trial-
averaged components such as ERs andphase coherence.Whereas the for-
mer collates signals across space but within trials, the latter, more com-
monly usedmeasures, collates signals for individual sites but across trials.

Theory and simulation of cortical mechanisms have predicted the
existence of large-scale TWs (Nunez and Srinivasan, 2006; Wright et
al., 2001). Essentially, the global resonances that account for the 1/f
spectra of cortical activity are also associated with TW dynamics. Using
the electroencephalogram (EEG) and magnetoencephalogram (MEG),
global cortical waves have been shown to arise at a variety of frequen-
cies, from the sub-delta through to gamma bands (Alexander et al.,
2006b, 2009; Ito et al., 2007; Massimini et al., 2004; Ribary et al., 1991;
Sauseng et al., 2002). These waves are typically of long wavelength,
with a spatial period of the order of 10 to 20 cm. Over one temporal
cycle of the wave, wave peaks typically traverse the entire EEG/MEG re-
cording array.

The functional significance of TWs has been established by noting
their close correspondence with the latency topography of known visual
and auditory ERP components, such as the P1–N1 complex, P2–N2 com-
plex, as well as the P3b (Alexander et al., 2006b, 2009; Anderer et al.,
1996; Fellinger et al., 2012; Klimesch et al., 2007). For these event-
related potential (ERP) components, the latency, temporal frequency
and task-dependency of evoked TW components are consistent with la-
tency, temporal frequency and task-dependency of the corresponding
ERPs.

ERPs aside, more evidence needs to be brought to bear on the
functional relevance of large-scale TWs at the single-trial level. Some
progress has been made toward this goal in analyzing wave activity dif-
ferences across defined brain states, such as rest (Ito et al., 2005, 2007),
deep sleep (Massimini et al., 2004) and working memory (Fellinger et
al., 2012; Sauseng et al., 2002). Single-trial TWs have also been used to
uncover genetic differences in brain activity (Alexander et al., 2007), dif-
ferences across age groups and clinical groups and in correlations with
clinical symptoms (Alexander et al., 2006a,b, 2008, 2009).

Large-scale patterns of activity in the scalp EEG are partly a function
of blurring due to volume conduction of the dura, skull and other tissues;
to a lesser extent blurring effects also apply to MEG and electrocortico-
gram (ECoG) measurements. However, a number of analyses clearly in-
dicate that TWs measured in the EEG are not an artifact of volume
conduction. TWs can still be detected in the EEG using sparse electrode
arrays with a minimum electrode separation of 10 cm (Alexander et
al., 2009); the spatial resolution of the measurement is matched to the
spatial resolution of the signal to discount blurring artifact. TWs in EEG
can also be detected bymeasuring latency delays rather than spatial pat-
terns, per se (Alexander et al., 2006b; Fellinger et al., 2012; Manjarrez et
al., 2007;Massimini et al., 2004; Nauhaus et al., 2009; Patten et al., 2012).
Since volume conduction effects are essentially instantaneous, to explain
away themotion of the apparentwaves requires amore complicated hy-
pothesis than volume conduction alone provides (see Ray andMaunsell,
2011, for one such hypothesis; c.f. Nauhaus et al., 2012). To further ad-
dress the issue of blurring by volume conduction, in the present research
we analyzed data from a range of imaging modalities: MEG, EEG and
ECoG. We chose these modalities because they have different effective
spatial resolutions: approximately 4 cm, 10 cm and 1 cm for MEG, EEG
and ECoG, respectively (Bullock et al., 1995; Srinivasan et al., 2007).
Establishing the ubiquity of TWs using each of these measurement mo-
dalities would add further evidence against the argument that TWs
arise as an artifact of volume conduction.

The results of this study show that phase plays the major role in the
ER topography, more-so than amplitude, consistently across imaging
modalities. We also observed that the topography of trial-averaged
phase, while correlated with ER topography, co-occurs with ubiquitous
episodes of TWactivity at the single-trial level. In the three data sets an-
alyzed here, the topography of within-trial phase was better described
by TWs than by trial-averaged phase, suggesting a loss of information
in the latter case. Linking TWs back to ER topography, we show that at
some event-related times and frequencies, the ER topography can be
approximated as a trial-average of TW components estimated at the
single trial level. The existence of smooth spatial gradients of phase
within trials, i.e. TWs, is entirely consistent with spatial and temporal
variations in cross-trial phase locking. We propose that ER magnitudes
are partly the product of TWs that summate and cancel differentially
across measurement sites.

Materials and methods

We re-analyzed data from three previously published studies. These
data were chosen because they involve a range of simple motor and/or
sensory tasks recorded under controlled conditions.
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The recordings involve three different imaging modalities: MEG,
EEG and ECoG. These modalities have different degrees of spatial res-
olution (EEGbMEGbECoG), allowing analysis of spatial patterns of
activity under different conditions of blurring. The Apparent Motion
task and the Dot Lattice task were carefully designed to avoid eye
movement artifacts, with short inter-stimulus intervals and subjects
being required to fixate their gaze.

MEG Apparent Motion task

Twenty human subjects (age range 22–36 years, mean age 27.1; 12
females) engaged in an audio–visual perceptual task, while their brain
activity was recorded via MEG. All the subjects were right-handed, had
no audiological abnormalities, and had normal or corrected-to-normal
vision. Written informed consent was obtained from all subjects prior
to participation in the study. The study was approved by the ethics com-
mittee of the University of Tübingen, Germany. The task required the
subject to choose the direction of motion of an audio–visual apparent
motion stimulus. The visual stimulus was located on the horizontal me-
ridian with the distance of 15° of visual angle at either side of the screen
center. The apparentmotion illusionwas elicited by presenting the stim-
uli for 67 ms at the one side, and then after 67 ms delay, for 67 ms at the
opposite side. The auditory stimuli were the white noise bursts
processed in such a way that the sound was spatially perceived at
the position of the visual stimuli (+15° or −15°). Subjects were
instructed to trigger the stimuli by pressing a button with either
the left or right index finger, with random choice for each trial. The
stimulus moved from the side indicated by the subject and then to
the other side (i.e. either left-to-right or right-to-left; these were the
‘predictable-left’ and ‘predictable-right’ conditions). In some blocks of tri-
als the direction of the stimulus motion was randomized and not due to
the subject's choice (i.e. ‘unpredictable-left’or ‘unpredictable-right’ condi-
tions). We applied analyses only on the trials in which the side of first
stimulus coincided with the button pressed: all trials in the predictable
and approximately half of trials in the unpredictable condition. Further
details of the experiment can be found elsewhere (Zvyagintsev et al.,
2008).

Neuromagnetic responses were recorded in a magnetically shielded
booth using a 151-sensor whole-head gradiometer (CTF Systems Inc.,
Vancouver, Canada). Measurements were performed with subjects in
a sitting position. The MEG signals were sampled at 312.5 Hz. Time
zero in each trial was designated as the time of the button press. Data
were analyzed in each trial from −500 ms to +500 ms.

EEG Dot Lattice task

Thirteen healthy subjects (ages 19–36, mean age 23.6, 9 females)
took part in the experiment. The stimuli were multistable dot lattices,
each of which appeared to be grouped into strips of dots (Kubovy,
1994). The perceived organization of a dot lattice depends on its aspect
ratio (AR), which is the ratio of the two shortest inter-dot distances.
Four different values of AR: 1.0, 1.1, 1.2, and 1.3 were used. The lattices
were presented at four different orientations (22.5, 67.5, 112.5, or
157.5°). The four aspect ratios and four orientations yielded 16 different
stimuli. Within each experimental block each of the 16 conditions was
presented 10 times in a randomorder. Four such blocks were presented
to every observer.

The diameter of the dots was 0.2° of visual angle. The shortest dis-
tance between dot centers at AR=1.0 was 0.6° of visual angle. Subjects
sat 1.15 m from the screen in a dimly lit room. Each trial consisted of
four intervals: fixation, stimulus, blank screen, and response screen.
The duration of the stimulus interval and the blank-screen interval
were both fixed at 300 ms. A response screen (four icons depicting
the orientations of most likely dot groupings) was presented until a re-
sponse was received. The subjects' task was to report the orientation of
the perceived grouping by clicking on the corresponding icon. Further
details of the experiment can be found elsewhere (Nikolaev et al.,
2008).

EEGwas recordedusing a 256-channel Geodesic SensorNet (Electrical
Geodesics Inc., Eugene, OR). Data were digitized at 250 Hz. All channels
were referenced to the vertex electrode (Cz). Impedance was kept
below 50 kΩ. All channels were preprocessed on-line using 0.1 Hz
high-pass filtering and 100 Hz low-pass filtering. The outer ring of elec-
trodes (i.e. those over the forehead, cheek and neck) was removed from
the analysis, leaving only the 184 electrodes over symmetrically posi-
tioned cranial sites. The channels were then re-referenced to average ref-
erence. Average reference was preferred over the original vertex
reference since the typical range of measured phase over the whole
array partly cancels out the effects of reference on the measured TWs.
Time zero in each trial was designated as the time of the stimulus presen-
tation. Data were analyzed in each trial from −100 ms to +400 ms.
Epochs with eye-movement artifact were remove from analysis
(Nikolaev et al., 2008).

