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Abstract. The task of human vision is to reliably infer useful information about the external
environment from images formed on the retinae. In general, the inference of scene properties
from retinal images is not deductive; it requires knowledge about the external environment.
Further, it has been suggested that the environment must be regular in some way in order for
any scene properties to be reliably inferred. In particular, Knill and Kersten [1991, in Pattern
Recognition by Man and Machine Ed. R J Watt (London: Macmillan)] and Jepson et al [1996, in
Bayesian Approaches to Perception Eds D Knill, W Richards (Cambridge: Cambridge University
Press)] claim that, given an ‘unbiased’ prior probability distribution for the scenes being
observed, the generic viewpoint assumption is not probabilistically valid. However, this claim
depends upon the use of representation spaces that may not be appropriate for the problems
they consider. In fact, it is problematic to define a rigorous criterion for a probability distribution
to be considered ‘random’ or ‘regularity-free’ in many natural domains of interest. This problem
is closely related to Bertrand’s paradox. I propose that, in the case of ‘unbiased’ priors, the
reliability of inferences based on the generic viewpoint assumption depends partly on whether or
not an observed coincidence in the image involves features known to be on the same object.
This proposal is based on important differences between the distributions associated with:
(1) a ‘random’ placement of features in 3-D, and (ii) the positions of features on a ‘randomly
shaped’ and ‘randomly posed’ 3-D object. Similar considerations arise in the case of inferring
3-D motion from image motion.

1 Introduction

The task of human vision is to reliably infer useful information about the external
environment from the images formed on the retinae. Since these images are 2-D projec-
tions of a 3-D scene, the depth of features in the scene—the spatial component along
the line of sight—is not specified.

In general, the inference of scene properties (eg depth, surface reflectance, illumina-
tion) from retinal images is not deductive. It has been suggested that the reliability of
perception depends on the regularities of the external environment, and that biological
organisms have evolved or learned to exploit these regularities. If the observed scenes
are simply ‘random’ 3-D arrangements of features, then, so the story goes, retinal images
cannot provide a reliable basis for perceptual inferences. These environmental regularities
are generally of a statistical nature and are expressed as probability distributions over the
space of possible scene interpretations.

The importance of environmental regularities is a time-honored principle of much
of the literature on visual perception, dating back to Helmholtz (1909/1962). A recent
collection of essays on applications of Bayesian probability theory to visual perception
(Knill and Richards 1996) amply demonstrates how various environmental regularities
may be used to probabilistically justify perceptual inference. In a Bayesian framework,
biases in the prior probability distributions appearing in Bayes’s rule embody a mathe-
matical representation of these environmental regularities.

9 Current address: Department of Psychology, University of Southampton, Highfield, Southampton
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One way to formulate the application of Bayes’s rule to vision is:

P(I|S) x P(S)

P(S|D) = =S5

where [ is the image formed on the retina, S is a possible scene interpretation, and P(S)
is the prior probability distribution for scenes in the environment. P(S|/) (read “the
probability of the scene given the image™) is the posterior probability distribution for
scenes in the environment. It represents the ‘refinement’ of the prior probability distri-
bution made possible by the information present in the image /. On the other hand,
P(I]S) is the probability of the image given the scene. This probability distribution is
deter-mined by prior assumptions about the relative probabilities of the different view-
points from which the scene might be observed. One such assumption is the generic
viewpoint assumption.