ECoG Finger Movement task

A female patient (aged 55 years) suffering from intractable
pharmacoresistant epilepsy with a right fronto-polar focal cortical
dysphasia took part in this study after having given her informed
consent. The study was approved by the university clinic's ethics
committee. The patient was strongly right-handed according to a mod-
ified Oldfield questionnaire and showed no clinical signs of pareses or
other movement disorders. A platinum electrode array (4 mm elec-
trode diameter, 112 contacts, 7.1 mm inter-electrode distances) was
subdurally implanted above the left fronto-parieto-temporal region
for pre-neurosurgical diagnostics. Electrical stimulation was performed
with the stimulator INOMED NS 60 (INOMED, Germany) to demarcate
the eloquent brain areas. The intensity of stimulation was gradually in-
creased up to 15 mA or to the induction of sensory andmotor phenom-
ena. All sites with arm or hand motor responses were located outside
the ictal onset zone. A structural MRI data set with full head coverage
was acquired on the day after electrode implantation using a T1
MPRAGE sequence.

The subject was instructed to perform self-paced index finger flex-
ions of either the left or the right hand with inter-movement intervals
of at least 4 s. Here the behavioral task analyzed differed from the task
reported in a previous study using the same subject (Ball et al.,
2009). The ECoG was recorded using a clinical AC EEG-System (IT-Med,
Germany) digitized at 256 Hz and band-pass filtered (0.032 Hz to
97 Hz). Further details of the subject recording can be found elsewhere
(Ball et al., 2009). ECoG data were re-referenced to average reference
prior to data analysis. Onsets of index fingermovementwere determined
in the electromyogram (EMG) of the M. flexor digitorum superficialis,
pars indicis. Time zero in each trial was designated as the time of move-
ment onset. Data were analyzed in each trial from −3000 ms to
+3000 ms, to incorporate most of the inter-movement interval. Only
the condition of movement contra-lateral to implanted electrodes was
analyzed.

Numerical methods

We let T, S, L, and F denote—respectively—the sample times, mea-
surement sites (MEG sensors or EEG or ECoG channels), trials and fre-
quencies, as sequences of lengths NT, NS, NL, and NF. Let fS denote the
sample frequency. The raw time-series signal is a 3-dimensional data
set, xT×S×L. The Fourier components of the signal were estimated for a
sequence of logarithmically-spaced center frequencies ranging from
0.5 to 28.0 Hz using 2 cycle Morlet wavelets. The use of two cycles
in theMorlet wavelets enables the phase and amplitude to be estimated
from very short time windows, at the expense of fine frequency resolu-
tion (Alexander et al., 2006b; Herrmann et al., 2005). This range of



Table 1
Glossary of the central measures used in this study.

Glossary

Name Notation Description

Average-phase
fit

rt, f(Φq,Φ!q) The measured phase correlated with the
average-phase model.

Average-phase
model

ΦS;!q The topography of trial-averaged phase.

Band-pass ER b̃S�Cf
The topography of the trial-averaged, band-pass
filtered signal.

Band-pass fit rt; f x̃ ˜; b
� �

The normalized ER correlated with the band-pass ER.
ITBC BS The topography of the inter-trial band coherence.
ITPC PS The topography of the inter-trial phase coherence.
ITPC fit rt; f B; P

��
The inter-trial band coherence correlated with the
inter-trial phase coherence.

Measured
phase

ΦS,q The topography of the complex-valued phase.

Normalized ER x̃S�Cf
The topography of the evoked response (ER), i.e.
trial-averaged time-series.

Phase-only ER p̃S�Cf
The topography of the trial-averaged,
amplitude-normalized, band-pass filtered signal.

Phase-only fit rt; f x̃ ˜; pð Þ The normalized ER correlated with the phase-only ER.
TAA AS The topography of the trial-averaged amplitude.
TAA fit rt; f B;A

� �
The inter-trial band coherence correlated with the
trial-averaged amplitude.

Wave activity rt,f (Φq,Θq) The estimated phase correlated with the wave map.
Wave ER wS�Cf

The topography of the trial-averaged wave maps.
Wave fit rt; f x̃;wZð Þ The normalized ER correlated with the wave ER.
Wave map ΘS,q The traveling wave, represented as a topography of

complex-valued phase.
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frequencies was chosen as the maximum range that had good signal to
noise ratio in all three data sets.

The Fourier components are denoted XT×S×L×F. From the Fourier
components we define the following quantities having the same indi-
ces T, S, L, and F:

Φ ¼ arg X=‖X‖ð Þ ð1Þ

which is the phase angle i.e. eiΦ=X/‖X‖,

b ¼ Re Xð Þ ð2Þ

which is the band-pass time-series and

p ¼ Re X=‖X‖ð Þ ð3Þ

which is the amplitude-normalized band-pass time-series.

Comparing the spatial organization of different quantities

The present analyses gauge the spatial pattern of various quantifica-
tions of the activity, e.g. the inter-trial phase coherence (ITPC).We com-
pare the topographical similarity of the various quantities. Since all the
statistics used herein quantify the pattern over the topography, for
brevity we leave ‘the topography of’ implicit in the naming scheme. So
ITPC should be read as the topography of the ITPC. A glossary of the sta-
tistics used is provided in Table 1.

The statistics used in this paper follow a general strategy: we com-
pare a vector of observed signals with a vector of model signals. The
components of each vector may correspond to the set of all measure-
ment sites at time sample, or at a number of points in time in a win-
dow centered around a time sample. In the case where the vector
components belong to one time sample, they are indexed by elements
of T, F and S, and the comparison of two vectors over sites S is made
for each (t, f)∈T×F. This is written as

rt;f H;Kð Þ ¼ ρ HS;KSð Þ ð4Þ

where ρ denotes the correlation function for two vectorsH and K. The S
index is implicit on the left-hand side of the expression. rt,f is the corre-
lation value. If the signals at the individual sites are real-valued,H and K
are vectors of lengthNS. In case of complex-valued phases at each site,H
and K are vectors of length 2NS, created from each complex-valued vec-
tor of lengthNS by appending the vector of cosines to the vector of sines
of the phases. In the casewhere the vector components are drawn from
a range of time samples in a window, the components are indexed by
elements of T, F, S and C and the correlation over sites S and times
C (relative to time t; as defined below) is calculated for each (t, f)∈T×F.
This is written as

rt; f H;Kð Þ ¼ ρ HS�C ;KS�Cð Þ ð5Þ

where the indices S and C are implicit on the left-hand side of the
expression. We compare spatial patterns over a range of times when
the model signal is in the time domain and we compare spatial patterns
at a single sample when the model signal is in the frequency domain.

Evoked response measures

The average of the time-series over trials is xT�S≡ xT�S�Lh iL, also
known as the evoked response (ER). We compare the evoked response
to two model signals. These are constructed from trial-averages of
band-pass and amplitude-normalized band-pass time-series, at each
frequency f. We compare the evoked response with the model signals
over all sites and over one temporal cycle at the frequency of interest
(e.g. 100 ms for 10 Hz). This time window of width 1/f, centered
at sample t, is defined as follows. Let Cf denote a sequence of time
offsets at frequency f: Cf ¼ c1; c2;…; cNcð Þ where c1; c2;…; cNcf g ¼
−1

�
2 f ;

1
�
2 f

� �
∩ Z=f sð Þ, and ℤ denotes the integers. Thus NCf

≈f S=f . At
each (t, f)∈T×F we define windows of the trial averaged signals
around t: x̂S�Cf

¼ xtþc;s
� �

s∈S;c∈Cf
. The evoked response is then nor-

malized to have a mean of zero for each site by subtracting the
mean over the window Cf:

x̃S�Cf
¼ x̂S�Cf

− x̂S�Cf

D E
Cf

� 1Cf
ð6Þ

x̃S�Cf
is the evoked response, base-lined over one cycle. Hereafter we

refer to this response as the normalized ER. Similarly, for the band-pass
signal, we average b across trials, and definewindows ofb around each t
as b̂S�Cf

and subtract the mean for each site to get b̃S�Cf
. This is the

trial-average of the band-pass signal, hereafter referred to as the
band-pass ER. Similarly from the phase-only signal p we define p̃S�Cf

,
which is the trial-average of the amplitude-normalized band-pass sig-
nal, hereafter referred to as the phase-only ER.

The correlation of the normalized ER to the band-pass ER is denot-
ed rt; f x̃ ˜; b

� �
, hereafter referred to as the band-pass fit. The correlation

of the normalized ER to the phase-only ER is denoted rt; f x̃ ˜;pð Þ, here-
after referred to as the phase-only fit. The measure band-pass fit an-
swers the following question: how much of the variance in the ER is
explained as the trial average of the band-pass signal when the two
signals are compared as a pattern over all sites and over one temporal
cycle? (to be exact, the variance explained is the correlation squared).
The measure phase-only fit answers an analogous question: how
much of the variance in the ER is explained as the trial average of
the amplitude-normalized band-pass signal when the two signals
are compared as a pattern over all sites and over one temporal cycle?

Spatial organization of inter-trial coherence

The phase-only ER and the band-pass ER are in the time domain
and therefore have the advantage that they can be compared directly
to the evoked potential (here, normalized ER). This last quantity has the
advantage that it ismorewidely researched thanmeasures based on Fou-
rier components such as ITPC, and is thereforemore readily interpretable
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as the time-course of the magnetic field generated by an equivalent cur-
rent dipole or (as the case may be) a spatio-temporal pattern of ERPs.
Here we can work in the time-domain, and nevertheless take the phase
of the signal into account by comparing to the ERover one cycle at the fre-
quency of interest. The disadvantage of the band-pass fit and the phase-
only fit, however, is that the effect of amplitude at different frequencies
on the evoked potential is not directly assessed; it is inferred by compar-
ing the relative effects on trial-averaged signals that include an amplitude
component (band-pass ER) or do not include an amplitude component
(phase-only ER).

For this reason we performed a supplementary analysis in which
we directly compared the spatial pattern of the Fourier components
averaged across trials. Here we can work directly with the Fourier
components so we consider only the values at single samples. Even so,
the phase and amplitude values are not perfectly localized in time, since
they can be considered to be a weighted average over the time-window
used in the estimate of the Fourier components (Herrmann et al., 2005).
In the present study we used two-cycle Morlet wavelets to estimate the
Fourier components. Since the Gaussian component of the Morlet wave-
let assigns a heavierweighting to themiddle cycle of the two cycles of the
time-series window, the window in the phase estimates approximates
that of the one cycle window used for the band-pass ER and the
phase-only ER in the first analyses.

In order to directly compare the effects of amplitude andphase on the
trial-averaged band-pass signal, we use two measures of inter-trial co-
herence. At each (t,f)∈T×F we compute the inter-trial phase coherence,
ITPC (Delorme and Makeig, 2004; Makeig et al., 2004; or phase-locking
factor; Tallon-Baudry et al., 1996). We first normalize the lengths of
each Fourier component to unity, then compute their complex average,
and take the magnitude of the resultant:

PS ¼
XS�L

XS�Lj j
� �

L

				
				: ð7Þ

Analogously, the inter-trial band coherence (ITBC; or linear inter-trial
coherence, Delorme and Makeig, 2004) equals the magnitude of the
trial-averaged Fourier component at each (t, f)∈T×F.

BS ¼
XS�L

Arms

� �
L

				
				 ð8Þ

where Arms is the RMS of the amplitude at each measurement site over
all samples for that subject/condition, i.e.

Arms ¼ XT�S�Lj j2
D E1=2

T�L
: ð9Þ

The ITBC is therefore a trial-average that includes (RMS normalized)
amplitude information and ITPC is a trial-average that excludes ampli-
tude information. We also calculate the mean amplitudes over trials
(RMS normalized):

AS ¼
XS�Lj j
Arms

� �
L
: ð10Þ

This we simply call the trial-averaged amplitude, TAA. Throughout
this work we reserve the term amplitude for signal deviations observ-
able prior to trial-averaging and reserve the termmagnitude for devi-
ations in trial-averaged signals, such as ERs.

For each (t, f)∈T×F we compare TAA directly to ITBC over sites as
rt; f B;A

� �
, hereafter referred to as the TAA fit. We also compare ITPC to

the ITBC over sites: rt; f B; P
� �

, hereafter referred to as the ITPC fit. Using
these two statistics we can directly compare the contributions of ei-
ther phase or amplitude to the trial-averaged band-pass signal as it
varies over all measurement sites.
Models of phase organization

In this paper we show that, at task relevant times and frequencies,
the phase component of the signal can explain a larger proportion of
the variance in the spatial pattern of the ERs than the amplitude compo-
nent. The question naturally arises, given that the trial-averaged phase
signal can constitute a reasonable model of the spatial pattern of ERs,
what does this tell us about phase at the single trial level? Is phase a var-
iable that is ordered at sites with large magnitude ER but random at
sites with low magnitude ER? This would rule out large-scale TWs i.e.
globally ordered phase gradients, at the single trial level. On the other
hand, if we could demonstrate the ubiquity of TWs at the single trial
level, this would militate against the strong version of the statement
that phase is random at sites of low magnitude ER. A corollary of such
a demonstration is that the phases in cross-trial measures as the ITPC
can appear to be random because they have been collated across trials
rather than spatial locations.

To pit these hypotheses against each other, we model the spatial
pattern of single samples of phase, comparing the accuracy of two al-
ternative models. The first model is derived from trial-averaged phase
(i.e. at time-locked samples) and the second is derived from phase
gradient information available within single samples. Here again we
use single samples of phase, since these samples of phase are calculat-
ed across two cycles of the time signal using Morlet wavelets.

At each (t, f)∈T×F, the model spatial patterns of phase are com-
pared directly to the spatial vector of single-sample phase at trial q,
denoted ΦS,q where ΦS,q=(Φs,q)s∈S, hereafter referred to as the mea-
sured phase. To compare the measured phase to the trial average, we
calculate the trial average excluding trial q:

ΦS;!q ¼ ΦS�L5q

� �D E
L5q

ð11Þ

where L\q is the sequence of trials with trial q excluded. The spatial vec-
tor of the trial averaged phase is referred to as the average-phase model.
We then compute the correlation of the average-phase model to the
measured phase, rt; f Φq;Φ !q

� �
, hereafter referred to as the average-phase

fit.
We also fit the measured phase to a TW model. The model TW is

denoted ΘS,q, hereafter referred to as the wave map. The fit between
the wave map and the measured phase is denoted rt, f(Φq,Θq), and
hereafter referred to as thewave activity. The wave activity was calcu-
lated as follows. First, the measured phase was spatially unwrapped.
Next, we obtain the wave map as the single gradient vector best char-
acterizing the phase gradient across the measurement array. This
wave map is then correlated with the measured phase to give the
wave activity.

Traveling wave model

We convert the phase into unwrapped phase by taking the dis-
crete spatial derivative and then reintegrating spatially. The chief rea-
son for this is that the spatially unwrapped phases allow the
representation of a wave as a gradient over a field of scalars.

Nearest neighbor edges on the measurement array eij; i, j∈S, are
determined by Delaunay triangulation. For the phase at some t, f,
and q, the phase difference on each edge is defined as δΦij=
arg(Φi)−arg(Φj)+2kπ with integer k such that δΦij∈ [−π, π). We
assign unwrapped phase values Ψi, i∈S, using nearest neighbor phase
relationshipsΨi=Ψj+δΦij. Edges are added sequentially, in ascending
order of |δΦij|, to an initially edgeless graph with sites as vertices. If
|δΦij|bbπ is not everywhere true, unwrapping errors can arise, where
Ψi−Ψj=δΦij+2kπ for some integer k≠0. However, the number of
unwrapping errors is small (compared to the number of eij) in data
where phase varies smoothly. Unwrapping errors may either reflect le-
gitimate discontinuities in the phase ormeasurementnoise (Spagnolini,
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1995). Adding edges in ascending order of |δΦij| places unwrapping er-
rors in regions of highest |δΦij|, i.e. at legitimate discontinuities and high
measurement noise.

Exploration of phase dynamics using k-means clustering (Ito et al.,
2007) and principal component analysis (Alexander et al., 2006b) in-
dicated that much of the variance in the unwrapped phases could be
explained by linear gradients of phase with the form

ΨS ¼ cos φ PS– oθ; oφ
� �� �� �

ð12Þ

where (oθ, oφ) is the location of the origin (bullseye) of the phase gra-
dient on the surface of a sphere, PS gives the coordinates of each mea-
surement site projected onto the surface of a sphere and φ( ) gives
the polar angle in the spherical coordinate system. This wave model
is linear when expressed in Cartesian coordinates. The principal com-
ponent analysis of the present data sets confirmed this linear wave
model as explaining a large amount of the variance in unwrapped
phases (see Results section).

We therefore estimated the wave map (Alexander et al., 2006b,
2009) as a linear gradient in the volume defined by the measurement
sites, by solving a regression equation of the form

ΨS ¼ β0 þ βAPCAP þ βISCIS þ βLRCLR ð13Þ

where β represents the regression coefficients and (CAP, CIS, CLR) are
the Cartesian coordinates of the measurement sites. AP refers to the
anterior–posterior axis of the measurement array, IS to the inferior–
superior axis, and LR to left–right axis. The relative phases are thus
fit to a gradient described by a single three dimensional vector, name-
ly (βAP, βIS, βLR), plus a constant phase term.

The wave map, Θq, computed from the measured phase at trial q is
then:

ΘS;q ¼ exp i βφ þ βAPCAP þ βISCIS þ βLRCLR

� �� �
ð14Þ

where βϕ re-introduces the correct phase offset that was removed in
the spatial unwrapping of phase. Note that this formulation differs
slightly from Alexander et al. (2006b, 2008, 2009), where the wave
map (or phase gradient) was expressed in the metric of a linear gra-
dient of relative phases i.e. without converting to a complex number.

We were interested in whether the ER can be understood as an av-
erage of TW components. To test this idea, we computed the average
of the traveling wave components over trials, and compared this av-
erage to the normalized ER. Since the wave map is defined for a single
sample, we first extended the wave map over a window of one cycle
to allow comparison with the normalized ER:

θS�Cf ;q
¼ ΘS;q þ 2πfc

� �
c∈Cf

: ð15Þ

Some examples of the wave map extended over one cycle are given
in Fig. 3, third column. Thewave ER is defined as the trial-average of the
real part of θS�Cf

.

wS�Cf
¼ Re θS�Cf�L

� �D E
L
: ð16Þ
Fig. 1. Illustration of the method for calculating the contribution of band-pass ER and
predictable-left. A. Time-series data, x, in units of Tesla. B. Band-pass filtered data, b, at 5
first column shows single trial examples of these data. Each quantity is shown over one cy
(y-axis). Here the center of the time-window is at −32 ms relative to the subject's bu
most-anterior site, ‘P’ posterior, ‘I’ inferior, ‘S’ superior, ‘L’ left, and ‘R’ right. The sites are
This is done solely for representational convenience, to highlight any smooth spatio-tempor
column shows normalized ER, band-pass ER and phase-only ER i.e. x̃S�C , b̃S�C and p̃S�C . Here th
the center sample. The black dashed line indicates the sample at +10 ms. The third column
ment array coordinates. The units of the color scale are the same as in the second column. D
t, f and the values at −32 ms, 5.2 Hz are indicated with a black circle.
The wave fit is analogous to the phase-only fit, and is denoted
rt; f x̃;wZð Þ. The measure wave fit answers the following question: how
much of the variance in the ER is explained as the trial average of the
model traveling waves when the two signals are compared as a pattern
over all sites and over one temporal cycle?