2 The generic viewpoint assumption
The generic viewpoint assumption (Binford 1981; Witkin and Tennenbaum 1983; Lowe
1985; Koenderink and van Doorn 1986; Malik 1987; Nakayama and Shimojo 1990, 1992;
Albert 1992; Freeman 1992; Albert and Hoffman 1995; Yuille 1996) states that human
vision assumes that salient image features are not the result of ‘accidental’ coincidences
between the viewpoint of the observer and the internal geometry of the scene. Jepson et al
(1996), Jepson and Richards (1993), and Knill and Kersten (1991) present arguments
purporting to show that various instances of the generic viewpoint assumption are not
probabilistically valid without assuming strong ‘biases’ in the prior probability distribu-
tion [ie in the distribution P(S) appearing in Bayes’s rule]. In particular, they suggest that
such distributions should be linear combinations of: (i) smooth functions over the entire
space of possible scene descriptions, which represent the “‘unbiased’ component of the
prior, and (ii) localized, highly biased Dirac delta functions centered on certain ‘favored’
interpretations. Jepson et al (1996) claim that these delta functions, or ‘modes’, comprise
a precise, formal representation of the environmental regularities that make reliable
perceptual inference possible. However, their claim presupposes that there exist well-
defined criteria for classifying distributions as ‘regularity-free’, ‘unbiased’, or ‘random’.
To illustrate the difficulty in formulating such criteria, consider the following
perceptual problem: Suppose we are given a 3-D scene containing a single line segment
whose length is between zero and some maximum length L (inclusive). Further, suppose
that the image we observe consists of just a single ‘point’. We want to know whether
the observed 3-D scene is more likely to be a ‘point’ in 3-D (ie a ‘line’ of length zero)
or a 3-D line segment of nonzero length that happens to lie along our line of sight.
Now, consider two possible definitions for a ‘regularity-free’ or ‘unbiased’ prior
probability distribution over such scenes: (i) With the first endpoint of the line segment
fixed at the origin of our 3-D coordinate system, assume that the second endpoint
is selected by using a flat distribution on distance from the origin (within the sphere
of radius L). Call this prior probability distribution P,. This distribution over the posi-
tion of the endpoint induces a distribution over the length of the line segment that is
proportional to the square of the length (since the surface area of a sphere is propor-
tional to the square of its radius). In other words, P, is ‘flat’ as a function of the
position of the endpoint, but it is a parabola as a function of the length of the line
segment, so it is ‘biased’ towards longer line segments. It can be shown that P, does
not reliably support the inference that a line segment has length zero in 3-D just
because it has length zero in the image. However, another plausible definition for an
‘unbiased’ prior probability distribution in this context does, namely (ii)) a flat prior
for the lengths of the 3-D line segments. Call this distribution P,. I will show that P,
does reliably support the desired inference (see figure 1).
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Figure 1. (a) A flat prior probability for the length of a line segment between zero and L, inclusive.
(b) A posterior probability for the length of a line segment, given a flat prior on length, and given
an image of the line segment in which the endpoints coincide.

In general, given the task of inferring the 3-D shape of a single object, it seems
natural to define an ‘unbiased’ prior probability distribution in this context to be a
smooth distribution over a space of viewpoint-independent descriptions of the objects
(eg the lengths of line segments).() The viewpoint of the observer is then chosen by
using some smooth prior probability distribution on the space of possible viewpoints
on the object. In other words, I suggest that the generic viewpoint assumption is
implicitly based on a conceptual framework in which a prior probability distribution is
placed on the internal geometry of the object being observed, and a uniform (or smooth)
prior is placed on the space of possible viewpoints of the observer relative to the object.
This contrasts with placing a smooth distribution over a space of viewpoint-dependent
descriptions of an object, for example, the positions of the endpoints of a line segment
(which implicitly includes a description of the shape of the object and its 3-D orientation
relative to the observer). One might expect that the consequences of the choice between
viewpoint-independent and viewpoint-dependent representations for defining what is
meant by a ‘random’ or ‘regularity-free’ context would be qualitatively unimportant;
that either representation could be used to define a ‘random’ prior and determine the
reliability of a given perceptual inference without affecting the conclusions. However,
because of the greater symmetry of certain perceptual interpretations, the choice
between these representations turns out to be critical.

3 Seeing ‘at rest’ but perceiving motion?

Jepson et al (1996) argued that the inference: “If a particle is stationary in the image,
then it is stationary in 3-D space” is not reliable unless the prior probability distribu-
tion for the motion of the particle is biased in favor of the particle being at rest (see
figure 2). They showed that, if the prior probability distribution in the space of 3-D
velocity vectors is given by the Maxwell distribution for the velocity of an ideal gas
molecule, then, despite the fact that this distribution is at its maximum when the
velocity vector is zero, this inference is unreliable.

M For example, a viewpoint-independent description of the set of all possible 3-D triangles might
be to give the lengths of two sides and the included angle between them. On the other hand, a
viewpoint-dependent description of the set of all possible 3-D triangles might be to give the 3-D
coordinates of each of its three vertices relative to the observer, for a total of nine parameters.