Permutation methods to test over-fitting and family-wise error

The measures average-phase fit, rt; f Φq;Φ !q
� �

, and wave activity,
rt, f(Φq,Θq), both compare the phase signal from a sample within a
single trial to a model signal. However, the information used to con-
struct the two model signals is quite different. The average-phase
model pools information from NL−1 trials, and the mean phase is
calculated independently at eachmeasurement site, prior to expression
as a vector over sites. The wave activity pools information across the
measurement array, from within a single sample of measured phase,
to produce a vector that describes the direction and magnitude of the
wave flow across the measurement array. This wave map is then corre-
lated with the empirical phase. The average-phasemodel thus pools in-
formation across trials, whereas the wave map describes the ‘average’
behavior across the measurement array, within a single sample.

The calculation of the wave activity, however, involves a step of es-
timating themodel from the empirical phase, prior to calculating the fit
of the model back to the empirical phase. As a simple check that the
wave activity was not over-fitting the data, we re-analyzed one subject
from eachmeasurementmodality. In this extra analysis we randomized
the phase at each site and sample, in order to assess the correlations
expected from the fitting procedure alone.

Each correlation of the form rt, f(H,Ka) was paired with another
measure rt, f(H,Kb) against which it was compared, whereH is the empir-
ical signal and K is themodel signal. To gaugewhether these pairs of cor-
relations differed from each other, for each (t, f)∈T×F we performed a
t-test or Mann–Whitney U-test. We used the former for subject-wise
comparisons (e.g.rt; f x̃ ˜; pð Þ vs.rt; f x̃ ˜; b

� �
) and the latter for trial-wise com-

parisons (e.g. rt, f(Φq,Θq) vs. rt; f Φq;Φ!q
� �

within subjects), since thewave
activity valueswere not normally distributed. Due to the large number of
statistical tests that this entails (NT×NF for each pair of measures, for
each subject/condition, for eachmeasurementmodality), the overall sta-
tistical significance for each time by frequency matrix was assessed by
analysis of the spatial clustering of contiguous significant regions in the
time/frequency matrix (Alexander et al., 2008, 2009; Friston et al.,
1991, 1996). For measures in the present study all significant clusters
were extremely large or encompassed all (t,f), and passed the permuta-
tion tests for family-wise error. The statistical differences between pairs
of measures were not central to the arguments presented in this paper.

Results

We present the results by numerical method rather than by imag-
ing modality; so MEG, EEG and ECoG data are considered together,
with MEG used to illustrate the details of each analysis. We first quan-
tify the relationship between the ER and two surrogates for the ER:
the band-pass ER and the phase-only ER. The band-pass fit provides
only slightly better explanatory power than the phase-only fit at
phase-only ER to the normalized ER. This data is from MEG subject A6, condition
.3 Hz, also in Tesla. C. Cosine of the phase, p (amplitude-normalized band-pass). The
cle at the frequency of interest i.e. from −126 to +62 ms (x-axis) and over all sites
tton press. Some sites are labeled to indicate the approximate ordering: ‘A’ is the
ordered by values of the wave map calculated from the phases of the center sample.
al patterns in phase; it is not relevant to the calculation of the final statistic. The second
e sites are ordered by calculating the wave map from the trial-averaged phase values at
shows a projection of the trial-averaged data at the +10 ms sample onto the measure-
and E. The fourth column shows the values of the band-pass fit and phase-only fit for all
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event-related peaks in these measures. We conclude that amplitude
plays a lesser role in ERmagnitudes than phasewhen the ERmagnitudes
are considered as a spatio-temporal pattern. Since the ER can be well
modeled by phase-only signals, we then compared the single-trial
phase to two model signals: the average-phase model and the wave
map estimated from single samples of phase. The latter explains a larger
amount of variance in the measured phase than the former. We also
show that the ER can be well modeled as an average of traveling wave
components. We conclude that regional and temporal variations in
phase coherence in trial-averaged measures are consistent with inter-
mittent but ubiquitous epochs of TWs within trials.
Evoked response as a spatial pattern

Here we assess the contribution of phase and amplitude to the
pattern of ER magnitudes over the whole measurement array and
over one temporal cycle (see Materials and methods section). Fig. 1
(head maps) shows the spatial pattern of the phase-only ER for a sin-
gle MEG subject (A6) at 5.3 Hz, 10 ms. The sample at +10 ms is
shown rather than the center of the window at −32 ms, because at
the center of the window, the apparent standing wave is reversing in
sign, for this subject's ER. The spatial distribution of ER values shows
the pattern of magnetic field strengths due to motor dipole at the time
of the button press (compare with Zvyagintsev et al., 2008, Fig. 2). Fig. 1
(head maps) also shows that the spatial pattern of the phase-only ER
and the band-pass ER at +10 ms closely matches that of normalized
ER. Indeed the entire time-course of the normalized ER is well approxi-
mated by the phase-only ER and the band-pass ER, as shown in Fig. 1
(second column). In the phase-only ER, no traveling wave is apparent,
but instead the dipole-related activity has the appearance of a standing
wave that reverses in sign over the 188 ms window. Supplementary
Video 1 illustrates the time-course of the phase-only ER at 5.3 Hz, for an-
other subject.

In general, the time-course of the normalized ER, over the entire
scalp, is reasonably approximated by the band-pass ER and the phase-
only ER, provided that an appropriate time window and frequency is
chosen for the latter measures. This approximation is best near at
peaks in the band-pass fit and in the phase-only fit. The band-pass
and phase-only fits for subject A6 are given in Fig. 1, last column.
In this plot it can be seen that the value of the band-pass fit is large
at −32 ms, 5.3 Hz, reflecting our choice of center sample and fre-
quency for Fig. 1, columns 1 to 3.

Fig. 1 (first column) shows data from a single trial, for subject A6's
MEG data (from the predictable-left condition), in the form of a time
by site matrix. The plots are of the raw time-series, the band-pass signal
filtered with a center frequency at 5.3 Hz, and the cosine of phase at
5.3 Hz. A wave travels from anterior-right to posterior-superior sites,
seen most clearly in the cosine of the phase. This trial was chosen be-
cause its behavior is quite different to that revealed in the trial-average
for the same subject. We explore this aspect of the data further, in the
second half of the results.

For all subjects, we compared the pattern of ER magnitudes with
model signals composed of either the band-pass ER or the phase-only
ER i.e. the band-pass fit and the phase-only fit. Plots of these mea-
sures for another MEG subject are shown in Fig. 2. Typically for this
task, the trial-average signals reveal ongoing patterns of activity in
the alpha/beta bands, prior to the button press at time zero, that well ap-
proximate the normalized ER. This match is more prominent in the
band-pass fit plot, resulting in a negative value (blue region) in the differ-
ence plot for the alpha/beta bands prior to time zero. The event-related
peaks in the band-passfit around time zero (button press) are also typical
for this experiment. These theta-band peaks are related to the motor di-
pole (Zvyagintsev et al., 2008). The alpha band peaks from +50 ms to
+180 ms are related to visual and auditory dipoles elicited by the stimu-
lus (Zvyagintsev et al., 2008). At all these event-related peaks, the
phase-only ER explains only slightly less of the variance in normalized
ER than does the band-pass ER.

Subject-average plots of the phase-only fit and the band-pass fit
are shown in Supplementary Fig. 1. As in the single subject examples,
a pattern of time-locked responses on these measures begins with a
theta band component around the time of the button press, related
to the motor dipole. The audio–visual stimulus then evokes a series
of events in the alpha band from 80 ms onwards, also consistent
with previous dipole modeling of visual (80 ms) and auditory evoked
components (150 ms) (Zvyagintsev et al., 2008). Ongoing alpha and
beta band activity was also apparent, prior to the button press, which
is substantially larger for the band-pass fit.
Spatial patterns of evoked response in three measurement modalities

At these task relevant times (+10, +80 and +150 ms) for the
MEG task, we calculated the peak frequency of the band-pass fit, given
in Table 2. The values of the band-pass fit and the phase-only fit at
these times and frequencies are also given. At these event-related
peaks in the band-pass fit, the band-pass ER correlated better with the
normalized ER than did the phase-only ER. However, the peaks in the
band-pass fit and the phase-only fit were of similar magnitude, with
an additional correlation of +0.5 to +0.9 when the amplitude portion
of the signal was included in the calculation. This observation was true
for all times and frequencies relevant to the motor- and stimulus-
related MEG signal i.e. in the interval −150 ms to +200 ms (Supple-
mentary Fig. 1A, third panel).

A similar observation applies to all three data sets. Fig. 2 also
shows a typical subject for the EEG data (subject KH, AR=1.0). Typ-
ically for this task, the trial-average signals reveal ongoing patterns
of activity in the beta band, prior to the stimulus presentation at time
zero, that well approximate the normalized ER. This is more prominent
in the band-pass fit plot, resulting in a negative value (blue region) in
the difference plot in the beta band prior to time zero. The event-
related peaks at +90 ms and +170 ms are typical for this experiment
and are related to the P1 and N1 ERPs (Nikolaev et al., 2008). The
phase-only ER explains only slight less of the variance in normalized
ER than does the band-pass ER, for these evoked components.

The grand-average EEG plots for the phase-only fit and the band-pass
fit are shown in Supplementary Fig. 1. The two main peaks in the
band-pass fit occur at about +100 ms and +152 ms. The latencies are
those of the P1 and N1 ERPs (Nikolaev et al., 2008). The values (and
peak frequencies) of the band-pass fit and the phase-only fit at these
times and frequencies are also given in Table 2. The peaks in the
band-pass fit were greater than the phase-only fit, but of similarmagni-
tude, with only +0.4 additional correlation when the amplitude por-
tion of the signal was included in the calculation. This general
observation held for all times and frequencies relevant to the
stimulus-related EEG signal i.e. in the interval +50 ms to +250 ms
(Supplementary Fig. 1B, third panel).

For the ECoG data (Fig. 2C), there is ongoing activity in the alpha
band, briefly disrupted by the motor event at time zero, that well ap-
proximates the normalized ER. This ongoing alpha activity is more
prominent in the plot of the band-pass fit, resulting in a negative
value (blue region) in the difference plot for the alpha band. The
event-related peaks in the band-pass fit were at −50 ms and
+850 ms, in the low frequency range. These latencies are similar to
the low frequency peaks in movement-related power modulation
seen in the primary motor cortex for center-out arm movements (Ball
et al., 2009), and here we refer these events as motor related potentials
one and two. The values (and peak frequencies) of the band-pass fit and
the phase-only fit at these times and frequencies are given in Table 2.
The peaks in the band-pass fit were greater than the phase-only fit,
but of similarmagnitude, with only+0.6 to+0.7 additional correlation
when the amplitude portion of the signal was included in the
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calculation. This observation held for all task-related frequencies rele-
vant to the event-related ECoG signal i.e. 0.5 Hz to 4.0 Hz.

Previous research has shown that the pattern of magnitudes in the
trial-locked time-series is a function of both single-trial phase and
amplitude (Barry, 2009; Fell, 2007; Min et al., 2007; Sauseng et al.,
2007). Here we have examined this question as a function of spatial
A

B

C

Fig. 2. Single subject correlations of normalized ER with either the phase-only ER or ban
phase-only fit, rt;f x̃; p̃ð Þ. The second column shows the values of the band-pass fit, rt;f ˜x˜ð
i.e. rt;f x̃; p̃ð Þ−rt;f x̃; b̃

� �
. Statistical analysis of this difference is not included, since only one

J7, predictable-left condition. B. Results for one EEG subject, HK, AR=1.0. C. Results for the
pattern of ERs over thewholemeasurement array, and over one tempo-
ral cycle. At all event-related peaks examined, the amplitude compo-
nent added surprisingly little to the overall pattern of ER magnitudes.
We conclude that considering ER magnitudes as a global topographic
pattern emphasizes the role of phase, at the expense of amplitude. It
is worth noting that the relative contribution of the amplitude was
d-pass ER, over all times and frequencies. The first column shows the values of the
; bÞ. The third column shows the pixel-wise difference between the two correlations
difference value per subject, per condition is calculated. A. Results for one MEG subject,
ECoG subject, for the contralateral movement condition.
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greater for ongoing activity in the alpha and/or beta bands than it was
for the event-related latencies, for all tasks and imaging modalities.

To confirm these findings, we also compared the topography of
the inter-trial phase coherence, ITPC, with the topography inter-trial
band coherence, ITBC. Likewise, we compared the spatial pattern of
the trial-averaged amplitude, TAA, with the ITBC. The findings are
shown in Supplementary Fig. 2, and support the previous analysis.
The values of the ITPC fit and the TAA fit at event-related peaks in
the band-pass fit are given in Table 2 and show ratios in the range
1.1 to 2.4. At almost all times and frequencies, the ITPC fit was better
than the TAA fit. The exception occurred in the EEG data, where in the
theta and delta bands the ITPC fit and the TAA fit did not significantly
differ across subjects. These findings support our conclusion that both
the single-trial phase and the single trial amplitudes contribute to the
topography of the (trial-averaged) band-pass signal, but overall, the
phase contributes more.

One point of note: there is less event-related structure (fewer
peaks and troughs) in ITPC than in the phase-only ER because the for-
mer is based on the complex-valued phase, rather than the real part
of the signal. This means that the spatial pattern of ITPC is approxi-
mated by the magnitude of the phase-only ER; so the former quantity
looks similar to the head map shown in Fig. 1C (second column), but
taking only the magnitudes and thus ignoring the sign.
Spatial pattern of evoked response is mostly due to phase

In summary, the overall pattern of ER magnitudes had a larger
contribution from single-trial phase than from single-trial amplitude.
This is true whether the single-trial amplitudes are considered as an
additional component within the band-pass signal (i.e. the ampli-
tude component of b̃S�C in rt; f x̃ ˜; b

� �
) or as a separate component

(i.e. trial-averaged amplitude A in rt; f B;A
� �

). It is true across the
three imaging modalities assessed here. The result is of immediate
importance for our understanding of source localization techniques,
since these techniques likewise use trial-averaged signals. The am-
plitude, by definition, is that part of the signal which contributes to
any expected decrease in the signal strength as the inverse-square
of distance from a localized source. Phase, by definition, has spatially
uniform amplitude. The phase component can only contribute to ER
magnitudes via selective summation and cancelation over trials.
Since we conclude that the phase contributes more than the ampli-
tude, it follows that the pattern of ER magnitudes is primarily a func-
tion of interference effects, in phase, across trials (c.f. Acacio de
Barros and Suppes, 2009).
Table 2
Values of the various measures at times and frequencies of peaks in the band-pass fit. The lat
band-pass fit are shown for the three measurement modalities/experimental paradigms. The
the originally published studies (Ball et al., 2009; Nikolaev et al., 2008; Zvyagintsev et al., 200
except for ECoG Finger Movement where there was only one subject. The values for wave a
Finger Movement. p-Values for these measures are from t-tests on the subject-wise avera
p-values are from Mann–Whitney U-tests on individual trial values (n=137).

Time (ms) Frequency (Hz) Phase-only fit Band-pass fit

MEG Apparent Motion
Motor dipole 10 10.6 0.75 0.84
Auditory dipole 80 7.0 0.83 0.88
Visual dipole 150 12.1 0.85 0.90

EEG Dot Lattice
P1 ERP 100 16.0 0.82 0.86
N1 ERP 152 8.0 0.89 0.91

ECoG Finger Movement
Motor related potential 1 −50 0.66 0.73 0.79
Motor related potential 2 850 0.66 0.76 0.83
Measures of TW propagation often estimate the phase of the sig-
nal as a preliminary analytical step; whether via Fourier methods
(Alexander et al., 2006b; Ito et al., 2005, 2007; Patten et al., 2012)
or as peak and trough measurements in the time-domain (Klimesch
et al., 2007; Manjarrez et al., 2007; Massimini et al., 2004). Phase es-
timates are therefore a sufficient basis to characterize TW behavior in
large-scale measurements of cortical activity. Based on the results of
this section, we may also propose that ER topography can be modeled
as a trial-average of phase components of the signal, at appropriately
chosen event-related times and frequencies. This provides us with
two model signals to describe large-scale cortical activity, the trial-
averaged phase and the wave map, which can both be expressed in
the same units as the signal to be explained: the measured phase.
Our interest was in how well these model signals describe within-trial
activity. We directly compared the correlations of the trial-averaged
phase and wave map to the measured phase, which we describe in
the next sections.
The spatial pattern of trial-averaged phase
We next took the trial-average of the phase, considered as a topog-

raphy over measurement sites, and asked: how well does it explain
the spatial pattern of phase at single trials? Fig. 3A (right) shows a
head-map of the measured phases in the MEG at 198 ms, 2.0 Hz for
one trial. Fig. 3B (right) shows the average-phase model at this time
and frequency. The patterns of measured phase and average-phase
model are very similar; this was the reason for choosing this example,
which is typical for high values of the average-phase fit. Fig. 3D (right)
shows the correlation of measured phases, during this trial, to the
average-phase model, over all times and frequencies. The fit rises and
falls in an intermittent fashion at different times and different frequen-
cies, indicating that sometimes the single trial phase matches the
average-phase model, but often not.