In the case of static images a viewpoint-independent description is essentially the same in spirit
as an object-centered description. An object-centered description is also a viewpoint-independent
description; however, the reverse is not always true. For the case of moving images, a description
can be viewpoint-independent, ie independent of the position of the observer, but not indepen-
dent of the velocity of the observer. An object-centered description is always independent of the
motion of the observer. Thus, as will be discussed below, the speed of a particle is a viewpoint-
independent descriptor, in that it is the same for all observers that are at rest relative to one another,
but it is not an object-centered descriptor (since its velocity is always zero relative to itself).
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The Maxwell distribution is:

_ 1 [E
W)= ey e"p(— 27 )

where T is the temperature of the gas, and ¢ is a positive constant.

However, the velocity vector of a particle is a viewpoint-dependent description of the
motion of a particle. A viewpoint-independent description of the motion of a particle
would be its speed—the magnitude of its velocity vector. In general, the probability of
the particle having speed approximately equal to s, given any probability measure M
on the space of velocity vectors, is equal to the ‘mass’ of M inside a thin spherical shell
of radius s centered at the origin of velocity space. Therefore, to convert the prior proba-
bility distribution for velocity given by the Maxwell distribution into a prior probability
distribution for speed we simply multiply the Maxwell distribution by the surface area
of a sphere of radius equal to the speed, ie 4ns*. The resulting prior probability distri-
bution is zero for s = 0 and nonzero for all s > 0, suggesting that the Maxwell distri-
bution is strongly biased against the particle being at rest. In other words, it is a very
unlikely event to find a particular ideal gas molecule at rest.

On the other hand, consider a flat prior for speed (up to some maximum speed S),
combined with a flat prior for viewing angle.® Notice that the velocity vector of
length zero is a single point in velocity space, whereas in the speed/viewing-angle
representation, where for s = 0 the viewing angles can still vary freely, they generate a
2-D subspace of the 3-D speed/viewing-angle representation space. This suggests that
an unbiased prior for speed may be qualitatively very different from an unbiased prior
for velocity.® I claim that a flat prior for speed does support the inference that 3-D
velocity of a particle is close to zero if its image velocity is close to zero.

A rigorous proof of this claim can be constructed by calculating the limit of the
ratio: (probability of the resting interpretation)/(probability of the moving interpreta-
tions) as the visual resolution becomes infinitely fine, and conditioned on the particle
being at rest in the image. The complete proof is given in the Appendix. It shows that
this limit is nonzero and finite, ie that the cumulative posterior probability of all the
‘moving’ interpretations is comparable to the posterior probability of the single ‘at rest’
interpretation (also see Yuille 1996). Furthermore, the inference: “If the particle is at
rest in the image, then its 3-D speed is less than 67, where J is any arbitrarily small
positive number, is reliable (ie it is valid with probability 1). In fact, the ratio (probability
of the single stationary interpretation)/(probability of the set of all moving interpreta-
tions with speeds greater than J) is infinite for any arbitrarily small 6 > 0. This shows

@ Here I assume orthographic projection, as in Jepson et al (1996).

® Similarly, Knill and Kersten (1991) argued that the generic viewpoint assumption does not reliably
support the inference that a straight ‘wire’ in an image corresponds to a straight wire in 3-D.
The ideas represented here may also be applied to their example.
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that the ratio: (probability of the ‘at rest’ interpretation)/(probability of the set of
all ‘moving’ interpretations) is finite only because of the cumulative probability of
the moving interpretations having speeds less than —the cumulative probability of the
moving interpretations with speeds greater than ¢ is negligible, no matter how small
we choose ¢ to be. An analogous proof shows that the inference that a line segment
has length zero in 3-D if it has length zero in the image is reliable, given a flat prior
for the length of the line segment (the velocity vector is analogous to length and
orientation of the line segment).

It is important to note that if we transform a flat prior for speed into velocity
space, then the limiting value of the integral of the resulting distribution over a sphere
centered at the origin in velocity space approaches zero as the radius of the sphere
approaches zero. This follows from the fact that the integral of the original flat
prior for speed between zero and some nonzero speed s approaches zero as s
approaches zero. In fact, a flat prior for speed transformed into velocity space is ~s °.
On the other hand, the integral of a Dirac delta function over a sphere of radius s
remains nonzero as s approaches zero. So, although a flat prior on speed is clearly
more ‘peaked’ at zero in velocity space than the Maxwell distribution discussed by
Jepson et al (1996), it is also clearly a much weaker regularity than the ‘modes’ they
claim are necessary for reliable inference based on the generic viewpoint assumption.