We applied the measure average-phase fit to all subject's data.
Fig. 4A (second column) shows the trial-average of the average-phase
fit for another MEG subject. The grand-average plots for the average-
phase fit in the MEG data are shown in Supplementary Fig. 3A (second
column). The average-phase fit increases across a broad range of fre-
quencies during the motor and stimulus period of the task. Fig. 4B
(second column) shows the trial-average of the average-phase fit
for one subject's EEG data. Grand-average plots for the EEG on this
measure are shown in Supplementary Fig. 3A (second column).
There is a maximum at about 150 ms, 6 Hz corresponding to latency
of the P1 -N1 complex of the dot-lattice task. Fig. 4C (second column)
shows the trial average of the average-phase fit for the ECoG subject's
ency, and peak frequency at that latency, of the most prominent event-related peaks in
names provided for each component correspond to components at the same latency in
8). The values for phase-only fit, band-pass fit, ITPC fit and TAA fit are subject-averages,
ctivity and average-phase fit are grand-averages, or simply a trial average for the ECoG
ges (MEG n=20, EEG n=13), except in the case of ECoG Finger Movement, where

Sig. ITPC fit TAA fit Sig. Wave activity Average-phase fit Sig.

pb0.001 0.88 0.36 pb0.001 0.51 0.09 pb0.001
pb0.001 0.94 0.69 pb0.001 0.50 0.26 pb0.001
pb0.001 0.93 0.45 pb0.001 0.49 0.09 pb0.001

pb0.001 0.92 0.45 pb0.001 0.61 0.27 pb0.001
pb0.001 0.87 0.60 pb0.001 0.66 0.40 pb0.001

n/a 0.97 0.92 n/a 0.34 0.26 pb0.001
n/a 0.95 0.91 n/a 0.34 0.27 pb0.001
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Fig. 3. Illustration of the methods for calculating wave activity and average-phase fit. Left side of the figure illustrates the method of fitting estimated phase from a single trial (#9),
right side of figure is for another trial (#129). All data are fromMEG subject O1, predictable-left condition. A. Head maps of measured phase at two different trials, at t=198 ms, f=
2.0 Hz. Color scale shows the phase angle. B. Model phase angle, for either the wave map for trial 9 (left) or the average-phase model for trial 129 (right). C. Correlations of the
measured phase to the wave map, i.e. the wave activity, rt,f(Φq,Θq), for all times and frequencies in the two trials. In the left figure, the black circle indicates the time and frequency
corresponding to the values shown in the head maps (A and B) on the left side of the figure. D. Correlations of the measured phase to the average-phase model, i.e. the
average-phase fit, rt;f Φq ;Φ !q

� �
, for all times and frequencies in the two trials. The black circle in the right figure indicates the time and frequency corresponding to the values

shown in the head maps (A and B) on the right side of the figure.
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data. There is a peak in the average-phase fit in the lower frequency
range (0.5 to 1.0 Hz) at about 300 ms, related to the motor task. In all
three measurement modalities then, it is during the event-related peri-
od that the spatial pattern of the trial-averaged phase best matches the
spatial pattern of the single-trial phase, as might be expected. The
values of the average-phase fit, at the time and frequency of the peaks
in the band-pass fit, are given in Table 2.
A

B

C

Fig. 4. Trial-averages of wave activity and average-phase fit. The first column shows the value
averaged over trials. The second column shows the values of correlations of the measured ph
trials. The first and second columns are not on the same color scale. The fourth column shows t
rt;f Φq ;Θq

� �
−rt;f Φq ;Φ !q

� �
. Pixel-wise significance tests were carried out (Mann–Whitney U-te

(n=134). B. Results for EEG subject HK, condition AR=1.0 (n=84). C. Results for ECoG subj
Traveling wave model

Spatial variation of phase coherence has been attributed to spatial
variation in the degree of order vs. randomness of phase at the different
measurements sites (Ray and Maunsell, 2011). This view is derived
from cross-trialmeasures of phase, and does not contradict the analyses
presented in the previous sections. However, measurement of TWs at
s of correlations of the measured phase with the wave map, i.e. wave activity, rt,f(Φq,Θq),
ase with the average-phase model, i.e. the average-phase fit, rt;f Φq;Φ !q

� �
, averaged over

he difference between the meanwave activity and the mean average-phase fit, i.e. units of
st, pb0.05 shown in non-white). A. Results for MEG subject J2, predictable-left condition
ect, contralateral movement condition (n=137).
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the single trial level suggest that epochs of global phase gradients are
common events in the cortex (Alexander et al., 2006b). With TWs, we
see a globally coherent event across the measurement array, not a mix-
ture of ordered and random phases depending on the site. These two
views can be made consistent by noting that TW models collate signal
across space, whereas phase coherence collates signals across trials or
times. This means that phase coherence does not necessarily indicate
the degree of order vs. randomness of phase, when phase is considered
in terms of spatial organizationwithin a single time-sample. In this sec-
tion we show that episodes of large-scale phase gradients occur with
ubiquity, including at event-related times and frequencies when there
is spatial variation of (cross-trial) phase coherence.

In the present data, TWs were generally not apparent in the ERs
i.e. in the trial-average. The normalized ER shown in Fig. 1 is typical
in this respect. We observed that only for a few MEG subjects were
TWs apparent in the normalized ER and in the phase-only ER. The sit-
uation was different at the single-trial level, however. We calculated
the correlation of the TW model, the wave map, to the measured
phase, giving the wave activity. By showing that the wave activity is
generally greater than the average-phase fit, we establish that TWs
exist at the single-trial level, and that the wave activity captures com-
ponents of the signal that are not present in the trial-average phase.

Previous work on large-scale patterns in the EEG has shown that
the phase vectors form spatial patterns that are often of long wave-
length (Alexander et al., 2006b; Ito et al., 2007); here long-
wavelength means with a spatial period approximately equal to the
scale of the measurement array. These long wavelength patterns
explained more than 50% of the variance in the spatially unwrapped
phases, according to principal component analysis (Alexander et al.,
2006b). The first three eigenvectors were well approximated by
the coordinate system of the measurement array. That is, the long-
wavelength eigenvectors consisted of an anterior–posterior component,
an inferior–posterior component and a left–right component, or an arbi-
trary rotation of these three components. The principal component anal-
ysis was applied to spatially unwrapped phase in the present data sets,
reproducing these basic conclusions. The spatial organization of the prin-
cipal components is shown in Supplementary Fig. 4. The percentage of
variance explained by the long wavelength components was 62% for
MEG (first four eigenvectors), 69% for EEG (first four eigenvectors)
and 56% for the ECoG data (first three eigenvectors). Each of these
sets of eigenvectors was approximated by the coordinate axes of the
measurement array, or by an arbitrary rotation of the array coordi-
nates. Subsequent eigenvectors beyond these long wavelength
ones were of shorter wavelength (period doubled or greater).

The weighted sum of these long-wavelength eigenvectors describes
a general class of spatially smooth gradients in phase (seeMaterials and
methods section). Smooth gradients of phase across the measurement
array are equivalent to globally coherent TW behavior (Alexander et
al., 2006b). A large proportion of the variance in unwrapped phases in
the MEG, EEG and ECoG is therefore captured by TW components of
the signal. These results from the principal component analysis mean
that, at the phenomenological level, the TWs often have the appearance
of a phase trajectory passing through the 3D coordinate system of the
measurement array. Specifically, regions of equal phase, in this descrip-
tion of TWs, lie at the intersection of (a) the surface defined by themea-
surement array and (b) parallel planes through the volume defined by
the measurement array (see Eq. (12), Materials and methods section).
These bands of equal phase can be seen in the wave map illustrated in
Fig. 3B (left). The wave activity measure in this research is a sensor-
levelmeasure of single-trial phase organization; here we are not direct-
ly concerned with the underlying sources that generate this spatio-
temporal pattern of phases.

Examples of TW events detected by the present method are shown
in Fig. 5. It can be seen from these examples that a high value of the
wave activity—calculated from the spatial vector of phase—is indicative
of a traveling wave that has a concomitant latency gradient across the
head (Alexander et al., 2006b). This is indicated by the diagonal lines
of equal phase in the time by site plots, third column. In this represen-
tation of the wave map, lines of equal phase in the traveling wave form
a slightly curved diagonal because the ‘site ordering’ on the y-axis does
not show the spatial coordinates in exactly equal units of linear dis-
tance along the wave trajectory. For the MEG traveling wave event
highlighted in Fig. 5A, the wave trajectory begins slightly to the
anterior-right of the superior site, and ends in the posterior-left-
inferior region. This trajectory is indicated by the ordering of ‘S’, ‘R’,
‘A’, ‘P’ and ‘L’ along the y-axis. In the EEG travelingwave event highlight-
ed in Fig. 5B, the wave trajectory is primarily posterior to anterior, but
also with a slight right to left component. In the ECoG traveling wave
highlighted in Fig. 5C, the wave trajectory is anterior-superior to inferi-
or. For reference, the electrodepositions A1, A8, H1 andH8are shown in
Supplementary Fig. 5, alongwith the results of the electrical stimulation
mapping that was performed in the patient. An example wave in the
938MEG is also shown in Supplementary Video 2. Supplementary
Videos 3 and 4 provide example TWs in the EEG and ECoG.

A general observation was made in the present data sets about the
relationship between the wave trajectories and sites of the maximum
ER magnitude. In general, the bulls-eye of the wave does not arise at
the site of the maximum ER magnitude. In other words, the site of
maximum activity does not appear as a ‘source’ for the waves, with
phase latency increasing with distance from the source. Instead, the
waves begin their motion at a more distal site, and progress onto the
site of the maximum ER magnitude. For example, the waves in ECoG
generally traversed the array from one edge to the other at the time of
the motor response, but the motor related potential itself was maximal
near the center of the array (see Supplementary Fig. 5). This observation
from the present data sets is consistentwith previous results in the EEG,
for example: TWs associated with the P3b ERP are generally aligned
along an anterior–posterior axis, while the P3b is maximal at centro-
parietal sites (Alexander et al., 2009).

We also note in passing that common sources of noise in EEG re-
cordings, such as muscle artifact and eye-movement artifact, do not
conform to the pattern of activity that we detect with the TW mea-
sure. These TWs reveal a band of activation that traverses the array
over one temporal cycle. Eye-movement artifacts, for example, have
more the appearance of a standing wave with a localized peak around
the orbits.

Fig. 3C (left) shows the typical time-course of the wave activity at
different frequencies during a single trial in the MEG data. The wave
activity has a peak at around 200 ms, 2 Hz, among other peaks. An
important point to note is that these events are intermittent, as has
been described for other types of single-trial phase coherency events
(Eckhorn et al., 2004; Ito et al., 2007; Nikolaev et al., 2010). When
viewed at the single trial level, there is no obvious relationship to
event-related paradigms, much like single trial ‘ERs’. Only when the
wave activity values are collated together over trials do the time- and
frequency-locked components become apparent. An example of trial-
averaged wave activity for a single MEG single subject is shown in
Fig. 4A (first column). The grand-average wave activity in the MEG is
shown in Supplementary Fig. 3A (first column). The figure shows ongo-
ing delta TWs, aswell as ongoing alpha TWs that are partly disrupted by
the subject's button press and subsequent stimulus events. Ongoing
delta-band waves are less disrupted, and there is a peak in the delta
band at about 500 ms, 1.7 Hz once the stimulus is complete.

Fig. 4B (first column) shows a typical EEG subject's trial-averaged
wave activity. The grand-average for the wave activity in the EEG is
shown in Supplementary Fig. 3B (first column). The wave activity is
strongest in the alpha and theta bands, and there is an event-related
peak at about 150 ms, 6 Hz corresponding to the latency of the N1 ERP
of the dot-lattice task. This peak is very similar in timing and frequency
to the peak in the average-phase fit for the EEG data. The ECoG subject's
trial-average wave activity is shown in Fig. 4C (first column). The
dominant feature is TWs in the alpha band. There is a lack of an
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Fig. 5. Single trial examples of correlations of empirical phase to the wave map, the wave activity, rt,f(Φq,Θq). The left half of the figure shows one example trial from each of the data
sets. The right half of the figure shows an example traveling wave from a peak in wave activity in the trial. Both the empirical phase angle, arg(Φ) (middle), and the wave map phase
angle, arg(Θ) (right), are shown. Note that the wave map is calculated for the empirical phase from the central sample in the time-window, not over the entire window. The full
cycle of the empirical phase (and extrapolation of the wave map, as arg(θS�Cf

)) are included for interpretive convenience. A. MEG: A peak in wave activity occurs at 384 ms, 2.0 Hz,
indicated by the black circle in the first plot. When represented in time by site plots (second and third plots), it can be seen that the wave trajectory is from the superior site, to the
right and anterior sites, then the posterior and left sites. The sensor/electrode labels are as given in Fig. 1. B. EEG: A peak in wave activity occurs at 24 ms, 21.1 Hz, indicated by the
black circle in the first plot. In the time by site plots (second and third plots), it can be seen that the wave intersects with the measurement array in the following order: pos-
terior, right, superior, left, anterior. The sensor/electrode labels are as given in Fig. 1. C. ECoG: A peak in wave activity occurs at 1926 ms, 4.0 Hz, indicated by the black circle in
the first plot. In the time by site plots (second and third plots), it can be seen that the wave travels from posterior-ventral, before reaching posterior-dorsal and then ending
anteriorly. The labeled electrodes are on the corners of the array (see Ball et al., 2009, Fig. 3 and Supplementary Fig. 5), and A1 is anterior-dorsal, A8 is anterior-ventral, H1
is posterior-dorsal and H8 is posterior-ventral.
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event-related peak in the wave activity associated with the motor
activity. The values of the wave activity for all measurement modal-
ities, at the time and frequency of peaks in the band-pass fit, are
given in Table 2.

Trial-averages and traveling waves

For the EEG signal in the dot-lattice task, trial-average and TW
measures yielded similar timing of event-related peaks. This result
supports previous findings of relationships between the characteris-
tics of event-related wave activity and ERP components — in latency,
temporal frequency and task-specificity (Alexander et al., 2006b;
Anderer et al., 1996; Klimesch et al., 2007). For the MEG signal in
the Apparent Motion task, event-related peaks in the average-phase
fit were coincident with event-related drops in the wave activity,
such as during the auditory and visual evoked activity at +80 and
+150 ms, respectively. In the ECoG, the wave activity was sensitive
to ongoing alpha activity, but the average-phase fit was not. The ob-
verse relationship held for the activity time-locked to the finger
movement. Even so, a lack of an event-related peak in the wave activ-
ity does not imply that this TW component was small. The wave ac-
tivity for ECoG subject was greater than the average-phase fit at
times and frequencies of both peaks in the band-pass fit (Table 2). In-
deed, the mean values for the wave activity in the ECoG subject were
larger than the values for the average-phase fit at almost all times and
frequencies (Fig. 4C, third plot). A few pixel-wise comparisons near
the event-related peak in the average-phase fit did not reach signifi-
cance. This was also true for the grand-average values in the MEG
and EEG subjects (Supplementary Fig. 3, third column). These obser-
vations mean that, in general, the TW model explained more of the
single-trial phase than did the trial-averaged model.

A small caution has to be used in interpreting this result, since the
wave activity and the average-phase fit are calculated frommeasured
phase using different methods with differing degrees of freedom. The
simplicity of the two models and lack of free parameters renders
overfitting of the data unlikely. As an additional check on this conclu-
sion, we recalculated the results shown in the first column of Fig. 4
using randomized phases at each sample i.e. spatial randomization
of the measured phase. This check was required because the calcula-
tion of the wave activity is a two-step process, in which the data is
first fit to a model and then the correlation between the model and
the data is calculated. For the ECoG subject, for example, this surro-
gate mean (of 137 trials) wave activity was calculated 46,050 times
(at 1535 samples and 30 frequencies). The range of the mean wave
activity values produced from randomized phases in the surrogate
data, for the three subjects given in Fig. 4, was 0.07 to 0.13. This com-
pares with the mean wave activity values in Fig. 4, first column, at
event-related peaks in the mean wave activity, of 0.45 to 0.70. The
fitting procedure does not account for the observed high values of
the wave activity.

We conclude that for all our data sets, the wave activity explains
more variance in the measured phase than does the average-phase
fit. We suggest that the trial-averaging of phase removes much of
the spatially organized component that is present in the single trial
phase. Trial-averaging results in summation over cyclic components
of the signal, i.e. the phase, and can account for much of the observed
spatial variation in ER magnitude, as we concluded at the end of the
previous section. To this interim conclusion we now add the following:
the observation that cross-trial phase locking is high at some measure-
ments sites and low at others is entirely consistent with TWs occurring
intermittently but with ubiquity at the single trial level. In other words,
cross-trial phase locking can vary from site to site, but this pattern
co-exists with spatially smooth—ordered—phase gradients at the single-
trial level.

Since TWs are ubiquitous at the single trial level, we were inter-
ested in exploring the relationship between the TWs and cross-trial
measures such as the ER. Can the topography of the ER be explained
as the average of TW components? The fit of the normalized ER to
the wave ER is shown in Fig. 6, for one subject each in the MEG,
EEG and ECoG. Comparison of these wave fits to the band-pass fits
shown in Fig. 2 (first column), shows the qualitative similarity of
the two measures. The wave fit is highest at times and frequency of
peaks in the band-pass fit. This is confirmed in the grand-average
plots for the MEG and EEG subjects, shown in Supplementary Fig. 6.
In the MEG data, the initial theta-band peak in the wave fit is related
to themotor dipole and the alpha band peak at ~+250 ms is consistent
with the timing and frequency of late visual and auditory evoked com-
ponents in response to the completion of the stimulus (Zvyagintsev et
al., 2008). In the EEG data, there is a peak in the wave fit at the time
and frequency associatedwith the P1 and N1 ERPs. Here the P1 compo-
nent of the ER is relatively enhanced (c.f. Fig. 2B,first column). Themain
features in the wave fit in the ECoG data are the low-frequency peaks
related to the event-related motor potentials (Ball et al., 2009) and
peak in the alpha band at ~−600 ms whose significance is unknown.
These peaks in the wave fit explained a maximum of 47, 59 and 37%
of the variance in the normalized ER, for MEG, EEG and ECoG, respec-
tively, for the typical subjects shown in Fig. 6. The wave fit measure
was not sensitive to the ongoing alpha and beta band activity present
in the band-pass fit measure. So while the wave ER explained less vari-
ance in the evoked signal than the band-pass fit or the phase-only fit, it
revealed a relative enhancement of time-locked components of the
signal.

Using the measures band-pass fit, phase-only fit and wave fit, we
have shown that successively more of the original signal present in
the ER can be thrown away, while still preserving the topographic
pattern of activity seen for some ERs. The band-pass fit only makes
use of signal from a specific center-frequency, ignoring other frequency
components. The phase-only fit does not make use of amplitude infor-
mation, instead, reconstructs the ER magnitude topography purely as
an interference pattern in phase. The wave fit represents one temporal
cycle of signal fromeach trialwith four parameters, giving the trajectory
of the wave in the three dimensions of themeasurement array plus the
phase offset of the wave. When averaged across trials, in appropriate
form for comparison to the normalized ER, the TWs pick out a qualita-
tively similar set of event-related features in the normalized ER to
those seen when using the band-pass ER as a comparison signal.