Jepson et al (1996, page 73, line 8) claim that “The existence of this mode [for
being at rest] was shown to be critical [emphasis added] in order to obtain a reliable
inference that an object being observed is in fact at rest”. We have shown that a
mode for zero velocity is not necessary for this inference to be reliable.

The arguments presented here apply to inferences about the 3-D structure of a single
‘object’, or the motion of a single feature. It can certainly be argued that the assumption
that a group of feature points belongs to a single object (such as the two endpoints of a
line segment) is itself a bias. However, this kind of bias is very weak in comparison to
delta functions placed on single interpretations: This kind of ‘object bias’ does not place
a nonzero probability mass on any single object shape in either an object-centered or a
viewer-centered sense (see above), whereas the ‘modes’ advocated by Knill and Kersten
(1991), and Jepson et al (1996) do. It might further be argued that, in order for a flat
prior on shape to be considered a ‘random’ environment, we would have to already
know (by some other means) that the group of feature points of interest belongs to a
single object. Fair enough. (However, note that in the motion example discussed above
a similar argument cannot be made; a flat prior for speed implies no object bias.)

I conclude that:

Even in an environment of ‘random’ 3-D shapes (or motions) it is possible to make
certain reliable inferences about 3-D shape (or motion) from 2-D image data.

4 Summary and discussion

I have suggested that the generic viewpoint assumption supports reliable inference given
a flat prior over a viewpoint-independent representation of the environment. I argued
that the meaning of statements such as: “The states of the environment are random”
depends on the choice of the parameters used in the representation of that environ-
ment. If there is no ‘canonical’ choice for these parameters, then there can be no
principled way to define what ‘random’ means. I demonstrated that this ambiguity can
be significant enough that, given a uniform prior probability over one representation
space, a certain inference can have negligible posterior probability; whereas, given a
uniform prior probability over a different representation space, the same inference can
have posterior probability one.
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A related point was made by the French mathematician Joseph Bertrand (Bertrand
1889). One variant of the famous ‘Bertrand’s paradox’ is the following problem in
elementary geometry: Suppose we want to calculate the probability that a ‘randomly
selected’ chord to a circle has length greater than the length of one side of an inscribed
equilateral triangle of the circle. It turns out that different ways of parameterizing
the set of chords to a circle leads to different answers to this question, and there is
no principled reason to prefer one parameterization over the others (see figure 3).
Although some have suggested that this particular paradox can be resolved by selecting
a ‘model’ for the problem and considering the symmetry constraints it suggests (Jaynes
1973), it is known that this solution is not general. That is, the symmetry constraints
entailed by ‘reasonable’ models do not generally lead to a unique unbiased probability
distribution for other similar paradoxes (van Fraassen 1989). In particular, these techni-
ques do not appear to be useful for the problems considered in this article.

tangent line Figure 3. Bertrand’s paradox. This figure illus-
trates two of the many possible methods that
might be used to ‘measure’ the percentage of
chords to a circle whose length is greater than
the length of a side of an equilateral triangle
inscribed in the circle. One method is to con-
sider the range of angles that the chord could
make relative to the tangent line to the circle
at one of the chord’s endpoints. Another
method is to consider the range of possible
perpendicular distances that the chord could
have from the center of the circle. However,
these two methods give different answers to
the question: “What is the probability that a
‘randomly selected’ chord to a circle has length
greater than the length of one side of an
inscribed equilateral triangle of the circle (after
Bertrand 1889)?”

Rsin30° = R/2

60°

It is possible that the ambiguity of the concept of a ‘regularity’ could be reduced
by defining it in a more qualitative way, say by considering the properties of certain
equivalence classes of prior probability distributions, rather than exact prior probability
distributions themselves. For example, a mode for zero velocity would become a mode
for zero speed when transformed into the 3-D speed/viewing-angle representation, so it
seems this ‘regularity’ would be preserved under most reasonable re-parameterizations.

I conclude that although environmental regularities are certainly likely to be neces-
sary to obtain the kind of rich perceptual knowledge we generally possess about our
environment, my analysis shows that they are not necessary in principle for reliable
perceptual inference, and that it is possible to reliably infer certain things about a 3-D
environment from an image even when the statistics of that environment can reasonably
be considered to be ‘random’.
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Appendix

In the text I considered the perceptual inference “If a particle is stationary in the image,
then it is stationary in 3-D space”, and gave qualitative arguments for its reliability,
given a ‘random’ prior to the 3-D speed of the particle. Here I prove that, if a particle
is stationary in an image, then the limit of the ratio: (probability that the particle
3-D speed is less than ¢)/(probability that the particle 3-D speed is greater than ¢) is
finite as ¢ approaches zero, given a uniform prior probability distribution on the 3-D
speed/viewing-angle representation space. The parameter ¢ represents the precision of
the image measurements and also the precision of the 3-D perceptual category of a
particle being ‘at rest’.

For a given 3-D speed s, we need to calculate the range of viewing directions or
the solid angle ® within which the image speed will be less than &. Suppose that our
uniform prior probability distribution on 3-D speed has constant value equal to ¢ up
to a maximum speed S. Recall that just as an ordinary angle 6 in a 2-D plane is
defined by the amount of the circumference of the unit circle that the angle subtends,
a solid angle ® in 3-D space is defined by the amount of surface area of the unit
sphere that the solid angle subtends. Now, the surface area of a sphere of radius R is
equal to 4R’ In the 2-D case, sin < 0 for all 0 < 6 < n/2, and analogously in 3-D:

2n(sinf)’ < @, forall 0 < 6 < m/2, (inequality 1)

where ©/2 is the size of the solid angle defined by a cone with its vertex at the center
of the unit sphere, and with angle 0 relative to its axis of symmetry. To see why, note
that m(sin 0)’ is the area of the base of the cone of the solid angle if we just took the
base to be a flat disk. This area must always be less than the surface area of the sphere
subtended by the cone, which is @/2. The full solid angle of interest actually includes
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two oppositely pointing cones, and has total size @, since the particle could be moving
either towards or away from the observer.

On the other hand, the ratio: (area of the solid angle for one cone, ie ®/2)/(area
of the flat base of the cone) is maximal when the solid angle is the full sphere
(ie ©/2 =2m), in which case this ratio is 2n(1)°/n(1)*> = 2. In other words, the solid
angle for one cone has no more than twice the area of the flat base of the cone. So
we also have:

4r (sin 9)2 >0, forall 0 < 0 < w/2. (inequality 2)

We now calculate the posterior probability that the 3-D speed of the particle is
greater than ¢, given a flat prior on its 3-D speed Pgg, and an image I of the particle
in which it has image speed less than ¢. Note that the constraint that the image speed
of the particle is less than ¢ implies that sin0 < ¢/s, where 0 is the angle between the
3-D velocity vector of the particle and the observer’s line of sight, and s is the 3-D
speed of the particle. Let @ (s) represent the solid angle of possible viewing directions
from which the particle, moving at 3-D speed s, would project an image speed of less
than ¢ into 1. Now, the posterior probability that the 3-D speed of the particle is
greater than ¢ is equal to

CJ: O (s)ds.

So, substituting inequality 1 into this formula we find that the posterior probability

S

1 2
Pes(s = e|1) > 2ncs2J —2ds—2nc(8—%>,
.S

and substituting inequality 2 shows that this probability can be at most twice the value
of the expression on the right.
The posterior probability that the 3-D speed of the particle is less than ¢ is simply
Ps(s < ¢ll) = 4TEJ cds = 4mce,
0
since the solid angle of possible viewpoints is equal to the complete viewing sphere,
ie 4n. So, if the particle is moving slower than ¢ in the image 7, then

P (s < ¢|I) e’ 1 € -0
SV = ) amee/ome(e— ) =1/ -5 00
Pl > oT)  mee/mele =47 /2 oM

is finite, as claimed.

Furthermore, note that, if the lower limit of the integral given above for the posterior
probability that the 3-D speed of the particle is greater than ¢ is taken to be a fixed, but
arbitrarily small, parameter J, then the above limit ‘blows-up’ as ¢ goes to zero. In other
words, the ‘at rest’ interpretation for the particle is infinitely more probable than the
set of ‘moving faster than ¢’ interpretations, for any arbitrarily small value of J. So,
we see that it is only the cumulative probability of the moving interpretations having
speeds less than ¢ that has probability comparable to the probability of the single
‘at rest’ interpretation. The cumulative probability of the moving interpretations having
speeds greater than ¢ is negligible.

p © 2000 a Pion publication printed in Great Britain
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