Discussion

Summary and conclusions

Two related issues were addressed in this paper. The first concerned
the relative contributions of phase andamplitude to ERs,where the latter
is considered as a pattern of magnitudes over all sites and over one tem-
poral cycle at the frequency of interest. Quantitative methods in brain
science oftenmake use of large-scale patterns of activity for source local-
ization, network analysis of phase coherence, or detection of TWs; this
motivated our present approach. We found the magnitude pattern of
ERs to be a function of phase,more than amplitude. Task-related changes
to ER topography were not primarily the result of location-specific
amplification of brain activity, although this did play a role as well. The
primary process was a shift in the way phases at different locations con-
structively and destructively interfere when summed over trials.

From the conclusion that phase plays a primary role in the topogra-
phy of ER magnitudes, the second issue arose: what is lost from the
phase signal when we average over trials? Previous research has dem-
onstrated the existence of globally organized TWs within single trials
(Alexander et al., 2006b, 2009). This phenomenon seemed, however,
to be inconsistentwith attributing lowERmagnitudes to low amplitude
signal or to random phase. We showed that at time/frequency peaks
where the spatial pattern of phase coherence was closely related to
the ER, TW episodes were ubiquitous at the single trial level, though



Fig. 6. Single subject correlations of normalized ER with the wave ER i.e. the wave fit rt;f x̃;wZð Þ, over all times and frequencies. The left panel shows the results for one MEG subject,
J7, predictable-left condition. The middle panel shows the results for one EEG subject, HK, AR=1.0. The right panel shows the results for the ECoG subject, for the contralateral
movement condition.
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intermittent. Further, the TWs accounted formore of the variance in the
within-trial phase of the signal better than did trial-averaged phase at
task-relevant time and frequencies, and indeed at most times and fre-
quencies. This suggests that information about phase organization be-
tween spatially distant sites is destroyed when cross-trial averages are
calculated.

We also showed that the topography of the ER was well modeled
as the trial-average of traveling wave components. This, even though
TWs were not generally apparent in the trial-averaged topographies
for the present data sets.

The results reported here were consistent across imaging modali-
ties with differing spatial resolutions. This is important because
large-scale patterns of activity in the EEG are distorted by blurring
of the signal via volume conduction effects. For this reason we con-
firmed importance of phase to the ER topography and confirmed
the ubiquity of TWs using two additional measurement modalities:
MEG and ECoG. Similarly, the MEG results allow us to be confident
that the EEG and ECoG results do not depend on our choice of average
reference. The inclusion of three measurement modalities also allows
us to rule out eye-movement and muscle artifacts as the cause of the
ubiquity of the TWs, since each modality is differentially prone to
these issues. Likewise, the broad range of frequencies at which we
found TWs means that any particular non-cortical explanation
(i.e. beta-band muscle artifact, delta-band eye-movement artifact)
cannot account for the ubiquity of the TWs.

It is commonly assumed that signal not captured by the topography of
the event-locked response can be treated as random background noise
(Arieli et al., 1996; Gruber et al., 2005). Ray and Maunsell (2011, p.
12676) state this assumptionwith clarity: “If the oscillations are perfectly
uniform and synchronized across cortex, the amplitude should not de-
crease with distance. However, in our data the phase consistency …

[was] … more random at larger interelectrode distances, leading to
more reduction in the overall magnitude.” This account of phase consis-
tency takes “more random” to be equivalent to less “perfectly uniform
and synchronized across cortex”. However, there are several ways for
phase consistency to diverge from perfectly uniform across the cortex.

One possibility is that there are a variety of TW components in the
signal and the observed low phase consistency is due to phase cancel-
ation in the trial-average. Previous studies using single-trial measures
of TWs have shown that the trajectories of the waves have a distribu-
tion with several modes (Alexander et al., 2009; Massimini et al.,
2004; Rubino et al., 2006; Takahashi et al., 2011). That is, the traveling
waves can move in a variety of directions. When several modes are
present, trajectories with opposing directions will summate in the
manner of an interference pattern. The result is that the traveling
wave information is lost, although the residue—the ER, ITPC or phase
consistency—has a maximum that is localized in space and time. The
magnitude of this event-locked response decreases with increasing dis-
tance from the site ofmaximum, just as in the case of phase consistency
described by Ray andMaunsell (2011). This can be easily demonstrated
by making an analogy with Moiré patterns—the component images
(analogous to individual trials) of these interference patterns do not
have the sameamplitude patterns as theMoiré pattern itself (analogous
to the inter-trial measure). Supplementary Video 5 shows how four
TWs, each with different trajectories, can summate to give the
spatio-temporal pattern typical of ERs.

For some cognitive tasks/states, one TW mode can be dominant,
for example anterior to posterior waves in deep sleep (Massimini et
al., 2004). TWs are also observed in cross-trial measures during rest
(Nolte et al., 2008), in local field potentials during low contrast visual
stimulation (Nauhaus et al., 2009) and perceptual interference tasks
such as Stroop (Klimesch et al., 2007). These observations are consis-
tent across a range of methods i.e. for mean delay map, phase slope,
spike-triggered average or filtered ERP topography. A case in point
is the latency topography of the P3b ERP,which varies across age groups
(Anderer et al., 1996). There is a posterior–anterior latency gradient in
early adolescence but an anterior–posterior latency gradient in older
adults (Alexander et al., 2006b, 2008). However, neither mode is dom-
inant during late adolescence. This effect has been proposed to explain
the absence of a clear P3b latency gradient for this age group (Alexander
et al., 2009). In the present research, we generalize this observation by
showing the ubiquity of TWs under and variety of measurement and
task conditions. TWs are common-place within trials whether or not
they are apparent in the trial-average. We further suggest that averag-
ing over trials destroys functional information about the sequence of ac-
tivations in moment-to-moment cognition.

Our conclusions about trial-averaging extend, in principle, to mea-
sures such as pair-wise phase coherence. Pair-wise coherencemeasures
assume that the mean phase-offset—over trials or over several seconds
of temporally contiguous data—reflects functional connectivity. Howev-
er, TW events are usually short-lasting (Alexander et al., 2006b; Gabriel
and Eckhorn, 2003;Massimini et al., 2004), intermittent (Eckhorn et al.,
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2004; Gong et al., 2007; Ito et al., 2007; Nikolaev et al., 2010) and can
have a variety of trajectories (Alexander et al., 2009; Manjarrez et al.,
2007; Massimini et al., 2004; Rubino et al., 2006; Takahashi et al.,
2011). Under these conditions, mean phase-offsets will underestimate
the scope of coherent TW events due to destructive interference across
trials.
Outlook

Recent findings have shown network coupling effects via endoge-
nous fields in cortical slices (Anastassiou et al., 2011; Fröhlich and
McCormick, 2010). The fields play a causal role in network activity,
but any causal effects from these fields arise in real-time, without ac-
cess to cross-trial information. It is therefore timely to uncover differ-
ences and correspondences between field properties captured by
single-trial and inter-trial quantities. In vivo, the measured fields re-
flect mass activity in the cortex; the rise and fall of activity across mil-
lions of neurons in an organized pattern.

What role might TWs play in themoment-by-moment organization
of cognition? In short, they ‘carry’ the cortical activation to task-relevant
sites in time for the ER. If we accept that ERs arise, in the main, as a
cross-trial interference pattern in phase, this implies that ERs reflect
the consistency in timing of brain activity, at particular sites, across tri-
als. Specifically, the results from the present data sets show that the to-
pography of ER magnitudes largely reflects the topography of phase
consistency across trials. This observation is not surprising and is con-
sistent with the phase-resettingmodel of ERP genesis. However, the to-
pography of phase consistency across trials does not convey the same
information as the topography of phase organization within trials; this
was the second observation of the present research.

A corollary of these observations is that within-trial TWs carry a
peak in activation (or inhibition) toward the sites of high cross-trial
phase consistency. The wave arrives just in time to produce the pat-
tern embodied in the cross-trial signal as the ER. This implies that
the observed phase-resetting occurs in the form of a coherent TW
event passing over the site of the maximum ER magnitude. A prom-
ising line of future research would be to show that the TW activa-
tions directly preceding the latency of the localized phase-reset
event are also functionally relevant to the ER or predict task perfor-
mance. Given the intermittent nature of TW activity, future re-
search also needs to demarcate the experimental conditions under
which TWs arise on a moment-by-moment basis, and when they
are absent.

In the context of visual andmotor cortex, TWs have been proposed as
a mechanism for integrating spatially disparate signals (Rubino et al.,
2006; Sato et al., 2012). We have also hypothesized that TWs interact
with the functional mapping within cortical areas to enable rapid gener-
alization of cortical computations (Alexander et al., 2011). The proposed
generalizationmechanismworks by broadcasting invariant components
of the cortical signal, using TWs, across the functionally varying cortical
topography. At the at 10 cm scale and larger, TWs may also act as a
mechanism to integrate cognitive events across the entire cerebral cor-
tex. Alterations in TWpatterns could provide amarker for cognitive dys-
function, and such has been observed for ADHD and schizophrenia
(Alexander et al., 2008, 2009). Some recent and intriguing work on
the role of cortical phase in perception has shown that visual thresh-
olds can be altered by the ongoing phase dynamics (Busch et al.,
2009; Mathewson et al., 2009; VanRullen et al., 2011). This suggests
a general mechanism by which TWs function, allowing distal cortical
sites to alter the thresholds within task relevant areas. Since the
waves are spatio-temporal, the distal sites are able to alter thresh-
olds in the near-future, providing a natural account of sequencing
of activations across the cortical medium.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.01.016.
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